聚合反应实施方法1
- 格式:doc
- 大小:56.50 KB
- 文档页数:16
聚合实施方法第四章聚合实施方法4.1.本体聚合一.定义:不加其它介质,只有单体本身在印发剂、光、热辐射的作用下进行的聚合。
二.配方组成:单体+引发剂(或用光、热辐射引发)+(助剂,如少量颜料、增塑剂、润滑剂、分子量调节剂)三.分类:1.根据单体和聚合体的互溶情况分为均相和非均相两种。
均相本体聚合,是指聚合物溶于单体,在聚合过程中物料逐渐变稠,始终成为均一相态,最后变成硬块。
St、MMA的本体聚合就属均相本体聚合。
非均相本体聚合是单体聚合后新生成的聚合物不溶于单体中,从而沉淀下来成为异相,即非均相氯乙烯的本体聚合。
2.按参加反应的单体的相态分为气相和液相两种。
气相本体聚合最为成熟的是高压聚乙烯的生产。
典型的液相本体聚合有St、MMA 的本体聚合。
四.优缺点1.优点:生产流程短、设备少,易于连续化、生产能力大、产品纯度高、透明性好,此法适用于生产板材或其它型材。
2.缺点:①反应热大,不易排出,危险性大②由于反应体系粘度大,分子扩散困难,所以形成的聚合物分子量分布变宽。
五.聚合机理:遵循自由基聚合一般机理,提高反应速率时,往往分子量降低。
六.意义理论上:由于其组成简单、影响因素少,特别适用于实验室研究。
如:a.单体聚合能力的初步鉴定b.动力学研究c.竞聚率测定d.少量聚合物的试制实际生产上:许多单体均可采用本体聚合方法,不论是气体、液体或固体。
七.生产工艺特征关键是反应热的排出,△H=55~95KJ∕mol20%以下,体系粘度小,散热无困难30%以上,粘度大,散热不易,加上凝胶效应,放热更高,如果散热不良,轻者,造成局部过热,分子量分布变宽,影响产品质量;重者,温度失调,引起短聚,为解决此问题,在工艺和设备的设计上采取了多种措施:〈1〉使反应进行到一定转化率就分离出聚合物。
〈2〉采用较低的反应温度、较低浓度的引发剂进行聚合。
〈3〉将聚合分布进行,控制转化率“自动加速效应”,使放热均匀。
〈4〉强化聚合设备的传热。
第二章聚合反应的工业实施方法第一节连锁聚合反应的工业实施方法工业实施方法主要有:本体聚合、悬浮聚合、溶液聚合、乳液聚合等。
一、本体聚合——适用于自由基、离子型聚合反应1.定义:在不加溶剂或分散介质情况下,只有单体本身在引发剂(有时也不加)或光、热、辐射的作用下进行聚合反应的一种方法。
基本组成:单体、引发剂。
有时也加入增塑剂、抗氧剂、紫外线吸收剂和色料等。
2.分类(1)根据单体与聚合物相互混溶的情况可分为:均相、非均相聚合(或沉淀聚合)两种。
均相聚合反应:凡单体与所形成的聚合物能相互混溶,在聚合过程中无分相现象发生的反应。
沉淀聚合反应:单体与所形成的聚合物不能相互混溶,在聚合过程中,聚合物逐渐沉析出来的反应。
(2)根据参加反应的单体的状态,可分为气相、液相、固相本体聚合,其中液相本体聚合应用最广泛。
(3)工业上分,间歇法、连续法。
3.特点:(1)聚合方法简单,生产速度快,产品纯度高,设备少。
(2)易产生局部过热,致使产品变色,发生气泡甚至爆聚。
(3)反应温度不易恒定,所以反应产物的相对分子质量分散性较大。
------------------------------------------------------------------------------------------------------------------------1《高聚物合成工艺学》(4)产品容易老化。
4.主要产品:PS树脂、PMMA树脂、PE树脂、PVC树脂等。
5.主要影响因素:(1)单体的聚合热会放出大量的热量,如何排除是生产中的第一个关键问题。
