系统辨识--概述及非参数辨识(精)
- 格式:ppt
- 大小:584.50 KB
- 文档页数:66
系统辨识算法一、引言系统辨识是指通过对系统输入输出数据进行观测和分析,从而建立数学模型以描述和预测系统行为的过程。
系统辨识算法是在给定输入输出数据的基础上,利用数学方法和计算机模拟技术,对系统的结构和参数进行估计和辨识的算法。
系统辨识算法在控制工程、信号处理、机器学习等领域具有广泛的应用。
二、系统辨识方法系统辨识方法可以分为参数辨识和非参数辨识两类。
1. 参数辨识参数辨识是指通过对系统模型中的参数进行估计,来描述和预测系统的行为。
常用的参数辨识方法有最小二乘法、最大似然估计法、递推最小二乘法等。
最小二乘法是一种基于最小化误差平方和的优化方法,通过优化目标函数来估计参数值。
最大似然估计法是一种基于概率统计理论的方法,通过似然函数最大化来估计参数值。
递推最小二乘法是一种基于递推迭代的方法,通过更新参数估计值来逼近真实参数值。
2. 非参数辨识非参数辨识是指通过对系统的输入输出数据进行分析,来估计系统的结构和参数。
常用的非参数辨识方法有频域分析法、时域分析法、小波分析法等。
频域分析法是一种基于信号频谱特性的方法,通过对输入输出信号的频谱进行分析,来估计系统的频率响应。
时域分析法是一种基于信号时域特性的方法,通过对输入输出信号的时序关系进行分析,来估计系统的时域特性。
小波分析法是一种基于小波变换的方法,通过对输入输出信号的小波变换系数进行分析,来估计系统的时频特性。
三、系统辨识应用系统辨识算法在实际工程中有着广泛的应用。
1. 控制工程系统辨识算法在控制系统设计中起到关键作用。
通过对控制对象进行辨识,可以建立准确的数学模型,从而设计出性能优良的控制器。
例如,在自适应控制中,可以利用系统辨识算法来实时辨识系统模型,从而根据实际系统特性调整控制器参数。
2. 信号处理系统辨识算法在信号处理领域有重要应用。
通过对信号进行辨识,可以提取信号的特征和结构,从而实现信号去噪、信号分析、信号识别等目标。
例如,在语音信号处理中,可以利用系统辨识算法来建立语音模型,进而实现语音识别和语音合成。
第 四 章系统辨识与参数估计4.1 系统辨识概述4.2 非参数模型辨识4.3 最小二乘参数估计4.4 递推最小二乘数估计4.5 其它最小二乘类估计4.6 极大似然估计法4.7 预报误差法4.8 子空间方法4.9 闭环辨识2012年5月29日星期二3第八讲14. 4 递推最小二乘估计2012年5月29日星期二3第八讲24.4 递推最小二乘数估计参数估计的一次算法, 当N很大时,(ΦTΦ)-1的计算是个很大的负担, 且每增加一个数据(ΦTΦ)-1的计算必须重复进行,因此, 递推算法在实际应用中是十分必要.•递推算法的基本思想:新估计c(k+1) = 原估计c(k) + 修正项2012年5月29日星期二3第八讲32012年5月29日星期二3第八讲44.4.1基本最小二乘递推公式2012年5月29日星期二3第八讲5定理4.6 对于定义的辨识问题, 未知参数向量θ的最小二乘估计的递推计算式为(1×S)(S×S)(S ×1)标量S = n a +n b +12012年5月29日星期二3第八讲62012年5月29日星期二3第八讲7证明:设基于N 时刻为止的所有观测数据对N 时刻的未知参数θ的最小二乘估计为 则由矩阵求逆引理可知2012年5月29日星期二3第八讲82012年5月29日星期二3第八讲92012年5月29日星期二3第八讲10注1: 新估计c(N+1)是原估计c(N)及校正项K(N+1)[y(N+1)-φT (N+1)c(N)]的线性组合。
若记代表原估计对N+1时刻输出的预测,则表示新息,即输出误差的预报,若预报误差为零,说明参数估计已准确,不必校正。
注2:递推算法所需的存贮容量及计算量都大大下降。
2012年5月29日星期二3第八讲11注5: 增益阵K(N)的计算误差δK(N),通过式给P(N)阵的计算带来误差δP(N),显然有δP(N) =-δK(N)φT (N)P(N-1)即误差以一次幂的形式传播,累积现象显著。
1. 模型与系统1)模型:把关于实际系统的本质的部分信息简缩成有用的描述形式。
它用来描述系统的运动规律,是系统的一种客观写照或缩影,是分析、预报、控制系统行为的有力工具。
模型是实体的一种简化描述。
模型保持实体的一部分特征,而将其它特征忽略或者变化。
不同的简化方法得到不同的模型。
2)系统:有些书里也称为过程,按某种相互依赖关系联系在一起的客体的集合。
本身的含义是比较广泛的,可以指某个工程系统、某个生物学系统,也可以指某个经济的或社会的系统。
