重庆大学《数值分析》课后习题答案——助教版2019
- 格式:pdf
- 大小:8.95 MB
- 文档页数:37
第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。
[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。
3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。
X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。
若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。
习题一(P.14)1. 下列各近似值均有4个有效数字,300.2,521.13,001428.0***===z y x ,试指出它们的绝对误差和相对误差限.解*20.001428=0.142810x -=⨯有4个有效数,即4n =,2m =-由有效数字与绝对误差的关系得绝对误差限为611101022m n --⨯=⨯, 由有效数字与相对误差的关系得相对误差限为(1)3111101022n a ---⨯=⨯; *213.521=0.1352110y =⨯有4个有效数,即4n =,2m =由有效数字与绝对误差的关系得绝对误差限为211101022m n --⨯=⨯, 由有效数字与相对误差的关系得相对误差限为(1)3111101022n a ---⨯=⨯; *12.300=0.230010z =⨯有4个有效数,即4n =,1m =由有效数字与绝对误差的关系得绝对误差限为311101022m n --⨯=⨯, 由有效数字与相对误差的关系得相对误差限为(1)3111101024n a ---⨯=⨯.2.下列各近似值的绝对误差限都是31021-⨯,试指出它们各有几位有效数字.***2.00021,0.032,0.00052x y z ===解*12.000210.20002110x ==⨯,即1m =由有效数字与绝对误差的关系得 311101022m n --⨯=⨯, 即3m n -=-,所以,2n =;*10.0320.3210y ==⨯,即1m =由有效数字与绝对误差的关系得 311101022m n --⨯=⨯, 即3m n -=-,所以,4n =;*30.000520.5210z -==⨯,即3m =-由有效数字与绝对误差的关系得 311101022m n --⨯=⨯, 即3m n -=-,所以,0n =.4.设有近似数35.2,84.1,41.2***===z y x 且都有3位有效数字,试计算***z y x S +=,问S 有几位有效数字.解 方法一因*1*1*12.41=0.24110, 1.840.18410, 2.350.23510x y z =⨯==⨯==⨯都有3位有效数字,即3n =,1m =,则211|(*)|101022m n e x --≤⨯=⨯,211|(*)|101022m n e y --≤⨯=⨯,211|(*)|101022m n e z --≤⨯=⨯,|(**)||*(*)*(*)|*|(*)|*|(*)|e y z z e y y e z z e y y e z ≈+≤+222112.3510 1.8410 2.0951022---≤⨯⨯+⨯⨯=⨯,221|(***)||(*)(**)|10 2.095102e x y z e x e y z --+≈+≤⨯+⨯1110.259510102--=⨯≤⨯, 又1***=2.41 1.84 2.350.673410x y z ++⨯=⨯,此时1m =,1m n -=-,从而得2n =.方法一因*1*1*12.41=0.24110, 1.840.18410, 2.350.23510x y z =⨯==⨯==⨯都有3位有效数字,即3n =,1m =,则211|(*)|101022m n e x --≤⨯=⨯,2110(*)2|(*)|=||* 2.41r e x e x x -⨯≤, 211|(*)|101022m n e y --≤⨯=⨯,2110(*)2|(*)|=||* 1.84r e y e y y -⨯≤,211|(*)|101022m n e z --≤⨯=⨯,2110(*)2|(*)|=||* 2.35r e z e z z -⨯≤|(**)||(*)(*)|r r r e y z e y e z ≈+,***|(***)||(*)(**)|******r r rx y z e x y z e x e y z x y z x y z +≈+++2.41 1.84 2.35|(*)||(*)+(*)|2.41 1.84 2.35 2.41 1.84 2.35r rr e x e y e z ⨯≤++⨯+⨯22211110 1.8410 2.35102222.41 1.84 2.35 2.41 1.84 2.35 2.41 1.84 2.35---⨯⨯⨯⨯⨯≤+++⨯+⨯+⨯20.385410-<⨯21102-<⨯,由有效数字与绝对误差的关系得2n =.5.序列{}n y 有递推公式),2,1(,1101 =-=-n y y n n若41.120≈=y (三位有效数字),问计算10y 的误差有多大,这个计算公式稳定吗?解 用0ε表示0y 的误差,由41.120≈=y ,得0=0.0042ε,由递推公式),2,1(,1101 =-=-n y y n n ,知计算10y 的误差为810=0.4210ε⨯,因为初始误差在计算的过程中被逐渐的放大,这个计算公式不稳定.习题2 ( P.84)3.证明()1nkk lx ==∑,对所有的x其中()k l x 为Lagrange 插值奇函数. 证明 令()1f x =,则()1i f x =, 从而 0()()()()nnn k k k k k L x l x f x l x ====∑∑,又(1)1()()()0(1)!n n n f R x x n ξω++==+,可得 ()()1n l x f x ==,从而()1nkk lx ==∑.4. 求出在=012x ,,和3处函数2()1f x x =+的插值多项式. 解 方法一 因为给出的节点个数为4,而2()1f x x =+从而余项(4)34()()()04!f R x x ξω==,于是233()()()()=+1L x f x R x f x x =-=(n 次插值多项式对次数小于或等于的多项式精确成立).方法二 因为(0)1(1)2(2)5(3)10f f f f ====,,,, 而0(1)(2)(3)1()=-(1)(2)(3)(01)(02)(03)6x x x l x x x x ---=------,1(2)(3)1()=(2)(3)(10)(12)(13)2x x x l x x x x --=-----,2(1)(3)1()=-(1)(3)(20)(21)(23)2x x x l x x x x --=-----,3(1)(2)1()=(1)(2)(30)(31)(32)6x x x l x x x x --=-----,从而30123()()(0)()(1)()(2)()(3)L x l x f l x f l x f l x f =+++2=+1x .5. 设2()[,]f x C a b ∈且()()0f a f b ==,求证21max |()|()max |()|8a x ba xb f x b a f x ≤≤≤≤''≤-.证明 因()()0f a f b ==,则1()0L x =, 从而1()()()()()2!f f x R x x a x b ξ''==--,由极值知识得 21max |()|()max |()|8a x ba xb f x b a f x ≤≤≤≤''≤-6. 