工业生产中:一般采用两段式聚合第一段在较大的聚合釜中进行,控制10%~40%以下转化率;第二段进行薄层(如板状)聚合或以较慢的速度进行。
(2)聚合产物的出料是本体聚合的第二个问题,控制不好不但会影响产品的质量,还会造成生产事故。
解决办法:根据产品特性,选出料方式浇铸脱模制板材或型材,熔融体挤出造粒,粉状出料。
聚合反应的实施方法以下是 6 条关于聚合反应实施方法的内容:1. 嘿,你知道吗,温度可是聚合反应的关键一环啊!就好比烤蛋糕,温度不对,那蛋糕可就不松软好吃啦!比如说在自由基聚合反应里,控制好合适的温度能让反应顺顺利利进行。
要是温度太高,那不就跟火上浇油似的,反应可能失控哦!而温度太低,反应又会慢吞吞的,急死人啦!所以,可得好好把握这个温度呀!2. 自由基引发剂这玩意儿可重要啦!就像一场比赛中的发令枪响一样。
比如在某些聚合反应中,没有合适的引发剂,那反应就很难启动起来呀!这就好比汽车没有钥匙,怎么发动呀?有了好的引发剂,才能让聚合反应迅速起跑,一路向前冲呢!这可不是开玩笑的哟!3. 单体的纯度啊,那可太重要咯!你想想,如果单体里面有杂质,那不就像米饭里有沙子一样咯牙嘛!例如在做聚合反应时,单体不纯可能导致反应乱七八糟的,结果一塌糊涂呀!所以,在进行聚合反应之前,一定要确保单体纯净纯净再纯净呀,这可不能马虎哟!4. 反应时间也得拿捏好呀!你看哈,时间太短,反应可能还没完成,那多可惜呀!这不就跟跑步比赛还没到终点就停下一样嘛。
但要是时间太长呢,又浪费时间和精力啦!就像煮汤,时间太久汤都煮干咯!所以呀,要找到那个刚刚好的反应时间,才能收获完美的聚合反应结果哟!5. 搅拌也别小瞧呀!这就好像给反应来个大保健一样。
没有适当的搅拌,反应物们都不能好好混合呀,那不就跟一群人各玩各的没啥交流一样嘛。
比如在一些聚合反应中,好好搅拌能让反应更均匀,效果更好嘞!可别小看这一搅拌哦!6. 环境也很关键呐!这就好比鱼需要干净的水才能快活地游。
要是聚合反应的环境不合适,那反应也会受影响呀!比如湿度太大或者有杂质啥的,那可得小心咯!所以啊,给聚合反应创造一个舒适的环境真是太重要啦!我觉得啊,聚合反应的实施方法真的是每一个细节都不能马虎,都得认真对待,这样才能得到。
4.2.2连锁聚合反应的工业实施方法1本体聚合概念:是在不加溶剂或分散介质情况下,只有单体本身在少量引发剂(或无)或热、光、辐射等的的作用下进行聚合反应的一种方法。
适用于自由基聚合反应和离子型聚合反应。
分类:根据单体与聚合物相互混溶的情况可分为:均相聚合和非均相聚合根据参加反应的单体的状态不同可分为:气相、液相、固相本体聚合优点:单体浓度大,反应速率较大,分子量大,产品纯净,可得透明制品。
缺点:体系粘度大,难搅拌,自动加速现象明显,散热难,出料难。
2溶液聚合概念:溶液聚合是将单体和引发剂溶解于适当溶剂中进行聚合反应的一种方法。
适用于自由基聚合反应、离子型聚合反应和配位聚合反应。
溶液聚合的应用实例有醋酸乙烯酯、聚丙烯、顺丁橡胶、异戊橡胶、乙丙橡胶等的生产。
分类:根据聚合物与单体和溶剂相互混溶的情况可分为:均相溶液聚合和非均相溶液聚合根据聚合机理可分为:自由基溶液聚合、离子型溶液聚合、配位溶液聚合。
优点:克服了本体聚合中传热和出料难两大缺点,很大程度上抑制自动加速现象。
缺点:单体浓度低,聚合进行较慢,设备利用率低,向溶剂链转移导致聚合物分子量较小,溶剂回收费用高,除净困难。
在工业上常用于生产直接以聚合物溶液使用的制品。
如:涂料、胶粘剂、浸渍剂、纺丝液等。
3悬浮聚合悬浮聚合是单体以小液滴状悬浮在水中进行的聚合。
悬浮聚合体系一般由单体、油溶性引发剂、水、分散剂四个基本组分组成。
悬浮聚合广泛用于自由基聚合生产通用型聚氯乙烯、聚苯乙烯、离子交换树脂聚(甲基)丙烯酸酯类、聚醋酸乙烯酯及它们的共聚物等。
