脂类代谢脂类的消化吸收和转运脂类的消化主要
- 格式:doc
- 大小:66.50 KB
- 文档页数:10
脂类代谢本章主要介绍脂类(主要是脂肪)物质在生物体的分解及合成代谢。
要求学生重点掌握脂肪酸在生物体内的氧化分解途径β氧化和从头合成途径了解脂类物质的功能和其他的氧化分解途径。
生物体内的脂类脂类单纯脂类复合脂类非皂化脂类酰基甘油酯蜡磷脂糖脂、硫脂萜类甾醇类含有脂肪酸不含脂肪酸异戊二烯脂类,不含脂肪酸,不能进行皂化。
一、脂类的消化、吸收、转运和储存(一)脂类的消化小肠上段:主要消化场所脂类微团甘油一脂、溶血磷脂、长链脂肪酸、胆固醇等混合微团胆汁酸盐乳化胰脂肪酶、磷脂酶等水解乳化(二)脂类的吸收十二指肠下段、空肠上段混合微团小肠粘膜细胞内乳糜微粒门静脉肝脏扩散重新酯化载脂蛋白结合乳糜微粒小肠粘膜脂肪脂蛋白十二指肠空肠血液二、脂肪的分解代谢(一)脂肪的水解脂肪酶二酰甘油脂肪酶一酰甘油脂肪酶甘油激酶磷酸甘油脱氢酶异构酶(二)甘油的转化(实线为甘油的分解虚线为甘油的合成))(三)脂肪酸的分解代谢a脂肪酸β氧化作用、β氧化作用的概念脂肪酸在体内氧化时在羧基端的β碳原子上进行氧化碳链逐次断裂每次断下一个二碳单位(乙酰CoA)饱和脂肪酸的β氧化作用()β氧化过程中能量的释放及转换效率、氧化过程、β氧化作用的概念及试验证据()脂肪酸的活化和转运()β氧化的生化过程试验证据,FKnoop,苯环标记脂肪酸饲喂狗β氧化学说内质网、线粒体外膜:脂酰CoA合成酶催化脂肪酸与CoASH:脂酰CoA(活化)。
反应不可逆、氧化过程)、脂肪酸活化为脂酰CoA(胞浆)脂肪酸氧化酶系:线粒体基质长链脂酰CoA(C以上)不能直接透过线粒体内膜与肉毒碱(carnitine)结合:脂酰肉碱,进入线粒体基质肉碱脂酰转移酶(CATⅠ和CATII)催化:)、脂酰CoA进入线粒体β氧化的限速步骤CATⅠ是限速酶丙二酸单酰CoA是强烈的竞争性抑制剂。
)*OHRCHCHCHCO~SCoALβ羟脂酰CoA()再脱氢()硫解()()()()β酮脂酰CoARCHC~SCoAOCHCOCoASHβ酮脂酰CoA硫解酶ATP呼吸链重复反应乙酰CoARCHCHCOSCoA脂酰CoA脱氢酶脂酰CoAβ烯脂酰CoA水化酶β羟脂酰CoA脱氢酶β酮酯酰CoA 硫解酶RCHOHCHCO~ScoARCOCHCOSCoARCH=CHCOSCoACHCO~SCo ARCO~ScoA乙酰CoA氧化的生化历程β氧化的生化历程a、脱氢b、水化c、再脱氢ORCH=CHCSCoAORCHCHCSCoAOHORCHCHC~SCoAOORCCHC~SCoAd、硫解||||分子软脂酸(C):活化生成软脂酰CoA次β氧化总反应式:软脂酰CoAFADNADCoASHHO乙酰CoAFADH(NADHH))、β氧化的能量生成β氧化:乙酰CoA、NADH和FADH碳原子数:Cn脂肪酸β氧化(n-)次循环n个乙酰CoA(n)NADH、(n)FADH乙酰CoA:TCACO、HO释放能量NADH、FADH:呼吸链传递电子生成ATP 生成ATP数量:分子软脂酸彻底氧化:(×)(×)(×)=分子ATP脂肪酸活化消耗ATP的个高能磷酸键净生成:分子ATP脂肪酸氧化作用发生在α碳原子上分解出CO生成比原来少一个碳原子的脂肪酸RCHCOORCH(OH)COORCOCOORCOOCOONADNADHHNADNAD HHRCH(OOH)COOCORCHOONADNADHH过氧化羟化b脂肪酸的α氧化作用α羟脂酸α酮酸*CH(CH)nCOOHOCH(CH)nCOOOHC(CH)nCOOOOC(CH)nCOOON AD(P)NAD(P)HHNAPDNADPHHNAD(P)NAD(P)HH混合功能氧化酶醇酸脱氢酶醛酸脱氢酶c脂肪酸的ω氧化作用脂肪酸末端甲基(ω端)经氧化转变成羟基继而再氧化成羧基从而形成αω二羧酸的过程(四)酮体的生成和利用、酮体脂肪酸在肝脏中不完全氧化的中间产物β-羟丁酸(%)CHCH(OH)CHCOOH乙酰乙酸(%)CHCOCHCOOH丙酮(极微)CHCOCH统称原料:乙酰CoA脂肪酸在肝脏中氧化分解所生成的乙酰乙酸、β羟丁酸和丙酮三种中间代谢产物、酮体的生成、酮体的利用酮体:肝脏合成肝脏缺乏利用酮体的酶不能利用酮体进入血液输送到肝外组织利用CHCOCHCOOH乙酰乙酸CHCOCHCOSCoA乙酰乙酰CoAATPCoASHPPiAMPPi乙酰CoACHCOCoAβ羟丁酸CHCH(OH)CHCOOHβ羟丁酸脱氢酶NADNADHH琥珀酰CoA琥珀酸转移酶乙酰乙酰CoA合成酶HOHSCoA硫解酶心、肾、脑和骨胳肌此酶活性高(倍)TCA琥珀酰CoA转硫酶:催化进行氧化利用时乙酰乙酸:分子ATPβ羟丁酸:分子ATP乙酰乙酸硫激酶:催化进行氧化利用时乙酰乙酸:分子ATP β羟丁酸:分子ATP酮体生成的生理意义)酮体具水溶性能透过血脑屏障及毛细血管壁。
本章主要介绍脂类物质(主要是脂肪)在生物体内的分解和合成代谢。