证明 (()())()()()(+)f x g x f x g x f x g x h ∆=⋅∆+∆⋅. 证明 由差分的定义(()())(+)()()()f xg x f xh g x h f x g x ∆=+-[(+)()()(+)][()()()()]f x h g x h f x g x h f x g x h f x g x =+-++-()()()(+)f x g x f x g x h =⋅∆+∆⋅或着 (()())(+)()()()f x g x f x h g x h f x g x ∆=+-[(+)()()()][()()()()]f x hg xh f x h g x f x h g x f x g x =+-+++- ()()()()f x h g x f x g x =+⋅∆+∆⋅7. 证明 n 阶差商有下列性质(a ) 如果()()F x cf x =,则0101[,,,][,,,]n n F x x x cf x x x =. (b ) 如果()()()F x f x g x =+,则010101[,,,][,,,][,,,]n n n F x x x f x x x g x x x =+.证明 由差商的定义 (a ) 如果()()F x cf x =,则12011010[,,,]-[,,,][,,,]n n n n F x x x F x x x F x x x x x -=-120110[,,,]-[,,,]n n n cf x x x cf x x x x x -=-120110[,,,]-[,,,]n n n f x x x f x x x c x x -=⋅-01[,,,]n cf x x x =.(b ) 如果()()()F x f x g x =+,则12011010[,,,]-[,,,][,,,]n n n n F x x x F x x x F x x x x x -=-12120110110[[,,,][,,,]]-[[,,,][,,,]]n n n n n f x x x g x x x f x x x g x x x x x --++=-12011120110,,,]-[,,,][,,,][,,,]+n n n n n n f x x x f x x x g x x x g x x x x x x x ---=--[ 0101[,,,][,,,]n n f x x x g x x x =+8. 设74()3431f x x x x =+++,求0172,2,,2]f [,0182,2,,2]f [.解 由P.35定理7的结论(2),得7阶差商0172,2,,2]=3f [(()f x 的最高次方项的系数),8阶差商0182,2,,2]=0f [(8阶以上的差商均等与0).9. 求一个次数不超过4次的多项式()P x ,使它满足:(0)(0)0P P '==,(1)(1)1P P '==,(2)1P =.解 方法一 先求满足插值条件(0)0P =,(1)=1P ,(2)1P =的二次插值多项式2()P x 213=22x -+(L-插值基函数或待定系数法), 设()P x 22=()(1)(2)(1)(2)P x Ax x x Bx x x +--+--213=22x x -+2+(1)(2)(1)(2)Ax x x Bx x x --+-- 从而()P x '323=4B +(39)(641)(2)2x A B x A B x A -+-+-++,再由插值条件(0)0P '=,(1)1P '=,得3=,4A -1=,4B所以 ()P x 213=22x x -+231(1)(2)(1)(2)44x x x x x x ---+--, 即 ()P x 41=4x 332x -29+4x .方法二 设()P x 23401234=a a x a x a x a x ++++, 则 ()P x '231234=234a a x a x a x +++由插值条件(0)(0)0P P '==,(1)(1)1P P '==,(2)1P =,得010********0123400++++1+2+3+41+2+4+8+161a a a a a a a a a a a a a a a a =⎧⎪=⎪⎪=⎨⎪=⎪=⎪⎩ 解得 234931=,=-,=424a a a , 从而()P x 41=4x 332x -29+4x . 方法三 利用埃尔米特插值基函数方法构造. 10. 下述函数()S x 在[1,3]上是3次样条函数吗?3232321,12()=92217,23x x x x S x x x x x ⎧-++≤≤⎨-+-+≤≤⎩ 解 因为22362,12()=31822,23x x x S x x x x ⎧-+≤≤'⎨-+-≤≤⎩, 66,12()=618,23x x S x x x -≤≤⎧''⎨-+≤≤⎩而12(2)=1=(2)S S ,12(2)=2=(2)S S '',12(2)=6=(2)S S '''', 又()S x 是三次函数,所以函数()S x 在[1,3]上是3次样条函数.补 设f (x )=x 4,试利用L-余项定理写出以-1,0,1,2为插值节点的三次插值多项式.解 因为 (4)34()()()(+1)(1)(2)4!f R x x x x x x ξω==--,从而3233()()()22L x f x R x x x x =-=+-习题3 ( P.159)1.设n k k x 0)}({=ϕ为],[b a 上具有权函数0)(≥x ω的正交多项式组且)(x k ϕ为首项系数为1的k 次的多项式,则n k k x 0)}({=ϕ于],[b a 线性无关.解 方法一 因为n k k x 0)}({=ϕ为],[b a 上具有权函数0)(≥x ω的正交多项式组,则其Gram 行列式不等于零,采用反证法:若{}n ϕϕϕ,,,10 于],[b a 线性相关,于是,存在不全为零,,,,10n c c c 使0011()()()0,[,]n n c x c x c x x a b ϕϕϕ+++=∈上式两边与i ϕ作内积得到0011(,)(,)(,)0(0,1,,)i i n i n c c c i n ϕϕϕϕϕϕ+++==,由于{}i c 不全为零,说明以上的齐次方程组有非零解),,,,(10n c c c 故系数矩阵的行列式为零,即{}0,,,10=n G ϕϕϕ 与假设矛盾.方法二 因为n k k x 0)}({=ϕ为],[b a 上具有权函数0)(≥x ω的正交多项式组,则其Gram 行列式不等于零,由( P.95)定理2得n k k x 0)}({=ϕ于],[b a 线性无关.2.选择α,使下述积分取得最小值1221()[],a x x dx α--⎰120()()x b e x dx α-⎰解1221()[]a x x dx αα-∂-∂⎰1221=[]x x dx αα-∂-∂⎰1221=2[]()x x x dx α--⋅-⎰5112=5x α-4=5α,令1221[]=0x x dx αα-∂-∂⎰,得=0α. 12()()x b e x dx αα∂-∂⎰120=()xe x dx αα∂-∂⎰1=2()()x e x x dx α-⋅-⎰2=23α- 令120()=0x e x dx αα∂-∂⎰,得=3α.3.设],3,1[,1)(∈=x xx f 试用},1{1x H 求)(x f 一次最佳平方逼近多项式.