根据聚合物在单体中的溶解性,可分为:悬浮均相聚合--得透明珠体悬浮非均相聚合--得不透明珠体或粉末悬浮聚合物的粒径:0.05~2mm(或0.01~5mm)优点:聚合体系粘度低,易散热、易控温、产品的分子量及其分布较稳定,后处理工序简单,生产成本较低。
兼有本体聚合和溶液聚合的优点。
缺点:产品残留有分散稳定剂等杂质,反应釜的利用率较低。
配位聚合的实施方法配位聚合可是个很有趣的化学概念呢。
那它的实施方法有几种哦。
溶液聚合法是其中一种。
就像是把各种原料都溶解在溶剂里,让它们在溶液的环境里欢快地进行配位聚合反应。
这个溶剂就像一个大舞台,各种反应物质在里面尽情地互动、结合。
溶液聚合的好处就是反应比较均匀啦,就像大家在一个宽敞的舞池里跳舞,不会太拥挤,各个分子都能比较有序地进行配位和聚合。
不过呢,这种方法也有点小麻烦,那就是溶剂的选择很重要,要是选不好,可能就会影响反应的进行,就像选错了舞池的音乐,大家的舞步可能就乱套了。
还有本体聚合法。
这就有点像一场没有外人的聚会,只有参与反应的单体和催化剂这些主角在。
没有溶剂的干扰,它们自己就开始进行配位聚合。
这种方法比较纯粹,得到的聚合物相对比较纯净呢。
但是呢,它也有小缺点。
因为没有溶剂来调节反应的节奏,反应可能会变得很激烈,就像一场没有指挥的音乐会,有时候会乱成一团,可能会出现局部过热或者反应不均匀的情况。
气相聚合法也很独特。
想象一下,反应物质都在气体状态下进行配位聚合,就像一群小仙子在空中进行魔法聚合一样。
这种方法比较环保,不需要处理那些溶剂啥的。
可是呢,它对设备的要求很高,就像小仙子们需要一个特别精致的魔法城堡才能进行魔法一样。
设备要能够精确地控制气体的压力、温度等各种条件,不然反应就没办法好好进行啦。
配位聚合的这些实施方法各有各的优缺点,就像不同性格的小伙伴,都有自己独特的一面。
在实际应用中呢,就得根据具体的需求,是想要纯净的聚合物,还是想要温和的反应条件,或者是考虑环保等因素,来选择合适的实施方法。
化学的世界就是这么奇妙,每一种方法都像是一个小秘密,等待着我们去探索和发现呢。
第二章聚合反应的工业实施方法第一节连锁聚合反应的工业实施方法工业实施方法主要有:本体聚合、悬浮聚合、溶液聚合、乳液聚合等。
一、本体聚合——适用于自由基、离子型聚合反应1.定义:在不加溶剂或分散介质情况下,只有单体本身在引发剂(有时也不加)或光、热、辐射的作用下进行聚合反应的一种方法。
基本组成:单体、引发剂。
有时也加入增塑剂、抗氧剂、紫外线吸收剂和色料等。
2.分类(1)根据单体与聚合物相互混溶的情况可分为:均相、非均相聚合(或沉淀聚合)两种。
均相聚合反应:凡单体与所形成的聚合物能相互混溶,在聚合过程中无分相现象发生的反应。
沉淀聚合反应:单体与所形成的聚合物不能相互混溶,在聚合过程中,聚合物逐渐沉析出来的反应。
(2)根据参加反应的单体的状态,可分为气相、液相、固相本体聚合,其中液相本体聚合应用最广泛。
(3)工业上分,间歇法、连续法。
3.特点:(1)聚合方法简单,生产速度快,产品纯度高,设备少。
(2)易产生局部过热,致使产品变色,发生气泡甚至爆聚。
(3)反应温度不易恒定,所以反应产物的相对分子质量分散性较大。
(4)产品容易老化。
4.主要产品:PS树脂、PMMA树脂、PE树脂、PVC树脂等。
5.主要影响因素:(1)单体的聚合热会放出大量的热量,如何排除是生产中的第一个关键问题。
工业生产中:一般采用两段式聚合第一段在较大的聚合釜中进行,控制10%~40%以下转化率;第二段进行薄层(如板状)聚合或以较慢的速度进行。
(2)聚合产物的出料是本体聚合的第二个问题,控制不好不但会影响产品的质量,还会造成生产事故。