这里所研究的“对象”是抽象的,重要的是其输入、输出关系。
2. 残差和新息1)新息(输出预报误差):是过程输出预报值与实测值之间的误差。
(P13)过程输出预报值: 输出预报误差: 过程输出量: 2)残差:是滤波估计值和实测值之差。
3. 系统可辨识的条件最小二乘方法满足开环可辨识条件;激励信号是持续激励,阶次至少要(na+nb+1)阶。
可辨识条件:为了辨识动态系统,激励信号u 必须在观测的周期内对系统的动态持续地激励。
满足辨识对激励信号最起码的要求的持续激励信号应具备的条件,称“持续激励条件”。
4. 建立数学模型1)建立方法:①理论分析法:机理法或理论建模,“白箱”问题②测试法:系统辨识,“黑箱”问题③两者结合:“灰箱”理论问题2)基本原则:①目的性-明确建模的目的,如控制、预测等。
因为不同的建模目的牵涉到的建模方法可能不同,它也将决定对模型的类型、精度的要求。
②实在性-模型的物理概念要明确。
③可辨识性-模型的结构要合理,输入信号必须是持续激励的;另外数据要充足。
④节省性-待辨识的模型参数个数要尽可能地少。
以最简单的模型表达所描述的对象特征。
5. 辨识:就是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。
1)试验设计:包括输入信号(幅度、频带等)、采样时间、辨识时间(数据长度)、开环或闭环辨识、离线或在线辨识(P19)目的:使采集到的数据序列尽可能多地包含过程特性的内在信息。
时域控制理论工程中的系统辨识与滤波设计时域控制理论工程涉及到系统辨识和滤波设计两个重要方面。
系统辨识是指通过分析系统输入与输出之间的关系,建立系统的数学模型;滤波设计则是为实现所期望的控制效果,设计合适的滤波器对信号进行处理。
本文将就这两个方面进行详细的探讨。
一、系统辨识系统辨识是时域控制理论工程中的核心内容之一,它旨在通过实验数据或观测数据建立系统的数学模型。
常用的系统辨识方法包括参数辨识、非参数辨识和结构辨识等。
1. 参数辨识参数辨识是一种根据已知输入输出数据来识别系统参数的方法。
通过假设系统满足某种数学模型(如ARX模型、ARMA模型等),可以通过最小二乘法、最大似然估计等方法估计参数的值。
参数辨识方法适用于线性系统,且要求系统具有一定的稳定性。
2. 非参数辨识非参数辨识是一种不依赖于系统模型假设的辨识方法。
主要通过频域分析或自回归-移动平均模型(ARMA)来描述和分析系统的频率响应性质。
这种方法在系统具有非线性、非稳态或随机性质的情况下更为适用。
3. 结构辨识结构辨识是一种通过试验和观测数据来确定系统的结构模型的方法。
它可以用于估计系统的状态方程、传递函数、状态空间模型等。
常用的结构辨识方法包括系统辩识算法、频域辩识法和小波分析法等。
二、滤波设计滤波设计是时域控制理论工程中的另一个重要环节。
通过设计适当的滤波器,可以实现对信号的滤波处理,达到所需的控制效果。
1. 低通滤波器低通滤波器主要用于去除高频噪声、抑制高频分量。
在时域控制工程中,低通滤波器对于滤除系统中的高频干扰信号具有重要作用。
2. 高通滤波器高通滤波器主要用于滤除低频分量,提取系统中的高频信号。
在某些情况下,需要突出系统的高频响应,这时可以使用高通滤波器。
3. 带通滤波器带通滤波器可以通过滤除信号的低频和高频成分,仅保留某一频率范围内的信号。
在时域控制理论工程中,带通滤波器常常用于提取特定频率范围内的控制信号。
4. 带阻滤波器带阻滤波器可以阻断某一特定频率范围内的信号,也被称为陷波器。
系统辨识综述一、系统辨识概述辨识、状态估计和控制理论是现代控制理论三个互相渗透的领域。
辨识和状态估计离不开控制理论的支持,控制理论的应用又几乎不能没有辨识和状态估计技术。
随着控制过程复杂性的提高,控制理论的应用日益广泛,但其实际应用不能脱离被控对象的数学模型。
然而在大多数情况下,被控对象的数学模型是不知道的,或者在正常运行期间模型的参数可能发生变化,因此利用控制理论去解决实际问题时,首先需要建立被控对象的数学模型。
系统辨识正是适应这一需要而形成的,他是现代控制理论中一个很活跃的分支。
社会科学和自然科学领域已经投入相当多的人力和物力去观察、研究有关的系统辨识问题。
系统辨识是建模的一种方法,不同的学科领域,对应着不同的数学模型。
从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。
辨识问题可以归结为用一个模型来表示客观系统(或将要构造的系统)本质特征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。