解 取权函数为()x x ω=(为了计算简便),则32311(1,1)42x xdx ===⎰,33321126(1,)(,1)33x x x x dx ====⎰, 343311(,)204x x x x dx ===⎰,33111((),1)2f x xdx x x=⋅==⎰,3232111((),)42x f x x x dx x =⋅==⎰, 得法方程0126423264203a a ⎡⎤⎢⎥⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎢⎥⎣⎦,解得011211311a a ⎧=⎪⎪⎨⎪=-⎪⎩, 所以)(x f 的一次最佳平方逼近多项式1123()1111P x x =-. 8.什么常数C 能使得以下表达式最小? ∑=-ni x i iCe x f 12))((解21(())i n x i i f x Ce C =∂-∂∑1=2(())()i i nx x i i f x Ce e =-⋅-∑, 令21(())=0i nx i i f x Ce C =∂-∂∑,得121()(),iinx x ii nx xx i f x ef x e C e e e=-=⋅==∑∑()(,). 14.用最小二乘法求解矛盾方程组2+314921x y x y x y =⎧⎪-=-⎨⎪-=-⎩. 解 方法一方程组可变形为31+22491122x y x y x y ⎧=⎪⎪-=-⎨⎪⎪-=-⎩,原问题转化成在已知三组离散数据3142211()922t f t ----下求一次最小二乘逼近函数1()P x x yt =+(x 与y 为一次函数的系数,t 为自变量),取1H 基{}1,t ,求解法方程331133321113()()i i i i i i i i i i i x t f x t t t f x y =====⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∑∑∑∑∑, 即3-3-93737-32x y ⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得到矛盾方程组的解为37=-3156=31x y ⎧⎪⎪⎨⎪⎪⎩. 方法二方程组可变形为31+22491122x y x y x y ⎧=⎪⎪-=-⎨⎪⎪-=-⎩,令(,)I x y 2223111=+-+4+9++2222x y x y x y --()()()(,)I x y x ∂∂3111=2+-+24+9+2+2222x y x y x y ⨯⨯-⨯-()()()=6618x y -+,(,)I x y y ∂∂331111=+44+9+222222x y x y x y ⨯--⨯--⨯-()()() 37=3372x y -+- 令(,)0(,)0I x y x I x y y∂⎧=⎪∂⎪⎨∂⎪=⎪∂⎩, 得3373372x y x y -=-⎧⎪⎨-+-⎪⎩, 解之得矛盾方程组的解为37315631x y ⎧=-⎪⎪⎨⎪=⎪⎩. 习题47. 对列表函数 124810()0152127x f x求(5)(5).f f ''',解 一阶微商用两点公式(中点公式),得(8)(2)10(5),63f f f -'≈= 二阶微商用三点公式(中点公式),首先用插值法求(5)f , 由(4)5,(8)21,f f ==得一次插值函数1()411,L x x =-从而 1(5)(5)9f L ≈=,于是,2(2)2(5)(8)4(5).39f f f f -+''≈= 8. 导出数值数分公式)]23()2(3)2(3)23([1)(3)3(h x f h x f h x f h x f h x f ---++-+≈并给出余项级数展开的主部.解 由二阶微商的三点公式(中点公式),得213()[()2()()]2222h h h f x f x f x f x h h ''-≈+--+-,213()[()2()()]2222h h h hf x f x f x f x h ''+≈+-++-从而 (3)()()22()h h f x f x f x h''''+--≈3133=[()3()3()()]2222h h f x h f x f x f x h h +-++--- 将33()()()()2222h h f x h f x f x f x h ++--,,,分别在x 处展开,得2(3)3(4)4(5)55331313()=()()()()()()222!23!21313()()()()+()(1)4!25!2f x h f x f x h f x h f x h f x h f x h O h '''++⋅+⋅+⋅+⋅+⋅2(3)3(4)4(5)5511()=()()()()()()222!23!211()()()()()(2)4!25!2h h h h f x f x f x f x f x h h f x f x O h '''++⋅+⋅+⋅+⋅+⋅+2(3)3(4)4(5)5511()=()()()()()()()222!23!211()()()()()(3)4!25!2h h h h f x f x f x f x f x h h f x f x O h '''-+⋅-+⋅-+⋅-+⋅-+⋅-+2(3)3(4)4(5)55331313()=()()()()()()()222!23!21313()()()()()(4)4!25!2f x h f x f x h f x h f x h f x h f x h O h '''-+⋅-+⋅-+⋅-+⋅-+⋅-+(1)-(2)×3 +(3)×3-(4), 得(5)222131()[()2()()]()()22228h h h f x f x f x f x h f x h O h h ''--+--+-=-+,即余项主部为(5)21()8f x h -习 题 5 (P. 299)3. 设n n R A ⨯∈为对称矩阵,且011≠a ,经高斯消去法一步后,A约化为11120T a a A ⎡⎤⎢⎥⎣⎦,试证明2A 亦是对称矩阵. 证明设1111()=T ij aa A a A α⎛⎫= ⎪⎝⎭,其中 21311=n a a a α⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭,121311=n a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭,22232123=n n n nn a a a a a a a ⎛⎫⎪⎪ ⎪⎝⎭, 则经高斯消去法一步后,A 约化为111111110TT a a A a a α⎡⎤⎢⎥⎢⎥-⎢⎥⎣⎦, 因而211111T A A a a α=-,若n n R A ⨯∈为对称矩阵,则1A 为对称矩阵,且1=a α,易知211111T A A a a α=-为对称矩阵. 13. 设⎥⎦⎤⎢⎣⎡=989999100A(1) 计算2||||,||||A A ∞; (2) 计算∞)(A Cond ,及2)(A Cond . 解 (1) 计算||||=199A ∞,⎥⎦⎤⎢⎣⎡=989999100A,其特征值为1,299λ=,又⎥⎦⎤⎢⎣⎡=989999100A 为对称矩阵,则2=T A A A 的特征值为221,2(99λ=±,因此2||||99A ===+;(2)1989999100A --⎡⎤=-⎢⎥-⎣⎦,1||||=199A -∞, 所以1()=||||||||=9801Cond A A A -∞∞∞⋅,1989999100A --⎡⎤=-⎢⎥-⎣⎦为对称矩阵,其特征值为1,299λ=-± 则1112()=()T A A A ---的特征值为221,2(99λ=,因此12||||99A -===+所以1222()=||||||||Cond A A A -⋅2(99=+15. 