解决办法:根据产品特性,选出料方式浇铸脱模制板材或型材,熔融体挤出造粒,粉状出料。
6.优点;产物纯净,适于生产板材、型材等透明制品,也可生产电绝缘材料和医用材料。
7.应用:实验室研究(如单体聚合能力、动力学研究、竟聚率测定。
二、溶液聚合1.定义:将单体和引发剂溶解于适当溶剂中进行聚合反应的一种方法。
基本组成→单体、引发剂、溶剂2.类型:(1)根据溶剂与单体和聚合物相互混溶的情况分为:均相、非均相溶液聚合(或沉淀聚合)两种。
第二章聚合反应的工业实施方法第一节连锁聚合反应的工业实施方法工业实施方法主要有:本体聚合、悬浮聚合、溶液聚合、乳液聚合等。
一、本体聚合——适用于自由基、离子型聚合反应1.定义:在不加溶剂或分散介质情况下,只有单体本身在引发剂(有时也不加)或光、热、辐射的作用下进行聚合反应的一种方法。
基本组成:单体、引发剂。
有时也加入增塑剂、抗氧剂、紫外线吸收剂和色料等。
2.分类(1)根据单体与聚合物相互混溶的情况可分为:均相、非均相聚合(或沉淀聚合)两种。
均相聚合反应:凡单体与所形成的聚合物能相互混溶,在聚合过程中无分相现象发生的反应。
沉淀聚合反应:单体与所形成的聚合物不能相互混溶,在聚合过程中,聚合物逐渐沉析出来的反应。
(2)根据参加反应的单体的状态,可分为气相、液相、固相本体聚合,其中液相本体聚合应用最广泛。
(3)工业上分,间歇法、连续法。
3.特点:(1)聚合方法简单,生产速度快,产品纯度高,设备少。
(2)易产生局部过热,致使产品变色,发生气泡甚至爆聚。
(3)反应温度不易恒定,所以反应产物的相对分子质量分散性较大。
(4)产品容易老化。
14.主要产品:PS树脂、PMMA树脂、PE树脂、PVC树脂等。
5.主要影响因素:(1)单体的聚合热会放出大量的热量,如何排除是生产中的第一个关键问题。
工业生产中:一般采用两段式聚合第一段在较大的聚合釜中进行,控制10%~40%以下转化率;第二段进行薄层(如板状)聚合或以较慢的速度进行。
(2)聚合产物的出料是本体聚合的第二个问题,控制不好不但会影响产品的质量,还会造成生产事故。
解决办法:根据产品特性,选出料方式浇铸脱模制板材或型材,熔融体挤出造粒,粉状出料。
6.优点;产物纯净,适于生产板材、型材等透明制品,也可生产电绝缘材料和医用材料。
7.应用:实验室研究(如单体聚合能力、动力学研究、竟聚率测定。
二、溶液聚合1.定义:将单体和引发剂溶解于适当溶剂中进行聚合反应的一种方法。
基本组成→单体、引发剂、溶剂2.类型:(1)根据溶剂与单体和聚合物相互混溶的情况分为:均相、非均相溶液聚合(或沉淀聚合)两种。
均相聚合反应:凡溶剂与单体和聚合物能相互混溶,得到的产物为高聚物溶液(此溶液可以直接用作油漆、涂料),将此溶液注入高聚物的非溶剂中,高聚物即可沉析出来,经过过滤、洗涤、干燥得到最终产品。
沉淀聚合:溶剂仅能溶解单体而不能溶解聚合物的,这时所生成的聚合物呈细小的悬浮体不断从溶液中析出,经过滤、洗涤、干燥可得最终产品。
(2)根据聚合机理可分为:自由基溶液聚合、离子型溶液聚合和配位溶液聚合。
3.溶液聚合的特点:(1)原料纯度要求严格。
(2)反应容易控制;(3)聚合物相对分子质量比较均匀;(4)易实现连续化生产。
(5)聚合后,分离、回收、后处理复杂。
4.溶剂对溶液聚合的影响(1)对自由基溶液聚合的影响:对引发剂有无诱导分解反应发生;溶剂对聚合物的溶解能力大小,对凝胶效应的影响常见溶剂:芳烃、烷烃、醇类、醚类、胺类等有机溶剂和水等。
(2)对离子型、配位型溶液聚合的影响:不能选择水、醇、酸等具有氢质子的溶剂,以防止破坏引发剂的活性;考虑对增长离子对紧密程度和活性的影响考虑向溶剂的链转移大小;考虑对引发剂及产物的溶解能力。