当然也可以有另外的描述,辨识有三个要素:数据,模型类和准则。
辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型。
总而言之,辨识的实质就是从一组模型类中选择一个模型,按照某种准则,使之能最好地拟合所关心的实际过程的静态或动态特性。
通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。
对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。
对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。
而系统辨识所研究的问题恰好是这些问题的逆问题。
通常,预先给定一个模型类μ={M}(即给定一类已知结构的模型),一类输入信号u和等价准则J=L(y,yM)(一般情况下,J是误差函数,是过程输出y和模型输出yM的一个泛函);然后选择使误差函数J达到最小的模型,作为辨识所要求的结果。
利用Matlab进行系统辨识与模型建立的基础知识一、引言在现代科学和工程领域中,系统辨识和模型建立是一项重要且广泛应用的技术。
通过对实际系统的数据进行分析和处理,我们可以获取系统的动力学特性,并且建立相应的数学模型进行预测和控制。
本文将介绍利用Matlab进行系统辨识和模型建立的基础知识,帮助读者初步了解这一领域的方法和应用。
二、系统辨识的概念系统辨识是指通过对实际系统的输入和输出数据进行分析,推断系统的结构和参数。
它可以帮助我们理解和模拟各种动态系统,包括机械系统、电气系统、生物系统等。
有了准确的模型,我们可以更好地预测系统的行为,并进行相应的控制。
三、Matlab在系统辨识中的应用Matlab是一种功能强大的数学软件,提供了丰富的工具箱和函数,方便进行系统辨识和模型建立。
首先,我们需要导入实验数据到Matlab环境中,可以使用函数"importdata"或者"load"。
然后,我们可以使用不同的方法对数据进行分析和处理,例如最小二乘法、极大似然法、频域分析等。
Matlab提供了相应的函数和工具箱,例如"lsqcurvefit"、"arx"等,可以方便地应用这些方法。
最后,我们可以使用Matlab进行系统模型的评估和验证,通过与实际数据的对比,来检验模型的准确性和可靠性。
四、系统辨识的常见方法在系统辨识中,常用的方法包括参数辨识、非参数辨识和结构辨识。
参数辨识方法通过对系统参数的估计,来推断系统的结构和动力学特性。
最小二乘法是一种常见的参数辨识方法,通过最小化实际输出和模型输出之间的误差,来确定最优模型参数。
非参数辨识方法不对系统进行特定的假设,而是通过分析输入和输出之间的关系,来推断系统的频率响应和传递函数。
广义谱估计是一种常见的非参数辨识方法,可以用来估计系统的功率谱密度和相关函数。
结构辨识方法则通过对系统结构和特性的推断,来建立模型。
《系统辨识》学习总结姓名:xxx专业:xxxxxxxxx学号:xxxxxxxxxxx1、 系统辨识定义为了分析系统的行为特性、理解系统的运动规律、设计系统的控制策略或估计系统的状态,通常需要知道系统的数学模型。
但是,在多数情况下系统的数学模型是不知道的,或者数学模型的参数会随着系统运行环境的变化而变化。
系统辨识正是研究建立系统数学模型的一种理论和方法,帮助人们在研究表征系统复杂因果关系时尽可能准确地确立系统特性的定量依存关系。
系统辨识是一种实验统计的方法,通过测取系统在输入作用下的输出响应,或正常运行的输入和输出数据记录,进过必要的数据处理和数学计算,估计出系统的数学模型。
之所以能这么做的理由是基于系统的动态特性被认为必然变现在变化着的输入和输出数据之中,辨识只不过是利用数学的方法从数据序列中提炼出系统的数学模型而已。
利用辨识方法建立的数学模型一般是系统输入输出特性在某种准则意义下的一种近似,近似的程度取决于人们对系统先验知识的认识和对数据集合性质的了解以及所选用的辨识方法。
2、 辨识方法分类一般来说,辨识方法分两类:一类是非参数模型辨识方法,另一类是参数模型辨识方法。
非参数模型辨识方法(经典辨识方法)获得的模型是非参数模型,在假定系统是线性的前提下,不必事先确定模型的结构,因而这类方法可适用于任意复杂的系统。
参数模型辨识方法(现代辨识方法)必须假定模型结构,通过极小化模型与系统之间的误差准则函数来估计模型的参数。
如果模型结构无法事先确定,需要先辨识模型结构参数(比如阶次、延迟、Kornecker 不变量等),然后再估计模型的参数。