重点掌握脂肪酸在生物体内的氧化分解途径—脂肪酸的β-氧化和从头合成途径,了解脂类物质的其它氧化分解途径和功能。
思考?第九章脂类代谢目录第一节生物体内的脂类第二节脂肪的分解代谢第三节乙醛酸循环第四节脂肪的生物合成第五节磷脂和胆固醇的代谢CR 2O CR 1O CR 3O 脂肪酸形成的酯。
多存在于植物的叶、茎和果实的表皮部分。
动物所产生的蜡有蜂蜡、羊毛脂等。
烃,虽不属于酯类,因其性质与蜡相似,也称为蜡磷脂酸磷脂酰胆碱磷脂酰乙醇胺磷脂酰肌醇磷脂酰丝氨酸磷脂酰甘油脂肪的酶促水解甘油激酶磷酸甘油磷酸酯酶脱氢酶异构酶磷酸酶乙醛酸循环1、乙醛酸循环的生化历程2、乙醛酸循环总反应式及其糖异生的关系3、乙醛酸循环的生理意义植物种子萌发的脂肪转化为糖微生物发酵产物重新氧化的途径4、脂肪代谢和糖代谢的关系草酰乙酸顺乌头酸酶酶CoASH COO-CH2CH2羧化酶变位酶ATP、CO 生物素CoB甲基丙二酸单酰CoA 琥珀酰CoA酮体的代谢•酮体的生成•酮体的分解•生成酮体的意义脂肪酸β-氧化产物乙酰CoA,在肌肉中进入TCA 循环;然而在肝细胞中乙酰CoA可形成乙酰乙酸、β-羟丁酸、丙酮,这三种物质统称为酮体。
乙酰乙酰CoAβ--氧化乙酰乙酸+乙酰CoAβ--羟丁酸脂肪酸的生物合成1、十六碳饱和脂肪酸的从头合成2、线粒体和内质网中脂肪酸碳链的延长3、不饱和脂肪酸的合成(自学)乙酰CoA从线粒体内至胞液的运转脂肪酸合酶系统(fatty acid synthase system,FAS)①②③④⑤⑥外围巯基⑥①②③④⑤ACP乙酰CoA:ACP转移酶④β-酮脂酰-ACP 丙二酸单酰CoA:ACP转移酶⑤β-羟脂酰-ACP SHSHACP •不同生物体中的ACP十分相似:大肠杆菌中的ACP是一个由77个氨基酸残基组成的热稳定蛋白质,在它的第36位丝氨酸残基的侧链上,连有辅基4-磷酸泛酰巯基乙胺。
脂类代谢1、脂类的消化胰腺分泌的脂类消化酶:胰脂酶、辅脂酶、磷脂酶A2(催化磷脂2位酯键水解)、胆固醇酯酶(水解胆固醇酯,生成胆固醇和脂肪酸)2、脂类的吸收及吸收后的运输脂类及其消化产物主要在十二指肠下段及空肠上段吸收乳化、酶解、吸收、甘油三酯的再合成、CM的组装CM经小肠黏膜细胞分泌进入淋巴道→血循环→全身各组织器官甘油三脂的代谢一、脂肪的分解代谢:(1)脂肪动员:脂肪转变为脂肪酸和甘油;脂肪酶脂解激素——启动脂肪动员、促进脂肪水解:胰高血糖素、肾上腺素、去甲肾上腺素抗脂解激素——抑制脂肪动员:胰岛素、前列腺素E2(2)甘油的分解代谢1.甘油在甘油激酶的催化下转变成3'-磷酸甘油,甘油激酶(在肝中活性最高,甘油主要被肝摄取利用)2.3'-磷酸甘油脱氢生成磷酸二羟丙酮,磷酸甘油脱氢酶3.磷酸二羟丙酮进入糖代谢途径进行分解或异生(三)脂肪酸的β氧化1. 脂肪酸的活化:脂肪酸在脂酰CoA合成酶催化下生成脂酰CoA 部位:线粒体外1分子脂肪酸活化消耗2个高能磷酸键2. 脂酰CoA进入线粒体,肉碱脂酰转移酶Ⅰ3.脂肪酸经过多次β-氧化转变为乙酰CoA。
在线粒体内进行(1)脱氢:由EAD接受生成FADH2(2)加水(3)再脱氢,由NAD接受生成NADH+H(4)硫解经过上述反应,生成1分子乙酰CoA和少2碳原子的脂酰CoA。
(三)酮体的生成:部位:在肝细胞线粒体内生成原料:脂肪酸β氧化生成的乙酰CoA1.2分子CoA在乙酰乙酰CoA硫解酶作用下缩合生成乙酰乙酰CoA2.乙酰乙酰CoA在HMGCoA合成酶催化下和1分子乙酰CoA缩合生成羟甲基戊二酸单酰CoA(HMGCoA)3.HMGCoA在HMGCoA裂解酶(肝脏特有的酶)作用下裂解生成乙酰乙酸和乙酰CoA4.乙酰乙酸在β-羟基丁酸脱氢酶的作用下被还原成β-羟基丁酸,还原速度由NADH+H/NAD决定。
少量可以自然脱羧,生成丙酮。
(四)酮体的利用:酮体在肝外组织氧化分解1.乙酰乙酸的活化:(两条途径)(1)在心、肾、脑及骨骼肌线粒体,由琥珀酰CoA转硫酶催化乙酰乙酸活化,生成乙酰乙酰CoA(2)在肾、是、心和脑线粒体,由乙酰乙酸硫激酶催化,直接活化生成乙酰乙酰CoA2.乙酰乙酰CoA硫解生成乙酰CoA,进入三羧酸循环。
人体的脂类物质——吸化、吸收与转运脂类分为脂肪(甘油三酯)和类脂(磷脂、固醇类),磷脂为可分为磷酸甘油脂和神经鞘脂两类,固醇类又分为胆固醇和植物固醇两类。
一、口腔唾液脂肪本酶,对脂类物质消化有限,当然婴儿还是起到一定的消化作用。
二、胃没有消化酶,基本没有消化作用。
三、小肠胆汁、胰脂肪酶。
为脂类物质的主要消化吸收场所。
四、吸收1.甘油、短中链脂肪酸直接吸收入血。
2.甘油单酯、长链脂肪酸进入小肠细胞重新合成甘油三酯,与磷脂、胆固醇、蛋白质形成乳糜微粒,经淋巴系统进入血液。
五、脂类的转运1.乳糜微粒(CM)运输从小肠吸收的外源性甘油三酯、磷脂、胆固醇到肝脏。
2.极低密度脂蛋白(VLDL)运输肝脏、小肠合成的内源性甘油、胆固醇等进入血浆。
3.低密度脂蛋白(LDL)运输肝内合成的胆固醇进入血浆。
4.高密度脂蛋白(HDL)将胆固醇从肝外组织转运到肝内代谢,为“胆固醇的逆转运”。