选择:烷烃、芳烃、二氧六环、四氢呋喃、二甲基甲酰胺等。
三、悬浮聚合31.定义:将不溶于水的,溶有引发剂的单体,利用强烈的机械搅拌以小液滴的形式,分散在溶有分散剂的水相介质中,完成聚合反应的一种方法。
2.基本组成:单体、水、分散剂(悬浮剂)、引发剂3.聚合场所:每个小液滴内,是一种微型化的本体聚合。
4.用途:聚氯乙烯、聚苯乙烯、离子交换树脂、聚(甲基)丙烯酸酯类、聚醋酸乙烯酯及它们的共聚物等。
5.特点:(1)工业生产技术路线成熟、方法简单、成本低;(2)产品质量稳定、纯度较高;(3)易移出反应热、操作安全、温度容易控制;(4)产物粒径可以控制;(5)只能间歇操作,而不宜连续操作。
6.悬浮聚合的组成基本组成为:单体、引发剂、分散剂和水。
单体(或油)相水相(1)单体相一般:油性单体、引发剂组成,有时也加入其他物质。
1)单体油性单体(非水溶性),必须处于液态。
气态→加压;结晶性→熔融。
2)引发剂一般:根据单体和工艺条件在油溶性的偶氮类和有机氧化物中选择单一型或复合型引发剂。
3)其他组分根据需要,在单体中加入链转移剂、发泡剂、溶胀剂或致孔剂、热稳定剂、紫外光吸收剂等。
(2)水相是影响悬浮聚合成粒机理和颗粒特性的主要因素。
组成→水、分散剂和其他成分。
1)水去离子的软化水。
作用:保持单体呈液滴状,起分散作用;作为传热介质。
2)分散剂作用:降低表面张力,帮助单体分散成液滴;在液滴表面形成保护膜,防止液滴(或粒子)粘并;防止出现结块危险。
类型:非水溶性无机粉末、水溶性高分子①水溶性高分子:一般用量约为单体的0.05%~0.2%分散机理→吸附在单位液滴表面,形成一层保护膜,起保护胶体的作用;同时,使液滴变小。
②非水溶性无机粉未一般用量约为单体的0.1%~0.5%分散机理→起机械隔离的作用。
3)其他组分无机盐、pH值调节剂和防粘釜剂等。
7.单体液滴与聚合物粒子的形成过程(1)单体液滴的形成过程(2)聚合物粒子的形成过程在悬浮聚合过程中搅拌的作用是使单体分散为液滴的必要条件,而分散剂的5作用是防止粘稠液滴之间发生粘合的必要条件,进而确保聚合渡过结块危险期。
1)均相粒子的形成过程分为三个阶段:聚合初期、聚合中期、聚合后期生成的聚合物能溶于自身单体中而使反应液滴保持均相,最终形成均匀、坚硬、透明的固体球粒。
单体液滴聚合初期聚合中期聚合后期透明粒子2)非均相粒子的形成过程一般认为有五个阶段,聚合物不溶解于自己的单体中,有聚合物产生就沉淀出来。
形成由均相变为单体和聚合物组成的非均相体系,产物不透明,外形极为不规则的小粒子。
3)悬浮聚合聚合物粒子形成过程的特点①非均粒子的形成有相变化:液相→液、固两相→固相。
②均相粒子的形成无相变化:聚合过程始终保持为一相。
③由单体转化为聚合物的过程是体积缩小的过程④均相聚合体系危险性比非均相聚合体系危险性大⑤分散剂外膜8.粒径的大小与形态取决于搅拌强度、分散剂性质和浓度、水-单体、聚合温度、引发剂种类和用量、聚合速率、单体种类、其他添加剂等。
四、乳液聚合1.定义:在用水或其他液体作介质的乳液中,按胶束机理或低聚物机理生成彼此孤立乳胶粒,在其中进行自由基聚合或离子聚合来生产高聚物的一种方法。
体系组成:单体、水、乳化剂、水溶性引发剂。
2.乳液聚合的特点(1)反应速度快,聚合物相对分子质量高(独到的)。
(2)易移出反应热(水作导热介质)。
(3)乳化液稳定,利于连续生产。
(4)产物是乳胶,可以直接用作水乳漆、粘合剂。
(5)若最终产品为固体聚合物时,后处理复杂(凝聚、洗涤、脱水、干燥),生产成本高。
6.主要高聚物:丁苯橡胶、丁腈橡胶、糊状聚氯乙烯;聚甲基丙烯酸甲酯、聚醋酸乙烯酯(乳白胶)、聚四氟乙烯等。