现代的辨识方法就其基本原理来说,又可分成三种类型:一类是最小二乘类辨识方法,另一类是梯度校正辨识方法,第三类是概率密度逼近辨识方法。
3、 最小二乘辨识方法3.1最小二乘批处理算法设时不变SISO 动态系统的数学模型为11()()()()()A z z k B z u k n k --=+(0.1) 其中,()u k ,()z k 为模型的输入和输出变量;()n k 是模型噪声;延迟因子1z -的多项式1()A z -和1()B z -。
系统辨识知识点总结归纳一、系统辨识的基本概念系统辨识是指通过对系统的输入和输出进行观察和测量,利用数学模型和算法对系统的结构和行为进行识别和推断的过程。
它在工程技术领域中起着重要的作用,可以用来分析和预测系统的性能,对系统进行控制和优化。
系统辨识涉及信号处理、数学建模、统计推断等多个领域的知识,是一门非常复杂的学科。
二、系统辨识的基本原理系统辨识的基本原理是基于系统的输入和输出数据,利用数学模型和算法对系统的结构和参数进行识别和推断。
其基本步骤包括数据采集、模型建立、参数估计、模型验证等。
系统辨识的关键是如何选择合适的模型和算法,以及如何对系统的输入数据进行预处理和分析。
同时,还需要考虑数据的质量和可靠性,以及模型的简单性和准确性等因素。
三、系统辨识的方法和技术系统辨识的方法和技术包括参数辨识、结构辨识、状态辨识等,具体有线性系统辨识、非线性系统辨识、时变系统辨识、多变量系统辨识等。
这些方法和技术涉及到信号处理、最优控制、统计推断、神经网络、模糊逻辑等多个领域的知识,可以根据不同的系统和问题,选择合适的方法和技术进行应用。
四、系统辨识的应用领域系统辨识的应用领域非常广泛,包括控制系统、信号处理、通信系统、生物医学工程、工业生产等。
在控制系统中,系统辨识可以用来设计控制器,提高系统的稳定性和性能。
在信号处理中,系统辨识可以用来提取信号的特征,分析信号的性质。
在通信系统中,系统辨识可以用来设计调制解调器,提高系统的传输效率和可靠性。
在生物医学工程中,系统辨识可以用来分析生物信号,诊断疾病和设计医疗设备。
在工业生产中,系统辨识可以用来优化生产过程,提高产品质量和效率。
五、系统辨识的发展趋势随着科学技术的不断发展,系统辨识也在不断地发展和完善。
未来,系统辨识的发展趋势主要包括以下几个方面:一是理论方法的创新,将更多的数学、统计和信息理论方法引入系统辨识中,提高系统辨识的理论基础和分析能力;二是算法技术的提高,利用机器学习、深度学习等先进的算法技术,对系统进行更加准确和高效的辨识;三是应用领域的拓展,将系统辨识应用到更多的领域和行业中,为社会经济发展和科技进步作出更大的贡献。
系统辨识概述一、系统的定义在科技中,系统规定为实现规定功能以达到某一目标而构成的相互关联的一个集合体或装置(部件)。
根据百度名片,系统泛指由一群有关连的个体组成,根据预先编排好的规则工作,能完成个别元件不能单独完成的工作的群体。
系统分为自然系统与人为系统两大类。
而著名科学家钱学森则认为系统是由相互作用相互依赖的若干组成部分结合而成的,具有特定功能的有机整体,而且这个有机整体又是它从属的更大系统的组成部分。
一般系统论创始人贝塔朗菲将系统定义为:“系统是相互联系相互作用的诸元素的综合体”。
这个定义强调元素间的相互作用以及系统对元素的整合作用。
可以表述为:如果对象集S满足下列两个条件,(1)S中至少包含两个不同元素(2)S中的元素按一定方式相互联系则称S为一个系统,S的元素为系统的组分。
这个定义指出了系统的三个特性:多元性,整体性和相关性。
二、系统辨识中的相关概念系统辨识的定义:利用实验手段确定被研究系统特性(系统模型)的方法。
1956年,由美国L A Zadeh第一次提出“辨识”(Identification)这个名词。
1962年,Zadeh给出“系统辨识”的定义为:“系统辨识是在对辨识系统进行输入、输出观测而获得其输入、输出数据的基础上,从一组设定的模型类中,确定一个与被辨识系统等价的数学模型。
”1978年,由瑞典L Ljung 进一步给出“系统辨识”的实用定义为:“系统辨识是在模型类中,按照某种准则,选择一个与被辨识系统的观测数据拟合得最好的模型。
”因而明确了“系统辨识”的三大要素:(1)输入、输出数据,通过实验获得(2)模型类,选择模型结构(3)最优准则,确定优化指标函数系统辨识是建模的一种方法,不同的学科领域,对应着不同的数学模型。
从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。
在这中间,就涉及到一个系统模型的问题。
模型就是按照过程的目的所作的一种近似的描述。
其含义为:(1)表征过程的因果关系。