信息论基础知识树
- 格式:pdf
- 大小:199.98 KB
- 文档页数:3
Chp02知识点: 自信息量:1))(log )(i i x p x I -=2)对数采用的底不同,自信息量的单位不同。
2----比特(bit )、e----奈特(nat )、10----哈特(Hart ) 3)物理意义:事件i x 发生以前,表示事件i x 发生的不确定性的大小;事件i x 发生以后,表示事件i x 所含有或所能提供的信息量。
平均自信息量(信息熵):1))(log )()]([)(1i qi i i x p x p x I E x H ∑=-==2)对数采用的底不同,平均自信息量的单位不同。
2----比特/符号、e----奈特/符号、10----哈特/符号。
3)物理意义:对信源的整体的不确定性的统计描述。
表示信源输出前,信源的平均不确定性;信源输出后每个消息或符号所提供的平均信息量。
4)信息熵的基本性质:对称性、确定性、非负性、扩展性、连续性、递推性、极值性、上凸性。
互信息:1))()|(log)|()();(i j i j i i j i x p y x p y x I x I y x I =-=2)含义:已知事件j y 后所消除的关于事件i x 的不确定性,对信息的传递起到了定量表示。
平均互信息:1)定义:2)性质:联合熵和条件熵:各类熵之间的关系:数据处理定理:Chp03知识点:依据不同标准信源的分类: 离散单符号信源:1)概率空间表示:2)信息熵:)(log )()]([)(1i qi i i x p x p x I E x H ∑=-==,表示离散单符号信源的平均不确定性。
离散多符号信源:用平均符号熵和极限熵来描述离散多符号信源的平均不确定性。
平均符号熵:)...(1)(21N N X X X H NX H =极限熵(熵率):)(lim )(X H X H N N ∞>-∞= (1)离散平稳信源(各维联合概率分布均与时间起点无关的信源。
)(2)离散无记忆信源:信源各消息符号彼此互不相关。
信息论基础1~81 绪论与概览2 熵相对熵与互信息2.1 熵H(X)=−∑x∈X p(x)logp(x)H(X)=−∑x∈Xp(x)logp(x)2.2 联合熵H(X,Y)=−∑x∈X∑y∈Y p(x,y)logp(x,y)H(X,Y)=−∑x∈X∑y∈Yp(x,y)logp(x,y)H(Y|X)=∑x∈X p(x)H(Y|X=x)H(Y|X)=∑x∈Xp(x)H(Y|X=x)定理2.2.1(链式法则): H(X,Y)=H(X)+H(Y|X)H(X,Y)=H(X)+H(Y|X) 2.3 相对熵与互信息相对熵(relative entropy): D(p||q)=∑x∈X p(x)logp(x)q(x)=Eplogp(x)q(x)D(p||q)=∑x∈Xp(x)lo gp(x)q(x)=Eplogp(x)q(x)互信息(mutual information): I(X;Y)=∑x∈X∑y∈Y p(x,y)logp(x,y)p(x)p(y)=D(p(x,y)||p(x)p(y))I(X;Y) =∑x∈X∑y∈Yp(x,y)logp(x,y)p(x)p(y)=D(p(x,y)||p(x)p(y))2.4 熵与互信息的关系I(X;Y)=H(X)−H(X|Y)=H(Y)−H(Y|X)I(X;Y)=H(X)−H(X|Y)=H(Y)−H(Y|X)互信息I(X;Y)是在给定Y知识的条件下X的不确定度的缩减量I(X;Y)=H(X)+H(Y)−H(X,Y)I(X;Y)=H(X)+H(Y)−H(X,Y)2.5 熵,相对熵与互信息的链式法则定理 2.5.1(熵的链式法则): H(X1,X2,...,X n)=∑ni=1H(Xi|X i−1,...,X1)H(X1,X2,...,Xn)=∑i=1nH(Xi| Xi−1, (X1)定理 2.5.2(互信息的链式法则): I(X1,X2,...,X n;Y)=∑ni=1I(Xi;Y|X i−1,...,X1)I(X1,X2,...,Xn;Y)=∑i=1nI(Xi ;Y|Xi−1, (X1)条件相对熵: D(p(y|x)||q(y|x))=∑x