(二)乳液聚合体系的组成1.单体→乙烯基单体具备条件:①可以增溶溶解但不是全部溶解于乳化剂水溶液;②可以在发生增溶溶解作用的温度下进行聚合;③与水或乳化剂无任何活化作用,即不水解。
2.水相组成:水、乳化剂、稳定剂、pH调节剂、引发剂等。
(1)水纯净的非离子水。
主要作用:分散介质,用量占乳液聚合体系总质量的60%~80%。
(2)乳化剂→表面活性剂能使油水变成相当稳定难以分层乳状液物质。
①乳化剂的作用:降低表面张力降低界面张力乳化作用→形成稳定乳状液7分散作用→使每个颗粒稳定地分散并悬浮于水中而不凝聚。
增溶作用发泡作用→对生产有不良影响,要加以控制。
②乳化剂的类型阴离子型乳化剂阳离子型乳化剂按照亲水基团的性质可分:非离子型乳化剂两性乳化剂阴离子型乳化剂→使用最多的主要乳化剂,多在碱性介质中使用。
最常见:皂类、十二烷基硫酸钠C12H25SO4Na、烷基磺酸钠、十二烷基苯磺酸盐C12H25C6H4SO3Na等。
阳离子型乳化剂→多在酸性介质中使用,乳液聚合一般较少使用。
常见:胺盐、仲胺盐、叔胺盐和季胺盐类。
非离子型乳化剂→对介质酸碱性不敏感,一般作辅助乳化剂使用常见:聚环氧乙烷类物质。
两性乳化剂→本身带有碱性基团和酸性基团。
常见:羧酸型、硫酸酯型、磷酸酯型、磺酸型等。
③临界胶束浓度,简称CMC临界胶束浓度:能够形成胶束的最低乳化剂浓度,是乳化剂性质的一个特征参数。
CMC的大小主要取决于乳化剂的分子结构及水电解质浓度。
④乳化剂的特点a.分子结构中具有亲水和亲油基团两部分。
b.能降低表面张力,使液滴稳定。
c.具有乳化作用⑤乳化剂的选择a.乳状液的类型:水包油乳液→标志为O/W;油包水乳液→标志为W/O。
b.乳化剂的亲油亲水平衡值(HLB值)c.乳化剂的选择方法根据HLB值进行选择经验法选择一般:先用选择HLB合适的乳化剂,再借鉴实践经验进行确定。
(3)引发剂用量为单体质量的0.1%~1.0%。
(4)稳定剂保护胶体,用以防止乳液的析出和沉淀。
常用:明胶、酪素等,用量: 2%~5%。
(5)表面张力调节剂作用:控制单体粒度大小和保持乳液的稳定性。
用量: 0.1%~0.5%。
(6)缓冲剂(pH值调节剂)pH值大小直接影响乳液体系的稳定性和引发剂分解速度。
常用:磷酸盐、碳酸盐、醋酸盐等,用量: 2%~4%。
(7)相对分子质量调节剂目的:调节产物的相对分子质量,避免支化和交联,提高产品质量和加工性能。
常用:脂肪族硫醇9(三)乳液聚合反应原理分四个阶段:分散阶段、乳胶粒生成阶段、乳胶粒长大阶段和聚合完成阶段。
1.单体分散阶段没加引发剂时的乳液聚合系统。
2.乳胶粒生成阶段该阶段从开始引发聚合,直至胶束消失,聚合速率递增。
3.乳胶粒长大阶段自胶束消失开始,乳胶粒继续增大,直至单体液滴消失,是聚合恒速阶段。
4.聚合完成阶段5.乳液聚合速率与相对分子质量(四)乳液聚合技术的发展1.乳液定向聚合2.辐射乳液聚合3.非水介质中的乳液聚合第二节缩聚反应的工业实施方法工业实施方法主要有:熔融缩聚、固相缩聚、溶液缩聚、界面缩聚、乳液缩聚等。
一、熔融缩聚1.定义:指反应中不加溶剂,反应温度在单体和缩聚物熔融温度以上进行的缩聚反应。
2.特点:(1)反应温度高(一般在200℃以上);(2)利于提高反应速率和排出低分子副产物;(3)符合可逆平衡规律;(4)单体易发生成环反应,缩聚物易发生裂解反应。
3.工艺特点:(1)不用溶剂、工艺过程简单、成本低(聚酯、聚酰胺、聚氨酯)熔融→缩聚→造粒→干燥→成品(2)反应需要在高温(200~300℃)下进行;(3)反应时间较长(4——6小时);(4)常需在惰性气体的保护下进行;(5)反应后期需要在高真空度下进行;(6)反应物的浓度大,生产能力大。
4.关键问题:充分除出低分子副产物。