设,n n n A R x R ⨯∈∈,求证 (1)1xx n x ∞∞≤≤; (2)∞∞≤≤An A A n11.证明 (2) 由(1)1x x n x∞∞≤≤,得1AxAx n Ax∞∞≤≤,则 11Ax Ax n Ax n x xx∞∞∞∞≤≤,从而11max max max nnnx Rx Rx RAxAx n Ax n xxx∞∞∀∈∀∈∀∈∞∞≤≤,由算子范数的定义max nx RAx Ax∞∞∀∈∞=,111max nx RAx A x∀∈=,得∞∞≤≤An A A n11.17. 设n n R W ⨯∈为非奇异阵,又设x为n R 上一向量范数,定义WxWx=,求证:Wx是nR 上向量的一种范数(称为向量的W 一范数).证明 ①正定性,因Wx为一向量,0WxWx =≥,下证=0=0Wxx ⇔,⇒“”若=0Wx 即=0Wx ,由向量范数的正定性得=0Wx ,n n R W ⨯∈为非奇异阵,所以=0x ;⇐“”若=0x ,则=0Wx ,由向量范数的正定性得=0Wx 即=0Wx.②齐次性,任意实数α有=Wx W x Wxααα=,由向量范数的齐次性,得=WWxW x Wx Wx xααααα===;③ 三角不等式,任意实数,n n x R y R ∈∈,有+(+)=+Wx yW x y Wx Wy=,再由向量范数的三角不等式,得+(+)=+WWWx yW x y Wx Wy Wx Wy xy=≤+=+.习 题 6 (P.347)1. 设有方程组(b )1231231232211221x x x x x x x x x +-=⎧⎪++=⎨⎪++=⎩,考查用Jacobi迭代法,G-S 迭代法解此方程组的收敛性.解 系数矩阵分裂如下,122111221A -⎛⎫⎪= ⎪ ⎪⎝⎭D L U =--10022110112200-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=---- ⎪ ⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ Jacobi迭代矩阵为1()J D L U -=+=02211220-⎛⎫ ⎪-- ⎪ ⎪--⎝⎭, J 的特征方程为2211022λλλ-=,展开得 30λ=,即01λ=<,所以用Jacobi 迭代法解此方程组是收敛的.G-S 迭代矩阵为1()G D L U -=-11022=11012210--⎛⎫⎛⎫⎪ ⎪⋅- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭100022=110010210-⎛⎫⎛⎫ ⎪ ⎪-⋅- ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭122=023002-⎛⎫ ⎪- ⎪ ⎪⎝⎭, G 的特征方程为12221002λλλ---=-, 展开得 (1)(2)(2)0λλλ---=,即1λ=或2λ=,由迭代基本定理得用G-S 迭代法解此方程组是不收敛的.4. 设有方程组Ax b =,其中A 为对称正定阵,且有迭代公式(1)()()()k k k x x b Ax ω+=+- (0,1,k =),试证明当20ωβ<<时,上述迭代法收敛(其中A 的特征值满足0()A αλβ<≤≤).证明 A 为对称正定阵, A 的特征值满足0()A αλβ<≤≤,且20ωβ<<,则0()2A ωλ<<又迭代公式可变形为(1)()()k k x I A x bωω+=-+ (0,1,k =),从而迭代矩阵 B I A ω=-,迭代矩阵的特征值为1()A ωλ-,且满足11()1A ωλ-<-<,即 |()|1B λ<,由迭代基本定理得该迭代法是收敛的.5. 设111a a A aa a a⎛⎫ ⎪= ⎪ ⎪⎝⎭,其中a 为实数,试确定a 满足什么条件时,解Ax b =的Jacobi 迭代法收敛.解 系数矩阵分裂如下,111a a A aa a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭D L U =--1001100a a aa aa--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=---- ⎪ ⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭Jacobi迭代矩阵为1()J D L U -=+=000a a aa a a--⎛⎫⎪-- ⎪ ⎪--⎝⎭,J 的特征方程为0a aa a aaλλλ=,展开得 323320a a λλ--=,即a λ=-或2a λ=-,()max{||,|2|}J a a ρ=--()1J ρ<当且仅当1122a -<<,所以当1122a -<<时,解Ax b=的Jacobi 迭代法收敛.。
参考答案第1章一、选择题1. D2. C3. A4. B5. B二、填空题1. 函数题头 H1行 帮助信息 函数体 注释部分 函数题头2. nargin varargin3. A=rand(4)4. 单引号三、解答题1. for 语句和while 语句均可以实现循环执行的功能。
二者的区别在于,for 循环语句一般适用于已知道循环次数,而不知道循环运算的目标的问题,而while 循环语句则相反,一般适用于已知循环目标,而循环次数未知的问题。
2. 程序如下:function [highavg,weightavg]=avg_high_weight(varargin) n=length(varargin); highsum=0; weightsum=0; for i=1:n highsum=highsum+varargin{i}(1);weightsum=weightsum+varargin{i}(2);endhighavg=highsum/n; weightavg=weightsum/n;第2章一、选择题1. A2. B3. A4. C5. D二、填空题1. 1.7 1.73 1.7322. 3 13. 5%4. 3三、解答题1. 解:1*()()nn x nxx x ε-≈-1***()()n nr nxx x x x x nnxxε---≈=()0.02r ne x n ==2数值分析2. 解:*1 1.1021x =有五位有效数字;*20.031x =有两位有效数字;*3385.6x =有四位有效数字;*47 1.0x =⨯有一位有效数字。
3. 解:(1)*******124124()()()()x x x x x x εεεε++≤++433111101010222---=⨯+⨯+⨯3*1.0510ε-=⨯=(2)*********123231113()()x x x x x x x x x ε⋅⋅≈⋅-+⋅****221233()()x x x x x x -+⋅-*0.197ε≈=(3)******2242244**2441(/) |()()|()x x x x x x x xx ε≤---****2224**44|()()|r r x x x x xxεε=-***224*4||[|()||()|]r r x e x e x x≤+331110100.0312256.4800.03156.480--⎡⎤⨯⨯⎢⎥=+⎢⎥⎢⎥⎣⎦5*10ε-≤=4. 解:33**34433()43r R RV Rππεπ-=*2**2R R R R R RRR R-++=⋅*223R R R RR-≈⋅*3R R R-=⋅1%=故*1300R R R-=5. 解:设Y =*27.983Y =,*31102Y Y δ-=-≤⨯,028Y =,*028Y =,*0000Y Y δ=-=*111282827.983100Y Y ⎛⎛⎫-=---⨯ ⎪⎝⎝⎭1100δ≤,**22111127.983100100Y Y Y Y ⎛⎛⎫-=-⨯--⨯ ⎪⎝⎝⎭**111()()100Y Y Y Y =---112100100100δδδ≤+=仿此可得:*100n n n Y Y δ-≤则*31001001001101002Y Y δδ--≤==⨯即计算100Y 的误差界不超过31102-⨯参考答案 36. 解:解方程25610x x -+=得:28282x =±±由第5题知27.983具有五位有效数字,故可取:1282827.98355.983x =++=21280.0178655.983x =-≈=7. 解:设正方形的边长为x ,则其面积为2y x =。