HDL将肝外组织的胆固醇运到肝内代谢排出体外,从而减少了血中的胆固醇的含量和沉积作用,进而减少动脉粥样硬化的风险,俗称“好胆固醇”。
六、怎么摄入脂类更健康1.在适宜总能量摄入基础上控制脂肪摄入,脂类占总能量摄入量的20%~30%,其中饱和脂肪酸不超过10%,胆固醇<300mg/d。
2.各种脂肪酸的摄入比例为饱和脂肪酸:单不饱和脂肪酸:多不饱和脂肪酸=1:1:1,老年群众可适当增加单不饱和脂肪酸比例,相应降低饱和脂肪酸比例。
3.多不饱和脂肪酸摄入也不是越多越好,多不饱和脂肪酸摄入过多使体内有害的氧化物、过氧化物等增加。
4.注意隐性脂肪的摄入动物内脏、坚果、油炸食品、油酥食品、氢化油等。
动物内脏富含胆固醇,少吃为佳;油炸食品能量翻倍,有害物质如致癌物增加。
反式脂肪酸是健康的杀手,大部分隐藏在氢化植物油加工的食品中,因此应少食用加工过的食品,最好自己家庭烹饪,当然以清蒸或炖为佳。
脂类代谢习题⼀、 A 型题1. 下列哪⼀种物质在体内可直接合成胆固醇()(A) 丙酮酸(B) 草酸(C) 苹果酸(D) ⼄酰CoA(E) α-酮戊⼆酸2. 胆固醇是下列哪⼀种物质的前体()(A) COA(B) 维⽣素A(C) 维⽣素D(D) ⼄酰COA(E) 维⽣素E3. 胆固醇⽣物合成的限速酶是()(A) HMGCoA合成酶(B) 羟基戊酸激酶(C) HMGCoA还原酶(D) 鲨烯环氧酶(E) HMGCoA裂解酶4. 密度最低的⾎浆脂蛋⽩是()(A) 乳糜微粒(B) β脂蛋⽩(C) 前β脂蛋⽩(D) α脂蛋⽩(E) 脂蛋⽩5. 合成⼀分⼦的软脂酸需要丙⼆酸单酰CoA的个数是()(A) 5(B) 6(C) 7(D) 8(E) 96. 肝脏⽣成⼄酰⼄酸的直接前()(C) β-羟丁酰辅酶A(D) 羟甲戊酸(E) 羟基甲基戊⼆酰辅酶A7. 胞质中合成脂肪酸的限速酶是()(A) β-酮脂酰合成酶(B) ⽔化酶(C) ⼄酰辅酶A羧化酶(D) 脂酰转移酶(E) 软脂酸脱酰酶8. 脂肪酸⽣物合成所需的⼄酰辅酶A由()(A) 胞质直接提供(B) 线粒体合成并转化成柠檬酸转运⾄胞质(C) 胞质的⼄酰⾁碱提供(D) 线粒体合成,以⼄酰辅酶A形式运输到胞质(E) 胞质的⼄酰磷酸提供9. 运输内源性脂肪的⾎浆脂蛋⽩主要是()(A)CM(B) VLDL(C) HDL(D) LDL(E) 清蛋⽩10. 脂肪酸⽣物合成所需的氢由下列哪⼀递氢体提供()(A) NADP(B) FADH2(C) FAD(D) NADPH+H+(E) NADH+H+11. 脂肪细胞酯化脂肪酸所需的⽢油()(A) 主要来⾃葡萄糖(B) 由糖异⽣形成(C) 由脂解作⽤产⽣(D) 由氨基酸转化⽽来(E) 由磷脂分解产⽣(B) 转运中链脂肪酸进⼈线粒体内膜(C) 参与视⽹膜的暗适应(D) 参与脂酰转运酶促反应(E) 为脂肪酸⽣物合成所需的⼀种辅酶13. 下列关于脂肪酸从头合成的叙述哪⼀项是正确的()(A) 不能利⽤⼄酰辅酶A(B) 仅能合成少于⼗碳的脂肪酸(C) 需丙⼆酰辅酶A作为活性中间体(D) 在线粒体中进⾏(E) 以NAD为辅酶14. 脂肪酸活化后,β-氧化的反复进⾏不需要下列哪种酶的参与()(A) 脂酰辅酶A脱氢酶(B) β-羟脂酰辅酶A脱氢酶(C) 脂烯酰辅酶A⽔合酶(D) β-酮脂酰辅酶A裂解酶(E) 硫激酶15. 下列哪⼀⽣化反应在线粒体内进⾏()(A) 脂肪酸的⽣物合成(B) 脂肪酸β-氧化(C) 脂肪酸ω-氧化(D) 胆固醇的⽣物合成(E) ⽢油三酯的⽣物合成16. 下列磷脂中,哪⼀种含有胆碱()(A) 脑磷脂(B) 卵磷脂(C) 磷脂酸(D) 脑苷脂(E) ⼼磷脂17. 脂蛋⽩脂肪酶(LPL)催化()(A) 脂肪细胞中⽢油三酯⽔解(B) 肝细胞中⽢油三酯⽔解(C) VLDL中⽢油三酯⽔解(D) HDL中⽢油三酯⽔解(A) 顺丁烯⼆酸(B) 柠檬酸(C) 苹果酸(D) 亚⿇酸(E) 琥珀酸19. 体内储存的脂肪酸主要来⾃()(A) 类脂(B) ⽣糖氨基酸(C) 葡萄糖(D) 脂肪酸(E) 酮体20. 下列哪种物质不是β-氧化所需的辅助因⼦()(A) NAD+(B) ⾁碱(C) FAD(D) CoA(E) NADP+21. 细胞内催化脂肪酰基转移⾄胆固醇⽣成胆固醇酯的酶是()(A) LCAT(B) 脂酰转运蛋⽩(C) 脂肪酸合成酶(D) ⾁碱脂酰转移酶(E) ACAT22. ⾎浆中催化脂肪酰基转运⾄胆固醇⽣成胆固醇酯的酶是()(A) LCAT(B) ACAT(C) 磷脂酶(D) ⾁碱脂酸转移酶(E) 脂酰转运蛋⽩23. 脂肪⼤量动员时肝内⽣成的⼄酰辅酶A主要转变为()(A) 葡萄糖(B) 胆固醇(C) 脂肪酸24. 卵磷脂⽣物合成所需的活性胆碱是()(A) TDP-胆碱(B) ADP-胆碱(C) UDP-胆碱(D) GDP-胆碱(E) CDP-胆碱25. ⼄酰辅酶A 羧化酶的变构抑制剂是()(A) 柠檬酸(B) cAMP(C) CoA(D) ATP(E) 长链脂酰辅酶A26. 