p(x)∑yp(y|x)logp(y|x)q(y|x)=Ep(x,y)logp(Y|X)q( Y|X)D(p(y|x)||q(y|x))=∑xp(x)∑yp(y|x)logp(y|x)q(y|x)=Ep(x,y)logp (Y|X)q(Y|X)定理 2.5.3(相对熵的链式法则): D(p(x,y)||q(x,y))=D(p(x)||q(x))+D(p(y|x)||q(y|x))D(p(x,y)||q(x,y))=D( p(x)||q(x))+D(p(y|x)||q(y|x))2.6 Jensen不等式及其结果定理2.6.2(Jensen不等式): 若给定凸函数f和一个随机变量X,则Ef(X)≥f(EX)Ef(X)≥f(EX)定理2.6.3(信息不等式): D(p||q)≥0D(p||q)≥0推论(互信息的非负性): I(X;Y)≥0I(X;Y)≥0定理2.6.4: H(X)≤log|X|H(X)≤log|X|定理2.6.5(条件作用使熵减小): H(X|Y)≤H(X)H(X|Y)≤H(X)从直观上讲,此定理说明知道另一随机变量Y的信息只会降低X的不确定度. 注意这仅对平均意义成立. 具体来说, H(X|Y=y)H(X|Y=y) 可能比H(X)H(X)大或者小,或者两者相等.定理 2.6.6(熵的独立界): H(X1,X2,…,X n)≤∑ni=1H(Xi)H(X1,X2,…,Xn)≤∑i=1nH(Xi)2.7 对数和不等式及其应用定理 2.7.1(对数和不等式): ∑ni=1ailogaibi≥(∑ni=1ai)log∑ni=1ai∑ni=1bi∑i=1nailogaibi≥(∑i =1nai)log∑i=1nai∑i=1nbi定理2.7.2(相对熵的凸性): D(p||q)D(p||q) 关于对(p,q)是凸的定理2.7.3(熵的凹性): H(p)是关于p的凹函数2.8 数据处理不等式2.9 充分统计量这节很有意思,利用统计量代替原有抽样,并且不损失信息.2.10 费诺不等式定理2.10.1(费诺不等式): 对任何满足X→Y→X^,X→Y→X^, 设Pe=Pr{X≠X^},Pe=Pr{X≠X^}, 有H(Pe)+Pe log|X|≥H(X|X^)≥H(X|Y)H(Pe)+Pelog|X|≥H(X|X^)≥H(X|Y)上述不等式可以减弱为1+Pe log|X|≥H(X|Y)1+Pelog|X|≥H(X|Y)或Pe≥H(X|Y)−1log|X|Pe≥H(X|Y)−1log|X|引理 2.10.1: 如果X和X’独立同分布,具有熵H(X),则Pr(X=X′)≥2−H(X)Pr(X=X′)≥2−H(X)3 渐进均分性4 随机过程的熵率4.1 马尔科夫链4.2 熵率4.3 例子:加权图上随机游动的熵率4.4 热力学第二定律4.5 马尔科夫链的函数H(Yn|Y n−1,…,Y1,X1)≤H(Y)≤H(Y n|Y n−1,…,Y1)H(Yn|Yn−1,…,Y1,X1)≤H(Y)≤H(Yn|Yn−1,…,Y1)5 数据压缩5.1 有关编码的几个例子5.2 Kraft不等式定理5.2.1(Kraft不等式): 对于D元字母表上的即时码,码字长度l1,l2,…,l m l1,l2,…,lm必定满足不等式∑iD−li≤1∑iD−li≤15.3 最优码l∗i=−log Dpili∗=−logDpi5.4 最优码长的界5.5 唯一可译码的Kraft不等式5.6 赫夫曼码5.7 有关赫夫曼码的评论5.8 赫夫曼码的最优性5.9 Shannon-Fano-Elias编码5.10 香农码的竞争最优性5.11由均匀硬币投掷生成离散分布6 博弈与数据压缩6.1 赛马6.2 博弈与边信息6.3 相依的赛马及其熵率6.4 英文的熵6.5 数据压缩与博弈6.6 英语的熵的博弈估计7 信道容量离散信道: C=maxp(x)I(X;Y)C=maxp(x)I(X;Y)7.1 信道容量的几个例子7.2 对称信道如果信道转移矩阵p(y|x)p(y|x) 的任何两行相互置换,任何两列也相互置换,那么称该信道是对称的.7.3 信道容量的性质7.4 信道编码定理预览7.5 定义7.6 