7、计算的近似值,取。
利用以下四种计算格式,试问哪一种算法误差最小。
〔1〕〔2〕〔3〕〔4〕解:计算各项的条件数由计算知,第一种算法误差最小。
解:在计算机上计算该级数的是一个收敛的级数。
因为随着的增大,会出现大数吃小数的现象。
9、通过分析浮点数集合F=〔10,3,-2,2〕在数轴上的分布讨论一般浮点数集的分布情况。
10、试导出计算积分的递推计算公式,用此递推公式计算积分的近似值并分析计算误差,计算取三位有效数字。
解:此算法是数值稳定的。
第二章习题解答1.〔1〕 R n×n中的子集“上三角阵〞和“正交矩阵〞对矩阵乘法是封闭的。
〔2〕R n×n中的子集“正交矩阵〞,“非奇异的对称阵〞和“单位上〔下〕三角阵〞对矩阵求逆是封闭的。
设A是n×n的正交矩阵。
证明A-1也是n×n的正交矩阵。
证明:〔2〕A是n×n的正交矩阵∴A A-1 =A-1A=E 故〔A-1〕-1=A∴A-1〔A-1〕-1=〔A-1〕-1A-1 =E 故A-1也是n×n的正交矩阵。
设A是非奇异的对称阵,证A-1也是非奇异的对称阵。
A非奇异∴A可逆且A-1非奇异又A T=A ∴〔A-1〕T=〔A T〕-1=A-1故A-1也是非奇异的对称阵设A是单位上〔下〕三角阵。
证A-1也是单位上〔下〕三角阵。
证明:A是单位上三角阵,故|A|=1,∴A可逆,即A-1存在,记为〔b ij〕n×n由A A-1 =E,那么〔其中 j>i时,〕故b nn=1, b ni=0 (n≠j)类似可得,b ii=1 (j=1…n) b jk=0 (k>j)即A-1是单位上三角阵综上所述可得。
R n×n中的子集“正交矩阵〞,“非奇异的对称阵〞和“单位上〔下〕三角阵〞对矩阵求逆是封闭的。
2、试求齐次线行方程组Ax=0的根底解系。
A=解:A=~~~故齐次线行方程组Ax=0的根底解系为,3.求以下矩阵的特征值和特征向量。
课后习题解答第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。
解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。
解:直接根据定义和式(有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?(1)(2)解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。
(1)(2)4.近似数x*=0.0310,是 3 位有数数字。
5.计算取,利用:式计算误差最小。
四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。
线性插值时,用0.5及0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少?解:用误差估计式(5.8),令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048及cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式(5.17)得其中计算时用Newton后插公式(5.18)误差估计由公式(5.19)得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。
部分习题参考答案习题一1. 分别有3位、5位与4位有效数字2. 分别有5位、3位、4位与3位有效数字3. 有3位有效数字; 绝对误差为 -0、0012;相对误差-0、0005570514. (1) (2)(3)6、提示:注意字长为8位得计算机上得机器数系得特点与计算机对数得接收与运算处理。
7、提示:通过证明进行说明,这里 8、,不稳定 9、最好10、采用j 从10000到2得顺序相加,或通过进行化简计算。
11、本题有递推公式得出得就就就是。
算法1、2、For k=n-1,n-2,…,1,0 做12、提示:仿照例1、9做之。
习题二 2、提示:3、取迭代函数讨论之。
4、由确定k,迭代次数59、5、迭代公式及区间为,数列得极限值。
6、x 3=0、567143 7、,用New to n迭代公式及定理6做,根1、030 8、两个根: ;9、取,当时,取区间,用定理6做,当时,由做转换讨论。
极限为 11提示:由可得,或由用定理2、4 12、()()()()()()()()()()()()()()()()()222******1*22*****1*2***2*3(),()2'()2!()'()'()2'()'()'()2()'()2k k kk k k k k k k k k k k k kk k k k k k f f y x x x f y f x f x y x y x f x f x f f y x x y x y x y x y x f x f x f x y x f f x f x y x f x y x f x x f f x ξξξξξξ+'''''-=-=+-+-'''∴-=--=------''⎛⎫'=--- ⎪⎝⎭-''''=-+()()()()()2*13*121*32()2'()()()()4'()2'()k k kk k k f x x f x x xf f f f x x f x f x ξξξξξ⎛⎫''⨯- ⎪⎝⎭''-''''⎛⎫''=+- ⎪⎝⎭13、提示:借助代入中约化。
习题一1、取3.14,3.15,722,113355作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。
解:14.31=x312110211021--⨯=⨯≤-x π 所以,1x 有三位有效数字绝对误差:14.3-=πe ,相对误差:ππ14.3-=r e 绝对误差限:21021-⨯≤ε,相对误差限:213106110321-+-⨯=⨯⨯=r ε21122105.0105.01084074.000840174.015.315.3---⨯=⨯≤⨯==-=πx所以,2x 有两位有效数字绝对误差:15.3-=πe ,相对误差:ππ15.3-=r e 绝对误差限:11021-⨯=ε,相对误差限:11061-⨯=r ε31222105.0105.01012645.00012645.0722722---⨯=⨯≤⨯==-=πx所以,3x 有三位有效数字绝对误差:722-=πe ,相对误差:ππ722-=r e绝对误差限:21021-⨯=ε,相对误差限:21061-⨯=r ε1133551=x 7166105.0105.01032.000000032.0113355---⨯=⨯≤⨯==-π 所以,4x 有七位有效数字 绝对误差:113355-=πe ,相对误差:ππ113355-=r e绝对误差限:61021-⨯=ε,相对误差限:61061-⨯=r ε3、下列各数都是对准确数四舍五入后得到的近似数,试分别指出它们的绝对误差限和相对误差限,有效数字的位数。