脂肪动员时脂肪酸在⾎液中的运输形式是()(A) 与球蛋⽩结合(B) 与VLDL结合(C) 与HDL结合(D) 与CM结合(E) 与⽩蛋⽩结合27. 软脂酰辅酶A⼀次β-氧化的产物经过三羧酸循环和氧化磷酸化⽣成ATP的摩尔数为()(A) 5(B) 9(C) 12(D) 17(E) 3628. 脂肪酸β-氧化酶系存在于()(A) 胞质(B) 微粒体(C) 溶酶体(D) 线粒体(E) 内质⽹29. 磷酸⽢油酯中,通常有不饱和脂肪酸与下列哪⼀个碳原⼦或基团连接()(A) ⽢油的第⼀位碳原⼦(B) ⽢油的第⼆位碳原⼦(E) 胆碱30. 由⼄酰辅酶A合成1分⼦胆固醇需多少分⼦ NADPH+H+()(A) 14分⼦(B) 16分⼦(C) 7分⼦(D) 18分⼦(E) 9分⼦31. 下列哪⼀种物质不参与由⼄酰辅酶A合成脂肪酸的反应()(A) CH3COCOOH(B) COOHCH2CO~CoA(C) NADPH⼗H+(D) ATP(E) CO232. 下列脂蛋⽩密度由低到⾼的正确顺序是()(A) LDL VLDL CM HDL(B) CM HDL VLDL HDL(C) CM VLDL LDL HDL(D) VLDL LDL HDL CM(E) VLDL HDL CM LDL33. 关于脂肪酸⽣物合成下列哪⼀项是错误的()(A) 存在于胞液中(B) ⽣物素作为辅助因⼦参与(C) 合成过程中,NADPH+H+转变成NADP+(D) 不需ATP参与(E) 以COOHCH2CO~COA作为碳源34. 下列哪⼀种物质是磷脂酶A2作⽤于磷脂酰丝氨酸的产物()(A) 磷脂酸(B) 溶⾎磷脂酰丝氨酸(C) 丝氨酸(D) l,2-⽢油⼆酯(E) 磷脂酰⼄醇胺35. 脂酰辅酶A在肝脏β-氧化的酶促反应顺序是()(A) 脱氢、再脱氢、加⽔、硫解(D) 脱氢、脱⽔、再脱氢、硫解(E) 加⽔、脱氢、硫解、再脱氢36. 下列哪⼀种物质不参与⽢油三酯的消化并吸收⼈⾎的过程()(A) 胰脂酶(B) 载脂蛋⽩B(C) 胆汁酸盐(D) ATP(E) 脂蛋⽩脂酶37. 内源性胆固醇主要由下列哪⼀种⾎浆脂蛋⽩运输()(A) HDL(C) VLDL(D) CM(E) HDL338. 内源性⽢油三酯主要由下列哪⼀种⾎浆脂蛋⽩运输()(A) CM(B) LDL(C) VLDL(D) HDL(E) HD L339. 含载脂蛋⽩Bl00最多的⾎浆脂蛋⽩是()(A) HDL(B) LDL(C) VLDL(D) CM(E) CM残粒40. 含载脂蛋⽩B48的⾎浆脂蛋⽩是()(A) HDL(B) IDL(C) LDL(D) CM(E) VLDL41. 载脂蛋⽩AI是下列哪⼀种酶的激活剂()(A) 脂蛋⽩脂酶(D) 脂肪组织脂肪酶(E) 胰脂酶42. 不属于类脂的是()(A) 胆固醇(B) 胆固醇酯(C) ⽢油三酯(D) 磷脂(E) 糖脂43. 下列哪种脂肪酶是激素敏感性脂肪酶()(A) 肝脂酶(B) 胰脂酶(C) 脂蛋⽩脂肪酶(D) 脂肪细胞三酰⽢油脂肪酶(E) 辅脂酶44. 长期饥饿后⾎液中下列哪种物质的含量增加()(A) 葡萄糖(B) ⾎红素(C) 酮体(E) 丙酮酸45. 下列哪种情况机体能量的提供主要来⾃于脂肪分解()(A) 空腹(B) 剧烈运动(C) 进⾷后(D) 禁⾷(E) 安静状态46. 脂肪酸β⼀氧化的亚细胞部位()(A) 细胞膜(B) 胞液(C) 内质⽹(D) 线粒体(E) 溶酶体47. 在脑磷脂转化⽣成卵磷脂过程中,需要下列哪种氨基酸的参与()(A) 蛋氨酸(D) ⾕氨酸(E) 天冬氨酸48. l摩尔软脂酸在体内彻底氧化⽣成多少摩尔ATP()(A) 129(B) 96(C) 239(D) 86(E) 17649. 在胆固醇逆向转运中起主要作⽤⾎浆脂蛋⽩是()(A) IDL(B) HDL(C) LDL(D) VLDL(E) CM50. 空腹⾎脂通常指餐后多少⼩时的⾎浆脂质含量()(A) 6-8⼩时(B) 8-10⼩时(C) 10-12⼩时(D) 12-14 ⼩时(E) 16⼩时以后⼆、填空题1.脂类消化的主要部位是_____________ ,消化后吸收的主要部位是_____________ 。
涵盖甘油三酯和类脂的代谢途径脂类代谢途径概述脂类是包括脂肪和类脂在内的总称。
脂肪,又称为三酰甘油或甘油三酯,主要用于能量储存和氧化供能。
类脂则包括胆固醇及其酯、磷脂、糖脂等,是构成生物膜的重要组成部分。
这些脂类的来源涵盖了机体自身合成和食物摄取。
一、脂类的消化吸收1.1脂肪的消化吸收脂肪动员是将储存在脂肪细胞中的脂肪通过脂肪酶逐步水解为游离脂肪酸和甘油的过程,释放入血以供其他组织氧化利用。
1.2类脂的消化吸收类脂的代表成员之一是胆固醇,而其它类脂如磷脂也通过相应途径进行消化吸收。
二、甘油三酯的代谢2.1脂肪动员脂肪动员是储存在脂肪细胞中的脂肪经过脂肪酶逐步水解为游离脂肪酸和甘油,并释放入血,以供其他组织氧化利用。
2.2甘油三酯的分解代谢2.2.1甘油的代谢甘油在肝、肾、肠等组织中通过甘油激酶的催化途径转变为3-磷酸甘油。