联合典型序列7.7 信道编码定理7.8 零误差码7.9 费诺不等式与编码定理的逆定理7.10 信道编码定理的逆定理中的等式7.11 汉明码7.12 反馈容量7.13 信源信道分离定理8 微分熵8.1 定义h(X)=−∫Sf(x)logf(x)dxh(X)=−∫Sf(x)logf(x)dx均匀分布 h(X)=logah(X)=loga正态分布h(X)=1/2log2πeδ2h(X)=1/2log2πeδ2 8.2 连续随机变量的AEP8.3 微分熵与离散熵的关系8.4 联合微分熵与条件微分熵8.5 相对熵与互信息8.6 微分熵, 相对熵以及互信息的性质。
信息论基础知识主要内容:信源的数学模型 信源编码定理 信源编码算法 信道容量 通信的容限第 1 页 2011-2-21引言一、信息论的研究范畴 信息论是研究信息的基本性质及度量方法,研究信息的获取、传输、存储和处理的一般规律的科学。
狭义信息论:通信的数学理论,主要研究信息的度量方 法,各种信源、信道的描述和信源、信道的编码定理。
实用信息论:信息传输和处理问题,也就是狭义信息 论方法在调制解调、编码译码以及检测理论等领域的应用。
广义信息论,包括信息论在自然和社会中的新的应用, 如模式识别、机器翻译、自学习自组织系统、心理学、生物 学、经济学、社会学等一切与信息问题有关的领域。
第 2 页 2011-2-21二、信息论回答的问题通信信道中,信息能够可靠传 输的最高速率是多少?噪声信道编码定理 噪声信道编码定理信息进行压缩后,依然可以从已压 缩信息中以无差错或低差错恢复的 最低速率是多少?香农信源编码理论 香农信源编码理论最佳系统的复杂度是多少?第 3 页2011-2-21三、香农的贡献香农(Claude Elwood Shannon,1916~2001年), 美国数学家,信息论的创始人。
创造性的采用概率论的方法来研究通信中的问题,并且对 信息给予了科学的定量描述,第一次提出了信息熵的概念。
1948年,《通信的数学理论》(A mathematical theory of communication ) 以及1949年,《噪声下的通信》标志了信息论的创立。
1949年,《保密通信的信息理论》,用信息论的观点对信息保密问题做了 全面的论述,奠定了密码学的基础。
1959年,《保真度准则下的离散信源编码定理》,它是数据压缩的数学基 础,为信源编码的研究奠定了基础。
1961年发表“双路通信信道”,开拓了多用户信息理论(网络信息论)的研 究;第 4 页 2011-2-21四、信息论发展历史1924年 奈奎斯特(Nyquist,H.)总结了信号带宽和信息速率之 间的关系。
信息论基础教程信息论基础教程1. 什么是信息论•信息论是一门研究信息传输与处理的数学理论。
•信息论的概念由克劳德·香农于1948年提出。
2. 信息的定义与表示•信息是用来消除不确定性的东西。
•信息可以用概率来表示。
信息的定义•定义:信息是用来消除不确定性的核心内容。
•信息量的多少与不确定性的减少程度成正比。
信息的表示•使用比特(bit)作为计量单位。
•一个比特可以表示一个二进制信息(0或1)。
•信息量的大小与比特数目成正比。
•信息熵是衡量信息量的概念。
•能量守恒定律:信息熵不会减少,只会增加。
信息熵的计算公式•信息熵的计算公式为:H(X) = -Σp(x)log2p(x),其中p(x)为事件x发生的概率。
信息熵的含义•信息熵越大,信息量越多,不确定性越高。
•信息熵越小,信息量越少,不确定性越低。
4. 信道容量•信道容量是信息传输的极限。
•信道容量的计算需要考虑信道的带宽和信噪比。
信道容量的计算公式•信道容量的计算公式为:C = Blog2(1 + SNR),其中B为信道带宽,SNR为信噪比。
信道容量的含义•信道容量表示一个信道能够传输的最大信息量。
•信噪比越高,信道容量越大。
•香农定理是信息论的核心定理。
•香农定理给出了可靠传输信息的极限。
香农定理的表达式•香农定理的表达式为:C = Blog2(1 + SNR)。
香农定理的应用•香农定理可以用来优化通信系统的设计。
•香农定理可以用来判断信息传输的可靠性。