5000,50.31,3015.0,0315.04321====x x x x解:0315.01=x m=-13141*10211021---⨯=⨯≤-x x 所以,n=3,1x 有三位有效数字绝对误差限:41021-⨯=ε,相对误差:2110611021-+-=⨯=n r a ε3015.02=x m=04042*10211021--⨯=⨯≤-x x所以,n=4,1x 有四位有效数字绝对误差限:41021-⨯=ε,相对误差:3110611021-+-=⨯=n r a ε50.313=x m=24223*10211021--⨯=⨯≤-x x所以,n=4,1x 有四位有效数字绝对误差限:21021-⨯=ε,相对误差:3110611021-+-=⨯=n r a ε50004=x m=44404*10211021-⨯=⨯≤-x x所以,n=4,1x 有四位有效数字绝对误差限:5.010210=⨯=ε,相对误差:23110105211021--+-=⨯=⨯=n r a ε 4、计算10的近似值,使其相对误差不超过%1.0。
数值分析课后习题答案数值分析课后习题答案数值分析是一门应用数学的学科,主要研究用数值方法解决数学问题的理论和方法。
在学习数值分析课程时,习题是非常重要的一部分,通过解答习题可以加深对数值方法的理解和掌握。
下面将为大家提供一些数值分析课后习题的答案,希望能对大家的学习有所帮助。
1. 插值法是数值分析中常用的一种数值逼近方法。
给定一组已知数据点,我们希望通过插值方法找到一个函数,使得该函数在已知数据点上的取值与给定数据点的值尽可能接近。
常见的插值方法有拉格朗日插值法和牛顿插值法。
下面是一个使用拉格朗日插值法求解的习题:已知函数f(x)=sin(x),求在区间[0, π/2]上的插值多项式P(x),使得P(0)=0,P(π/2)=1。
解答:根据拉格朗日插值法的原理,我们需要构造一个满足条件的插值多项式。
首先,我们需要确定插值节点。
根据题目要求,我们取两个插值节点:x0=0,x1=π/2。
然后,我们需要确定插值多项式的系数。
设插值多项式为P(x)=a0+a1x,代入已知条件可得到两个方程:P(0)=a0=0P(π/2)=a0+a1(π/2)=1解方程组可得,a0=0,a1=2/π。
因此,插值多项式为P(x)=2x/π。
2. 数值积分是数值分析中的另一个重要内容。
它主要研究如何用数值方法计算函数的定积分。
常见的数值积分方法有梯形法则、辛普森法则等。
下面是一个使用梯形法则求解的习题:计算定积分∫[0, 1] e^(-x^2) dx。
解答:根据梯形法则的原理,我们可以将定积分转化为离散的求和问题。
首先,我们将积分区间[0, 1]等分为n个小区间,每个小区间的宽度为h=1/n。
然后,我们在每个小区间的两个端点上计算函数值,并将其加权求和。
根据梯形法则的公式,我们可以得到近似解为:∫[0, 1] e^(-x^2) dx ≈ h/2 * (f(0) + 2f(x1) + 2f(x2) + ... + 2f(x(n-1)) + f(1))其中,f(x)表示函数e^(-x^2)在点x处的取值。
第一章题12给定节点01x =−,11x =,23x =,34x =,试分别对下列函数导出拉格朗日插值余项:(1)(1)3()432f x x x =−+(2)(2)43()2f x x x =−解(1)(4)()0f x =,由拉格朗日插值余项得(4)0123()()()()()()()04!f f x p x x x x x x x x x ξ−=−−−−=;(2)(4)()4!f x =由拉格朗日插值余项得01234!()()()()()()4!f x p x x x x x x x x x −=−−−−(1)(1)(3)(4)x x x x =+−−−.题15证明:对于()f x 以0x ,1x 为节点的一次插值多项式()p x ,插值误差01210()()()max ()8x x x x x f x p x f x ≤≤−′′−≤.证由拉格朗日插值余项得01()()()()()2!f f x p x x x x x ξ′′−=−−,其中01x x ξ≤≤,010101max ()()()()()()()()2!2!x x x f x f f x p x x x x x x x x x ξ≤≤′′′′−=−−≤−−01210()max ()8x x x x x f x ≤≤−′′≤.题22采用下列方法构造满足条件(0)(0)0p p ′==,(1)(1)1p p ′==的插值多项式()p x :(1)(1)用待定系数法;(2)(2)利用承袭性,先考察插值条件(0)(0)0p p ′==,(1)1p =的插值多项式()p x .解(1)有四个插值条件,故设230123()p x a a x a x a x =+++,2123()23p x a a x a x ′=++,代入得方程组001231123010231a a a a a a a a a =⎧⎪+++=⎪⎨=⎪⎪++=⎩解之,得01230021a a a a =⎧⎪=⎪⎨=⎪⎪=−⎩23()2p x x x ∴=−;(2)先求满足插值条件(0)(0)0p p ′==,(1)1p =的插值多项式()p x ,由0为二重零点,可设2()p x ax =,代入(1)1p =,得1a =,2()p x x ∴=;再求满足插值条件(0)(0)0p p ′==,(1)(1)1p p ′==的插值多项式()p x ,可设22()(1)p x x bx x =+−,2()22(1)p x x bx x bx ′=+−+∵,代入(1)1p ′=,得1b =−,2223()(1)2p x x x x x x ∴=−−=−.题33设分段多项式323201()2112x x x S x x bx cx x ⎧+≤≤=⎨++−≤≤⎩是以0,1,2为节点的三次样条函数,试确定系数,b c 的值.解由(1)2S =得212b c ++−=,1b c ∴+=;223201()6212x x x S x x bx c x ⎧+<<′=⎨++<<⎩,由(1)5S ′=得625b c ++=,21b c ∴+=−;联立两方程,得2,3b c =−=,且此时6201()12212x x S x x b x +<<⎧′′=⎨+<<⎩,(1)8(1)S S −+′′′′==,()S x 是以0,1,2为节点的三次样条函数.题35用最小二乘法解下列超定方程组:24113532627x y x y x y x y +=⎧⎪−=⎪⎨+=⎪⎪+=⎩.解记残差的平方和为2222(,)(2411)(353)(26)(27)f x y x y x y x y x y =+−+−−++−++−令00f x f y ∂⎧=⎪∂⎪⎨∂⎪=∂⎪⎩,得3661020692960x y x y −−=⎧⎨−+−=⎩,解之得83027311391x y ⎧=⎪⎪⎨⎪=⎪⎩.题37用最小二乘法求形如2y a bx =+的多项式,使与下列数据相拟合:x1925313844y19.032.349.073.397.8解拟合曲线中的基函数为0()1x ϕ=,20()x x ϕ=,其法方程组为0001010001(,)(,)(,)(,)(,)(,)f a f b ϕϕϕϕϕϕϕϕϕϕ⎛⎞⎛⎞⎛⎞=⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠,其中00(,)5ϕϕ=,0110(,)(,)5327ϕϕϕϕ==,11(,)7277699ϕϕ=,0(,)271.4f ϕ=,1(,)369321.5f ϕ=,解之得5320.97265472850.055696a b ⎧==⎪⎪⎨⎪==⎪⎩,20.97260.05y x ∴=+.