随后,经过脱氢生成磷酸二羟丙酮,可沿着糖酵解途径分解代谢,也可经糖异生作用转变为糖。
2.2.2脂肪酸的氧化脂肪酸的氧化主要通过β氧化途径进行。
2.3酮体乙酰乙酸、B-羟丁酸、丙酮这三者统称为酮体。
它们是脂肪酸在肝内正常中间代谢的产物,是肝输出能源的一种形式。
在糖供应充足时,酮体主要作为脑组织和肌肉的能源。
2.4脂肪酸的合成乙酰CoA在线粒体中通过柠檬酸-丙酮酸循环转运至细胞质中,作为脂肪酸合成的原料。
三、磷脂的代谢3.1磷脂的分类磷脂可分为甘油磷脂和鞘磷脂两大类。
3.2磷脂的合成全身各组织细胞内质网均可利用多种原料,通过不同途径合成甘油磷脂,包括脂肪酸、甘油、磷酸盐、胆碱、丝氨酸、肌醇、ATP、CTP等。
四、胆固醇的代谢4.1胆固醇的来源机体所需的胆固醇主要通过自身合成获取。
4.2胆固醇的转化胆固醇可转化为胆汁酸、类固醇激素以及维生素D等生理活性物质,也可酯化为胆固醇酯储存在胞液中。
五、血浆脂蛋白5.1脂类的运输脂类在血浆中以脂蛋白的形式进行运输。
脂蛋白分为多个类别,包括乳糜微粒、极低密度脂蛋白、低密度脂蛋白和高密度脂蛋白等。
四、问答题:1.简述脂类的消化与吸收。
答:脂类的消化部位主要在小肠,小肠内的胰脂酶、磷脂酶、胆固醇酯酶及辅脂酶等可以催化脂类水解,肠道内PH值有利于这些酶的催化反应,同时有胆汁酸盐的乳化作用,可使大分子化合物乳化成更小的微小的微团,最后将脂类水解后主要经肠粘膜细胞转化成乳糜微粒被吸收2.写出甘油的代谢途径。
答:甘油的代谢途径:首先甘油在肝肾等组织中甘油激酶的催化下使之磷酸化生成3-磷酸甘油,然后主要可以通过两种途径进行代谢:一是通过糖异生途径异生为糖(详见糖异生途径示意图)二是合成脂肪再利用(详见脂肪的合成和利用)3.何谓酮体?酮体是如何生成及氧化利用的?答:乙酰乙酸,β-羟丁酸及丙酮三者合称酮体,是脂酸在肝分解氧化时特有的中间代谢物。
酮体是在肝细胞内由乙酰CoA经HMGCoA转化而来,但肝脏不能利用酮体,在肝外组织酮体经乙酰乙酰硫激酶或琥珀酰CoA转硫酶催化后,转变成乙酰CoA并进入三羧酸循环而被氧化利用。
4. 乙酰CoA可由哪些物质代谢产生?它又有哪些代谢去路?答:乙酰CoA的来源:由糖、脂肪、氨基酸及酮体分解产生。
乙酰CoA的去路:进入三羧酸循环彻底氧化生成CO2和H2O并释放能量,合成脂肪酸、胆固醇及酮体。
5. 葡萄糖能变成脂肪吗?脂肪能变成葡萄糖吗?若能,写出简要反应过程(中文);若不能则需说明理由。
答:葡萄糖(G)能转变成脂肪(TG)G→G6P--→○P二羟丙酮a-磷酸甘油TGG→G6P--→丙酮酸→乙酰CoA→脂酰CoA脂肪中的甘油可异生成糖,,但脂肪酸不能生成糖。
甘油→a-磷酸甘油○P二羟丙酮G因丙酮酸→乙酰CoA这步反应不可逆,故脂肪酸代谢生成的乙酰CoA不能生成糖。
6. 试以脂类代谢及代谢紊乱的理论分析酮症、脂肪肝和动脉粥样硬化的成因。
答:⑴酮症:在糖尿病或糖供给障碍等病理情况下,胰岛素分泌减少(或者作用低下),而胰高血糖素、肾上腺素等分泌增加,脂肪动员加强,脂肪酸在肝内分解增加,酮体生成增加,当超过肝外组织利用限度,血中酮体堆积,其临床表现为酮症。
1. 脂类的消化与吸收:脂类的消化部位主要在小肠,小肠内的胰脂酶、磷脂酶、胆固醇酯酶及辅脂酶等可以催化脂类水解;肠内PH值有利于这些酶的催化反应,又有胆汁酸盐的作用,最后将脂类水解后主要经肠粘膜细胞转化生成乳糜微粒被吸收。
2. 何谓酮体?酮体是如何生成及氧化利用的:酮体包括乙酰乙酸、B -羟丁酸和丙酮。
酮体是在肝细胞内由乙酰CoA经HMG-CoA转化而来,但肝脏不利用酮体。
在肝外组织酮体经乙酰乙酸硫激酶或琥珀酰CoA转硫酶催化后,转变成乙酰 CoA并进入三羧酯循环而被氧化利用。
3. 为什么吃糖多了人体会发胖(写出主要反应过程)?脂肪能转变成葡萄糖吗?为什么?人吃过多的糖造成体内能量物质过剩,进而合成脂肪储存故可以发胖,基本过程如下:葡萄糖—丙酮酸—乙酰CoA 一合成脂肪酸一酯酰CoA葡萄糖—磷酸二羧丙酮—3-磷酸甘油脂酰CoA+3-磷酸甘油—脂肪(储存)脂肪分解产生脂肪酸和甘油,脂肪酸不能转变成葡萄糖,因为脂肪酸氧化产生的乙酰CoA不能逆转为丙酮酸,但脂肪分解产生的甘油可以通过糖异生而生成葡萄糖。
4. 简述脂肪肝的成因。
肝脏是合成脂肪的主要器官,由于磷脂合成的原料不足等原因,造成肝脏脂蛋白合成障碍,使肝内脂肪不能及时转移出肝脏而造成堆积,形成脂肪肝。
5. 写出胆固醇合成的基本原料及关键酶?胆固醇在体内可的转变成哪些物质?胆固醇合成的基本原料是乙酰CoA.NADPH和ATP等,限速酶是HMG-CoA还原酶,胆固醇在体内可以转变为胆计酸、类固醇激素和维生素D3。
7. 写出甘油的代谢途径?甘油—3-磷酸甘油—(氧化供能,异生为糖,合成脂肪再利用)8. 简述饥饿或糖尿病患者,出现酮症的原因?在正常生理条件下,肝外组织氧化利用酮体的能力大大超过肝内生成酮体的能力,血中仅含少量的酮体,在饥饿、糖尿病等糖代谢障碍时,脂肪动员加强,脂肪酸的氧化也加强,肝脏生成酮体大大增加,当酮体的生成超过肝外组织的氧化利用能力时,血酮体升高,可导致酮血症、酮尿症及酮症酸中毒9 .试比较生物氧化与体外物质氧化的异同。