以上为信息论基础教程的概要,希望对你的学习有所帮助。
信息论复习知识点本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March1、平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量。
平均互信息表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量。
2、最大离散熵定理为:离散无记忆信源,等概率分布时熵最大。
3、最大熵值为。
4、通信系统模型如下:5、香农公式为为保证足够大的信道容量,可采用(1)用频带换信噪比;(2)用信噪比换频带。
6、只要,当N足够长时,一定存在一种无失真编码。
7、当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小。
8、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。
9、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
按照信息的性质,可以把信息分成语法信息、语义信息和语用信息。
按照信息的地位,可以把信息分成客观信息和主观信息。
人们研究信息论的目的是为了高效、可靠、安全地交换和利用各种各样的信息。
信息的可度量性是建立信息论的基础。
统计度量是信息度量最常用的方法。
熵是香农信息论最基本最重要的概念。
事物的不确定度是用时间统计发生概率的对数来描述的。
10、单符号离散信源一般用随机变量描述,而多符号离散信源一般用随机矢量描述。
11、一个随机事件发生某一结果后所带来的信息量称为自信息量,定义为其发生概率对数的负值。
12、自信息量的单位一般有 比特、奈特和哈特 。
13、必然事件的自信息是 0 。
14、不可能事件的自信息量是 ∞ 。
15、两个相互独立的随机变量的联合自信息量等于 两个自信息量之和 。
16、数据处理定理:当消息经过多级处理后,随着处理器数目的增多,输入消息与输出消息之间的平均互信息量 趋于变小 。
信息理论基础知识点总结1.信息量信息量是表示信息的多少的一个概念。
在信息理论中,通常使用二进制对数函数来表示信息的量,这个函数被称为信息自由度函数。
它的表达式是I(x)=-log2P(x),其中x是一种情况,P(x)是x发生的概率。
信息量的单位是比特(bit),它表示传递或存储信息的最小单位。
当一种情况的概率越大,它所携带的信息量就越小;反之,概率越小的情况所携带的信息量就越大。
信息量的概念在通信、数据压缩和密码学等领域有着广泛的应用。
2.信息熵信息熵是表示信息不确定度的一个概念。
在信息理论中,熵被用来度量信息源的不确定性,它的值越大,信息源的不确定性就越大。
信息熵的表达式是H(X)=-∑p(x)log2p(x),其中X 是一个随机变量,p(x)是X的取值x的概率。
信息熵的单位也是比特(bit)。
当信息源的分布是均匀的时候,信息熵达到最大值;当某种情况的概率接近于0或1时,信息熵达到最小值。
信息熵的概念在数据压缩、信道编码和密码学等领域有着重要的作用。
3.信道信道是信息传递的媒介,它可以是有线的、无线的或者光纤的。
在信息理论中,通常使用信道容量来度量信道的传输能力,它的单位是比特每秒(bps)。
信道容量取决于信噪比和带宽,信噪比越大、带宽越宽,信道容量就越大。
在通信系统中,通过对信道进行编码和调制可以提高信道的传输能力,从而提高通信的可靠性和效率。
信息理论还研究了最大化信道容量的编码方法和调制方法,以及如何在有损信道中进行纠错和恢复等问题。
4.编码编码是将信息转换成特定形式的过程,它可以是数字编码、字符编码或者图像编码等形式。
在信息理论中,编码的目的是为了提高信息的传输效率和可靠性。
信息理论研究了各种类型的编码方法,包括线性编码、循环编码、卷积编码和码分多址等方法。
在通信系统中,通过使用合适的编码方法,可以提高信道的传输效率和抗干扰能力,从而提高通信的质量和可靠性。
综上所述,信息量、信息熵、信道和编码是信息理论的基础知识点。