第二章题3确定下列求积公式中的待定参数,使其代数精度尽量地高,并指明求积公式所具有的代数精度:(2)10120113()(()()424f x dx A f A f A f ≈++∫(2)从结论“在机械求积公式中,代数精度最高的是插值型的求积公式”出发,11000013()(224()11133()()4244x x A l x dx dx −−===−−∫∫,11110013()()144()11133()()2424x x A l x dx dx −−===−−−∫∫,11220011()242()31313()4442x x A l x dx dx −−===−−∫∫,10211123()()()(343234f x dx f f f ∴≈−+∫,当3()f x x =时,有左边=113001()d d 4f x x x x ==∫∫,右边=3332111232111231()()()()()()3432343432344f f f −+=⋅−⋅+⋅=,左边=右边,当4()f x x =时,有左边=114001()d d 5f x x x x ==∫∫,右边=44421112321112337()()()()()()343234343234192f f f −+=⋅−⋅+⋅=,左边≠右边,所以该求积公式的代数精度为3.题8已知数据表x 1.11.3 1.5xe3.00423.66934.4817试分别用辛甫生法与复化梯形法计算积分 1.51.1x e dx∫.解辛甫生法1.51.1xe dx ∫()1.5 1.13.00424 3.66934.4817 1.477546−≈+×+=;复化梯形法1.51.1xe dx ∫()0.23.00422 3.66934.4817 1.482452≈+×+=.题17用三点高斯公式求下列积分值12041dxx π=+∫.解先做变量代换,设)(1+21=t x ,则1204d 1x x +∫=112112418d d 124(1)1(1)4t t t t −−⋅=++++∫∫()2225888589994014141≈×+×+×++⎛⎞⎞++⎜⎟⎟⎝⎠⎠3.141068=.第三章用欧拉方法求解初值问题y ax b ′=+,(0)0y =:(1)试导出近似解n y的显式表达式;解(1)其显示的Euler 格式为:11111(,)()n n n n n n y y hf x y y h ax b −−−−−=+=+⋅+故122()n n n y y h ax b −−−=+⋅+⋯⋯100()y y h ax b =+⋅+将上组式子左右累加,得0021()n n n y y ah x x x nhb−−=+++++⋯(02(2)(1))ah h h n h n h nhb =+++−+−+⋯2(1)/2ah n n nhb=−+题10选取参数p 、q ,使下列差分格式具有二阶精度:1111(,)n n n n y y hK K f x ph y qhK +=+⎧⎨=++⎩.解将1K 在点(,)n n x y 处作一次泰勒展开,得11(,)n n K f x ph y qhK =++21(,)(,)(,)()n n x n n y n n f x y phf x y qhK f x y O h =+++()221(,)(,)(,)(,)(,)()(,)()n n x n n n n x n n y n n y n n f x y phf x y qh f x y phf x y qhK f x y O h f x y O h =++++++2(,)(,)(,)(,)()n n x n n n n y n n f x y phf x y qhf x y f x y O h =+++代入,得()21(,)(,)(,)(,)()n n n n x n n n n y n n y y h f x y phf x y qhf x y f x y O h +=++++2231(,)(,)(,)(,)()n n n n x n n n n y n n y y hf x y ph f x y qh f x y f x y O h +=++++而231()()()()()()2n n n n n h y x y x h y x hy x y x O h +′′′=+=+++23()(,())(,())(,())(,())()2n n n x n n n n y n n h y x hf x y x f x y x f x y x f x y x O h ⎡⎤=++++⎣⎦考虑其局部截断误差,设()n n y y x =,比较上两式,当12p =,12q =时,311()()n n y x y O h ++−=.第四章题2证明方程1cos 2x x=有且仅有一实根;试确定这样的区间[,]a b ,使迭代过程11cos 2k kx x +=对一切0[,]x a b ∈均收敛.解设1()cos 2f x x x=−,则()f x 在区间(,)−∞+∞上连续,且11(0)cos 0022f =−=−<,1(cos 022222f ππππ=−=>,所以()f x 在[0,]2π上至少有一根;又1()1sin 02f x x ′=+>,所以()f x 单调递增,故()f x 在[0,]2π上仅有一根.迭代过程11cos 2k k x x +=,其迭代函数为1()cos 2g x x=,[0,]2x π∀∈,110()cos 222g x x π≤=≤≤,()[0,]2g x π∴∈;1()sin 2g x x ′=−,1()12g x ′≤<,由压缩映像原理知0[0,2x π∀∈,11cos 2k kx x +=均收敛.注这里取[,]a b 为区间[0,]2π,也可取[,]a b 为区间(,)−∞+∞等.题5考察求解方程1232cos 0x x −+=的迭代法124cos 3k kx x +=+(1)(1)证明它对于任意初值0x 均收敛;(2)证明它具有线性收敛性;证(1)迭代函数为2()4cos 3g x x=+,(,)x ∀∈−∞+∞,()(,)g x ∈−∞+∞;又22()sin 133g x x ′=−≤<,由压缩映像原理知0x ∀,124cos 3k k x x +=+均收敛;(2)***1*2lim ()sin 03k k k x x g x x x x +→∞−′==−≠−(否则,若*sin 0x =,则*,x m m Z π=∈,不满足方程),所以迭代124cos 3k kx x +=+具有线性收敛速度;题7求方程3210x x −−=在0 1.5x =附近的一个根,证明下列两种迭代过程在区间[1.3,1.6]上均收敛:(1)(1)改写方程为211x x =+,相应的迭代公式为1211k k x x +=+;(2)(2)改写方程为321x x =+,相应的迭代公式为1k x +=解(1)3232211011x x x x x x −−=⇔=+⇔=+,迭代公式为1211k k x x +=+,其迭代函数为21()1g x x =+[1.3,1.6]x ∀∈,2221111.3 1.3906111 1.5917 1.61.6 1.3x ≤≈+≤+≤+≈<,()[1.3,1.6]g x ∴∈;又32()g x x ′=−,333222-0.9103==-0.48831.3 1.6x −−−≤≤,()0.91031g x ′≤<,由大范围收敛定理知0[1.3,1.6]x ∀∈,1211k k x x +=+均收敛;(2)3232101x x x x x −−=⇔=+⇔=1k x +=其迭代函数为()g x =[1.3,1.6]x ∀∈,1.3 1.3908 1.5269 1.6≤≈≤≤≈<,()[1.3,1.6]g x ∴∈;又()g x ′=,00.4912≤≤≤=,()0.49121g x ′≤<,由大范围收敛定理知0[1.3,1.6]x ∀∈,1k x +=均收敛.