脂类的消化、吸收和代谢脂类由于是非极性的,必须先使其形成一种能溶于水的乳糜微粒,才能通过小肠微绒毛将其吸收。
上述过程可概括为:脂类水解;水解产物形成可溶的微粒;小肠粘膜摄取这些微粒;在小肠粘膜细胞中重新合成甘油三酯;甘油三酯进入血液循环。
非反刍动物和反刍动物都有上述过程,但具体的机制却存在差异。
非反刍动物:脂类进入十二指肠后,经胆汁乳化后,被胰脂酶水解为甘油一酯和游离脂肪酸。
甘油一酯、脂肪酸和胆酸聚合形成水溶性的适于吸收的乳糜微粒,该物质与肠绒毛接触时即破裂,所释放出的脂类水解产物主要在十二指肠和空肠吸收。
在肠粘膜细胞中,吸收的长链脂肪酸与甘油一酯重新合成甘油三酯,进一步形成乳糜微粒,通过乳糜管与淋巴系统相通,最后经胸导管输送入血。
中、短链脂肪酸可直接进入门脉血液。
脂类在消化道后段的消化与瘤胃类似。
反刍动物:瘤胃脂类的消化,实质上是微生物的消化,其结果是脂类的质和量发生明显变化。
1大部分不饱和脂肪酸经微生物作用变成饱和脂肪酸。
2部分氢化的不饱和脂肪酸发生异构。
3甘油被大量转化为挥发性脂肪酸。
4支链脂肪酸和奇数碳原子脂肪酸增加。
瘤胃中产生的短链脂肪酸主要通过瘤胃壁吸收,其余脂类消化产物进入回肠后都能被吸收。
进入十二指肠的脂类由微生物脂类和未消化饲料脂类组成。
由于脂类中的甘油在瘤胃中被转化为挥发性脂肪酸,所以十二指肠中缺乏甘油一酯,消化过程中形成的混合微粒由溶血性卵磷脂、脂肪酸和胆酸构成。
其中链长小于或等于14个碳原子的脂肪酸可不形成混合乳糜微粒而直接吸收。
空肠前段主要吸收混合微粒中的长链脂肪酸,中、后段空肠主要吸收混合微粒中的其他脂肪酸和溶血磷脂酰胆碱。
此外由于反刍动物小肠中不吸收甘油一酯,其粘膜细胞中甘油三酯通过磷酸甘油途径重新合成。
血中脂类主要以脂蛋白的形式转运。
碳水化合物的消化吸收非反刍动物:营养性碳水化合物主要在消化道前段消化、吸收,而结构性碳水化合物主要在消化道后段消化、吸收。
总的来讲,猪禽对碳水化合物的消化和吸收特点,是以淀粉形成葡萄糖为主,以粗纤维形成挥发性脂肪酸为辅,主要部位在小肠。
脂类代谢的知识点总结脂类代谢是人体在摄取、消耗和储存脂类物质的过程,涉及到很多重要的知识点。
以下是脂类代谢的主要知识点总结:1. 脂类的分类:脂类是一类化学物质,主要包括甘油三酯、磷脂和固醇。
甘油三酯是最常见的脂类,其由甘油和三个脂肪酸酯化而成。
磷脂是甘油三酯的变种,含有一个或多个磷酸酯基团,常见的磷脂有磷脂酰胆碱和磷酸二酰甘油。
固醇是另一类重要的脂类,以胆固醇最为常见。
2. 脂类的摄取:脂类主要通过饮食摄取入体。
脂类主要存在于动物性食物中,如肉类、鱼类和乳制品。
油脂、坚果和种子等植物性食物也富含脂类。
人体需要适量的脂类来提供能量,促进细胞生长和维护正常生理功能。
3. 脂类的消化:脂类在胃和小肠中被消化。
在胃中,酸性环境和胃酶开始分解食物中的脂类。
然后,食物通过幽门进入小肠,在此过程中,胰脂酶和胆盐从胰腺和胆囊中分泌出来,继续分解并乳化脂类,使其变得更易于吸收。
乳化后的脂类与肠壁上的绒毛相接触,通过被吸收到细胞中。
4. 脂类的吸收和运输:乳化的脂类在小肠上皮细胞中被吸收,变为甘油、脂肪酸和胆固醇。
这些被吸收的脂类聚集成胆酸胆固醇混合物,与蛋白质结合形成胆固醇酯。
这些胆固醇酯和其他脂类一起被封装成胆固醇脂质球,形成胆固醇脂蛋白。
胆固醇脂蛋白通过淋巴系统进入血液循环。
5. 脂类的代谢:在细胞内,脂类可以被氧化产生能量,也可以合成为体内所需的物质。
脂类代谢主要发生在肝脏和脂肪组织中。
在肝脏中,摄入的脂类在胆固醇合成途径中被处理,一部分用于合成齐墩果酸,一部分用于合成胆汁酸,还有一部分用于合成性激素。
同时,肝脏还将某些脂类转化为脂蛋白,以便运输到其他组织。
脂肪组织主要负责储存多余的脂类,形成脂肪细胞,并逐渐释放脂类以供能源使用。
6. 脂类的代谢异常:脂类代谢异常主要表现为高血脂症。
高血脂症是指血液中脂类含量过高,特别是胆固醇和甘油三酯。
高胆固醇血症可能导致动脉粥样硬化,而高甘油三酯血症可能增加心血管疾病的风险。
第九单元脂类代谢一、脂类的消化、吸收和转运(一)脂类的消化(主要在十二指肠中)胃的食物糜(酸性)进入十二指肠,刺激肠促胰液肽的分泌,引起胰脏分泌HCO-3 至小肠(碱性)。
脂肪间接刺激胆汁及胰液的分泌。
胆汁酸盐使脂类乳化,分散成小微团,在胰腺分泌的脂类水解酶作用下水解。
(二)脂类的吸收脂类的消化产物,甘油单脂、脂肪酸、胆固醇、溶血磷脂可与胆汁酸乳化成更小的混合微团(20nm),这种微团极性增大,易于穿过肠粘膜细胞表面的水屏障,被肠粘膜的拄状表面细胞吸收。
被吸收的脂类,在柱状细胞中重新合成甘油三酯,结合上蛋白质、磷酯、胆固醇,形成乳糜微粒(CM),经胞吐排至细胞外,再经淋巴系统进入血液。
