第1-2章系统辨识的基本概念和随机过程
- 格式:ppt
- 大小:5.38 MB
- 文档页数:169
系统辨识》第 1 讲要点• 引言课程名称:系统辨识( System identification)现代控制论:辨识、状态估计和控制理论什么是辨识(Identification)?System Identification 系统辩识,又译为“系统识别”和“系统同定”,目前尚无公认的统一定义。
《中国大百科全书》中记述为:系统辩识是根据系统的输入/输出时间函数,确定系统行为的数学模型,是现代控制理论的一个分支 (中国大百科自动控制卷486-488 页)。
(1) 辨识是研究建立系统或生产过程数学模型的一种理论和方法。
(2) 辨识是种从含有噪声的测量数据(输入、输出数据)中提取被研究对象数学模型的一种统计方法。
(3) 辨识模型是对象输入输出特性在某种准则意义下的一种近似。
近似的程度取决于人们对系统先验知识的认识和对数据集性质的了解程度,以及所选用的辨识方法是否合理。
(4) 辨识技术帮助人们在表征被研究的对象、现象或系统、过程的复杂因果关系时,尽可能准确地确立它们之间的定量依存关系。
(5) 辨识是一种实验统计的建模方法。
通俗地说,系统辩识是研究怎样利用对未知系统的试验数据或在线运行数据(输入/ 输出数据)建立描述系统的数学模型的科学。
钱学森把系统广义概括为“依一定顺序相互联系着的一组事物”。
“系统辩识” 是“系统分析”和“控制系统设计”的逆问题。
基于实际系统的复杂性,描述其特性的数学模型具有“近似性” 和“非唯一性” ;辩识方法亦有多样性。
没有绝对好的数学模型和绝对好的辩识方法。
什么是较好的模型?依据辩识的不同目的,有不同答案。
一般说,能够满足目的要求的,比较简单的模型,是较好的模型。
参考书:1. 方崇智、萧德云编著,《过程辨识》,清华大学出版社,北京,19882. 蔡季冰编著,《系统辨识》,北京理工大学出版社,北京,19893. Lennart Ljung,《系统辨识—使用者的理论》(第二版),清华大学出版社,北京,2002预修课程:线性系统理论、自动控制理论基础、概率统计与随机过程第1章系统辨识的一些基本概念1.1过程和模型1.1.1 过程(Process)•过程的描述框图(“黑箱”模型)•过程的行为特性表现在过程的输入输出数据之中。
1 简述系统辨识的基本概念(概念、定义、三要素和主要步骤)系统辨识的概念:根据系统的输入输出时间函数来确定描述系统行为的数学模型。
对系统分析大的主要问题是根据输入时间函数和系统的特性来确定输出信号。
对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。
而系统辨识所研究的问题恰好是这些问题的逆问题。
系统辨识的定义:根据系统的输入输出时间函数来确定描述系统行为的数学模型,是现代控制理论中的一个分支。
对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。
对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。
系统辨识的三要素:数据、模型类和准则系统辨识的主要步骤:系统辩识包括结构辩识和参数估计两个主要内容。
辩识的一般步骤如下:(1)明确目的和获取先验知识首先要尽可能多的获取关于辨识对象的先验知识和明确辩识的目的。
明确目的和掌握尽可能多的先验知识往往是辨识结果好坏的重要先决条件。
(2)实验设计实验设计主要包括以下六个方面内容:a.选择观测点;b.输入信号的形状和幅度(可持续激励条件);c.采样间隔T0 ;d.开环和闭环辩识(闭环可辩识条件);e.在线和离线辩识;f.测量数据的存储和预处理。
(3)模型结构的确定(4)参数估计(Parameter Estimation)(5)模型验证模型精度是否可以接受?否则需要重复实验,重复辩识。
系统辩识的内容和步骤见后示意框图。
2、简述相关辨识的基本原理和基于二进制伪随机序列的相关辩识方法(原理、框图、特点)。
相关辩识的理论基础是维纳—何普方程:R xy ( τ ) =⎰o∞ g (ν)R xx ( τ - ν) dν基于二进制伪随机序列的相关辩识方法用二位式周期性伪随机信号x(t),大大缩短积分时间并使乘法运算简化。
()xy R () x(t ) y t ()dt g τττ∞-∞=-⇒⎰优点:(1)辨识结果与ω(t )不相关;(2)x(t)幅值 ±a 比直接测量g(t) 时小,可在线辩识; (3)方法简单,容易实现。
第二章随机过程基本概念.2随机过程的基本概念§2.1 基本概念随机过程是指一族随机变量 .对随机过程的统计分析称为随机过程论 , 它是随机数学中的一个重要分支,产生于本世纪的初期 .其研究对象是随机现象,而它特别研究的是随“ 时间” 变化的“ 动态” 的随机现象 .一随机过程的定义1 定义设 E 为随机试验, S 为其样本空间,如果 (1对于每个参数t ∈ T , X(e,t为建立在 S 上的随机变量,(2对每一个e ∈ S , X(e,t为t 的函数,那么称随机变量族{X(e,t, t∈ T, e∈ S}为一个随机过程,简记为{X(e,t, t∈ T}或 X(t。
((((({}{}[](为随机序列。
时,通常称 , 取可列集合当可以为无穷。
通常有三种形式:参数一般表示时间或空间, 或有时也简写为一个轨道。
随机过程的一个实现或过程的样本函数,或称随机的一般函数,通常称为为对于 :上的二元单值函数。
为即若用映射来表示注意:t X T T T b a b a T T T T t X t X t e X T t e X S e S T t e X RS T t e X t21321, , , , 3, 2, 1, 0, 1, 2, 3, , 3, 2, 1, 0T , . 4, . 3, , 2, :, . 1=---==??×?′?′L L L 为一个随机过程。
则令掷一均匀硬币, 例 , ( (cos (}, {1t e X t X Rt T e t H e t t X T H S =??íì====p2 随机过程举例例 2:用 X(t表示电话交换台在 (0, t 时间内接到的呼唤的次数 , 则(1对于固定的时刻 t, X(t为随机变量 , 其样本空间为{0, 1, 2, …..},且对于不同的 t, 是不同的随机变量 .(2对于固定的样本点 n, X(t=n是一个 t 的函数 .(即:在多长时间内来 n 个人 ?所以 {X(t,t>0}为一个随机过程 .相位正弦波。