题5分别用雅可比迭代与高斯-塞德尔迭代求解下列方程组:1231231235325242511x x x x x x x x x +−=⎧⎪−+=⎨⎪+−=−⎩(2)其雅可比迭代格式为(1)()()123(1)()()213(1)()()312253512221121555k k k k k k k k k x x x x x x x x x +++⎧⎪=−+⎪⎪=−++⎨⎪⎪=++⎪⎩,取初始向量(0)000x ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,迭代发散;其高斯-塞德尔迭代格式为(1)()()123(1)(1)()213(1)(1)(1)312253512221121555k k k k k k k k k x x x x x x x x x ++++++⎧⎪=−+⎪⎪=−++⎨⎪⎪=++⎪⎩,取初始向量(0)000x ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,迭代发散.第六章题2用主元消去法解下列方程组)12312312323553476335x x x x x x x x x ++=⎧⎪++=⎨⎪++=⎩解(2)对其增广矩阵进行列主元消元得23553476347634763476235501/31/3105/32/331335133505/32/3301/31/31⎛⎞⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟→→→⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠⎝⎠347605/32/33001/52/5⎛⎞⎜⎟→⎜⎟⎜⎟⎝⎠回代求解上三角方程组1232333476523331255x x x x x x ⎧⎪++=⎪⎪+=⎨⎪⎪=⎪⎩得321214x x x =⎧⎪=⎨⎪=−⎩,所以412x −⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠.。
数值分析参考答案1.4 习题解答或提示1、解:(1)>> a=[1 2 3 ;4 5 6 ]'a =1 42 53 6(2)>> b=[9;7;5;3;1]b =97531(3)>> c=b(2:4)c =753(4)>> d=b(4:-1:1)d =3579(5)>> e=sort(b)e =13579(6)>> f=[3:b']f =3 4 5 6 7 8 92、解:>> x=[7 4 3 ];y=[-1 -2 -3];(1)>> u=[y,x]u =-1 -2 -3 7 4 3 (2)>> u=[x,y]u =7 4 3 -1 -2 -33、解:sum=0;a=[4 -1 2 -8 4 5 -3 -1 6 -7]; for i=1 : length(a)if a(i)>0, sum=sum+a(i); endendsumsum =214、解:m=input('input an array:')input an array:[1 2 5;3 1 2;4 1 3]m =1 2 53 1 24 1 35、解:sum(m)ans =8 4 10>> max(m)ans =4 2 5>> min(m)ans =1 1 26、解:function y=fun_es(x)y=0.5.*exp(x./3)-x.^2.*sin(x);>> fun_es(3)ans =0.0891>> fun_es([1 2 3])ans =-0.1437 -2.6633 0.08917、提示:本题主要考查的是随机数生成函数rand的使用方法,以及选取种子数的方法之一:使用clock命令。
可以参照课本的例1.5来编写函数。
8、解:function y=fun_xa()x=input('input the value of x:');n=input('input the value of n:');y=1;for i=1:1:ny=y+x^i/factorial(i); end>> fun_xa()input the value of x :1 input the value of n :4ans =2.70832.4 习题解答1 解:E(lnx)=(ln ’E(x)=)(1x E x =xδ=Er(x) 2. 解 Er(x 2)=)(22x Er x xx ⨯=4% 3. 解:123451.1021,0.031,385.6,56.430,7 1.0x x x x x *****=====⨯分别有5 位,2位,4位,5位,2位有效数字4 解 4*1105.0)(-⨯=x E3*2105.0)(-⨯=x E1*3105.0)(-⨯=x E3*4105.0)(-⨯=x E=++)(*4*2*1x x x E +)(*1x E +)(*2x E )(*4x E =0.00105))()((*4*2x E x E E =)()()(*42*4*2*4*2x E x x x x E -5. 解 V=334r π Er(v)=)(//x Er V x dx dV ⨯⨯=3Er(x)%1)(3≤x Er%33.0)(≤x Er6. 解 7830100-=Y Y)783()(100E Y E ==0.00057.解 x 1,2=24561122-±=56783±21,2105.0)x (-⨯=E 2105.0)783(-⨯=E98.27783≈x 1,2=83.98 或 28.02 8.略。
数值分析课后习题及答案第一章绪论(12)第二章插值法(40-42)2、当时,,求的二次插值多项式。
[解]。
3、给出的数值表用线性插值及二次插值计算的近似值。
X 0.4 0.5 0.6 0.7 0.8 -0.916291 -0.693147 -0.510826 -0.357765 -0.223144 [解]若取,,则,,则,从而。
若取,,,则,,,则,从而补充题:1、令,,写出的一次插值多项式,并估计插值余项。
[解]由,可知,,余项为,故。
2、设,试利用拉格朗日插值余项定理写出以为插值节点的三次插值多项式。
[解]由插值余项定理,有,从而。
5、给定数据表:,1 2 4 6 7 4 1 0 1 1 求4次牛顿插值多项式,并写出插值余项。
[解]一阶差商二阶差商三阶差商四阶差商 1 42 1 -34 0 6 17 1 0 由差商表可得4次牛顿插值多项式为:,插值余项为。
第三章函数逼近与计算(80-82)26、用最小二乘法求一个形如的经验公式,使它与下列数据相拟合,并求均方误差。
19 25 31 38 44 19.0 32.3 49.0 73.3 97.8[解]由。
又,,,故法方程为,解得。
均方误差为。
27、观测物体的直线运动,得出以下数据:时间t(秒)0 0.9 1.9 3.0 3.9 5.0 距离s(米)0 10 30 5080 110 [解]设直线运动为二次多项式,则由。
,。
又,,,故法方程为,解得。
故直线运动为。
补充题:1、现测得通过某电阻R的电流I及其两端的电压U如下表:I ……U ……试用最小二乘原理确定电阻R的大小。
[解]电流、电阻与电压之间满足如下关系:。
应用最小二乘原理,求R使得达到最小。
对求导得到:。
令,得到电阻R为。
2、对于某个长度测量了n次,得到n个近似值,通常取平均值作为所求长度,请说明理由。
[解]令,求x使得达到最小。
对求导得到:,令,得到,这说明取平均值在最小二乘意义下误差达到最小。