小分子脂肪酸水溶性较高,可不经过淋巴系统,直接进入门静脉血液中。
(三)脂类转运和脂蛋白的作用甘油三脂和胆固醇脂在体内由脂蛋白转运。
脂蛋白是由疏水脂类为核心、围绕着极性脂类及载脂蛋白组成的复合体,是脂类物质的转运形式。
载脂蛋白(已发现18种,主要的有7种):在肝脏及小肠中合成分泌至胞外,可使疏水脂类增溶,并且具有信号识别、调控及转移功能,能将脂类运至特定的靶细胞中。
(四)贮脂的动用皮下脂肪在脂肪酶作用下分解,产生脂肪酸,经血浆白蛋白运输至各组织细胞中。
血浆白蛋白占血浆蛋白总量的50%,是脂肪酸运输蛋白,血浆白蛋白既可运输脂肪酸,又可解除脂肪酸对红细胞膜的破坏。
贮脂的降解受激素调节。
促进:肾上腺素、胰高血糖素、肾上腺皮质激素;抑制:胰岛素;植物种子发芽时,脂肪酶活性升高,能利用脂肪的微生物也能产生脂肪酶。
二、甘油三酯的分解代谢(一)甘油三酯的水解甘油三酯的水解由脂肪酶催化。
组织中有三种脂肪酶,逐步将甘油三酯水解成甘油二酯、甘油单酯、甘油和脂肪酸。
这三种酶是:脂肪酶(激素敏感性甘油三酯脂肪酶,是限速酶);甘油二酯脂肪酶;甘油单酯脂肪酶。
肾上腺素、胰高血糖素、肾上腺皮质激素都可以激活腺苷酸环化酶,使cAMP浓度升高,促使依赖cAMP的蛋白激酶活化,后者使无活性的脂肪酶磷酸化,转变成有活性的脂肪酶,加速脂解作用。
胰岛素、前列腺素E1作用相反,可抗脂解。
油料种子萌发早期,脂肪酶活性急剧增高,脂肪迅速水解。
(二)甘油代谢在脂肪细胞中,没有甘油激酶,无法利用脂解产生的甘油。
甘油进入血液,转运至肝脏后才能被甘油激酶磷酸化为3-磷酸甘油,再经磷酸甘油脱氢酶氧化成磷酸二羟丙酮,进入糖酵解途径或糖异生途径。
脂肪酸的氧化三、脂肪酸的β氧化(一)β氧化学说早在1904年,Franz 和Knoop就提出了脂肪酸β氧化学说。
用苯基标记含奇数碳原子的脂肪酸,饲喂动物,尿中是苯甲酸衍生物马尿酸。
用苯基标记含隅数碳原子的脂肪酸,饲喂动物,尿中是苯乙酸衍生物苯乙尿酸。
结论:脂肪酸的氧化是从羧基端β-碳原子开始,每次分解出一个二碳片断。
产生的终产物苯甲酸、苯乙酸对动物有毒害,在肝脏中分别与Gly反应,生成马尿酸和苯乙尿酸,排出体外。
β-氧化发生在肝及其它细胞的线粒体内。
(二)脂肪酸的β氧化过程1.脂肪酸的活化(细胞质)RCOO- + ATP + CoA-SH → RCO-S-CoA + AMP + Ppi生成一个高能硫脂键,需消耗两个高能磷酸键,反应平衡常数为1,由于PPi水解,反应不可逆。
细胞中有两种活化脂肪酸的酶,内质网脂酰CoA合成酶活化12C以上的长链脂肪酸,线粒体脂酰CoA合成酶,活化4~10C的中、短链脂肪酸。
2.脂肪酸向线粒体的转运中、短链脂肪酸(4-10C)可直接进入线粒体,并在线粒体内活化生成脂酰CoA。
长链脂肪酸先在胞质中生成脂酰CoA,经肉碱转运至线粒体内。
3.β氧化作用首先,脂酰CoA脱氢生成β-反式烯脂酰CoA,线粒体基质中,已发现三种脂酰CoA 脱氢酶,均以FAD为辅基,分别催化链长为C4~C6,C6~C14,C6~C18的脂酰CoA脱氢。
随后,△2反式烯脂酰CoA水化生成L-β-羟脂酰CoA,L-β-羟脂酰CoA脱氢生成β-酮脂酰CoA,β-酮脂酰CoA硫解生成乙酰CoA和(n-2)脂酰CoA。
脂肪酸β-氧化时仅需活化一次,其代价是消耗1个ATP的两个高能键。
β-氧化包括脱氢、水化、脱氢、硫解4个重复步骤。
β-氧化的产物是乙酰CoA,可以进入TCA。
4.脂肪酸β-氧化产生的能量以硬脂酸为例,18碳饱和脂肪酸,胞质中活化消耗2ATP,生成硬脂酰CoA,线粒体内脂酰CoA脱氢生成FADH2,β-羟脂酰CoA脱氢生成NADH,β-酮脂酰CoA硫解生成乙酰CoA → TCA。
活化消耗: -2ATP,β氧化产生:8×(1.5+2.5)ATP = 329个乙酰CoA:9×10 = 90 ATP净生成:120个ATP。
5.β-氧化的调节脂酰基进入线粒体的速度是限速步骤,长链脂酸生物合成的第一个前体丙二酸单酰CoA的浓度增加,可抑制肉碱脂酰转移酶Ⅰ,限制脂肪氧化;[NADH]/[NAD+]比率高时,β-羟脂酰CoA脱氢酶便受抑制;乙酰CoA浓度高时,可抑制硫解酶,抑制氧化(脂酰CoA 有两条去路:①氧化。
②合成甘油三酯)。
6.不饱和脂酸的β氧化(1)单不饱和脂肪酸的氧化△3顺-△2反烯脂酰CoA异构酶改变双键位置和顺反构型。
(2)多不饱和脂酸的氧化△3顺-△2反烯脂酰CoA异构酶改变双键位置和顺反构型,β-羟脂酰CoA差向酶改变β-羟基构型:D→L型。
7.奇数碳脂肪酸的β氧化奇数碳脂肪酸经反复的β氧化,最后可得到丙酰CoA,丙酰CoA有两条代谢途径:丙酰CoA转化成琥珀酰CoA,进入TCA。
动物体内存在这条途径,因此,在动物肝脏中奇数碳脂肪酸最终能够异生为糖。
反刍动物瘤胃中,糖异生作用十分旺盛,碳水化合物经细菌发酵可产生大量丙酸,进入宿主细胞,在硫激酶作用下产丙酰CoA,转化成琥珀酰CoA,参加糖异生作用。
丙酰CoA转化成乙酰CoA,进入TCA,这条途径在植物、微生物中较普遍。
有些植物、酵母和海洋生物,体内含有奇数碳脂肪酸,经β氧化后,最后产生丙酰CoA。
四、脂酸的其它氧化途径1.α-氧化(不需活化,直接氧化游离脂酸)植物种子、叶子、动物的脑、肝细胞,每次氧化从脂酸羧基端失去一个C原子。
α氧化对于降解支链脂肪酸、奇数碳脂肪酸、过分长链脂肪酸(如脑中C22、C24)有重要作用。
2.ω-氧化(ω端的甲基羟基化,氧化成醛,再氧化成酸)动物体内多数是12C以上的羧酸,它们进行β氧化,但少数的12C以下的脂酸可通过ω-氧化途径,产生二羧酸,如11C脂酸可产生11C、9C、和7C的二羧酸(在生物体内并不重要)。
ω-氧化涉及末端甲基的羟基化,生成一级醇,并继而氧化成醛,再转化成羧酸。
ω-氧化在脂肪烃的生物降解中有重要作用。
泄漏的石油,可被细菌ω氧化,把烃转变成脂肪酸,然后经β氧化降解。
五、酮体的代谢脂肪酸β-氧化产生的乙酰CoA,在肌肉和肝外组织中直接进入TCA,然而在肝、肾脏细胞中还有另外一条去路:生成乙酰乙酸、D-β-羟丁酸、丙酮,这三种物质统称酮体。
酮体在肝中生成后,再运到肝外组织中利用。
1.酮体的生成酮体的合成发生在肝、肾细胞的线粒体内。
形成酮体的目的是将肝中大量的乙酰CoA转移出去,乙酰乙酸占30%,β-羟丁酸70%,少量丙酮(丙酮主要由肺呼出体外)。
肝脏线粒体中的乙酰CoA走哪一条途径,主要取决于草酰乙酸的可利用性。
饥饿状态下,草酰乙酸离开TCA,用于异生合成Glc。
当草酰乙酸浓度很低时,只有少量乙酰CoA进入TCA,大多数乙酰CoA用于合成酮体。
当乙酰CoA不能再进入TCA时,肝脏合成酮体送至肝外组织利用,肝脏仍可继续氧化脂肪酸。
肝中酮体生成的酶类很活泼,但没有能利用酮体的酶类。
因此,肝脏线粒体合成的酮体,迅速透过线粒体并进入血液循环,送至全身。
2.酮体的利用肝外许多组织具有活性很强的利用酮体的酶。
乙酰乙酸被琥珀酰CoA转硫酶(β-酮脂酰CoA转移酶)活化成乙酰乙酰CoA,心、肾、脑、骨骼肌等的线粒体中有较高的酶活性,可活化乙酰乙酸:乙酰乙酸+琥珀酰CoA→乙酰乙酰CoA+琥珀酸,然后,乙酰乙酰CoA被β氧化酶系中的硫解酶硫解,生成2分子乙酰CoA进入TCA。
β-羟基丁酸由β-羟基丁酸脱氢酶催化,生成乙酰乙酸,然后进入上述途径。
丙酮可在一系列酶作用下转变成丙酮酸或乳酸,进入TCA或异生成糖。
肝脏氧化脂肪时可产生酮体,但不能利用它(缺少β-酮脂酰CoA转移酶),而肝外组织在脂肪氧化时不产生酮体,但能利用肝中输出的酮体。
在正常情况下,脑组织基本上利用Glc供能,而在严重饥饿状态,75%的能量由血中酮体供应。
3.酮体生成的生理意义酮体是肝内正常的中间代谢产物,是肝输出能量的一种形式。
酮体溶于水,分子小,能通过血脑屏障及肌肉毛细管壁,是心、脑组织的重要能源。
脑组织不能氧化脂酸,却能利用酮体。
长期饥饿,糖供应不足时,酮体可以代替Glc,成为脑组织及肌肉的主要能源。
正常情况下,血中酮体0.03~0.5 mmal/2。
在饥饿、高脂低糖膳食时,酮体的生成增加,当酮体生成超过肝外组织的利用能力时,引起血中酮体升高,导致酮症酸(乙酰乙酸、β—羟丁酸)中毒,引起酮尿。
4.酮体生成的调节。
(1)膳食状况饱食:胰岛素增加,脂解作用抑制,脂肪动员减少,进入肝中脂酸减少,酮体生成减少。
饥饿:胰高血糖素增加,脂肪动员量加强,血中游离脂酸浓度升高,利于β氧化及酮体的生成。
(2)肝细胞糖原含量及代谢的影响进入肝细胞的游离脂酸,有两条去路:一条是在胞液中酯化,合成甘油三酯及磷脂;一是条进入线粒体进行β氧化,生成乙酰CoA及酮体。
肝细胞糖原含量丰富时,脂酸合成甘油三酯及磷脂。
肝细胞糖供给不足时,脂酸主要进入线粒体,进入β-氧化,酮体生成增多。
(3)丙二酸单酰CoA抑制脂酰CoA进入线粒体乙酰CoA及柠檬酸能激活乙酰CoA羧化酶,促进丙二酰CoA的合成,后者能竞争性抑制肉碱脂酰转移酶Ⅰ,从而阻止脂酰CoA进入线粒体内进行β氧化。
五、脂肪酸的合成代谢(一)饱和脂肪酸的从头合成1.乙酰CoA 的转运细胞内的乙酰CoA 几乎全部在线粒体中产生,而合成脂肪酸的酶系在胞质中,乙酰CoA 必须经柠檬酸-丙酮酸循环转运出来。
2.丙二酸单酰CoA 的生成(限速步骤)脂肪合成时,乙酰CoA 是脂肪酸的起始物质(引物),其余链的延长都以丙二酸单酰CoA 的形式参与合成。
所用的碳来自HCO 3—(比CO 2活泼),形成的羧基是丙二酸单酰CoA 的远端羧基。
乙酰CoA 羧化酶:(辅酶是生物素)为别构酶,是脂肪酸合成的限速酶,柠檬酸可激活此酶,脂肪酸可抑制此酶。
3.脂酰基载体蛋白(ACP )脂肪酸合成酶系有7种蛋白质,其中6种是酶,1种是脂酰基载体蛋白(ACP ),它们组成了脂肪酸合成酶复合体。
ACP 上的Ser 羟基与4-磷酸泛酰巯基乙胺上的磷酸基团相连,4-磷酸泛酰巯基乙胺是ACP 和CoA 的共同活性基团。