信息论与编码基础知识点下
- 格式:doc
- 大小:15.50 KB
- 文档页数:2
第一章1.通信系统的基本模型:2.信息论研究内容:信源熵,信道容量,信息率失真函数,信源编码,信道编码,密码体制的安全性测度等等第二章1.自信息量:一个随机事件发生某一结果所带的信息量。
2.平均互信息量:两个离散随机事件集合X 和Y ,若其任意两件的互信息量为 I (Xi;Yj ),则其联合概率加权的统计平均值,称为两集合的平均互信息量,用I (X;Y )表示3.熵功率:与一个连续信源具有相同熵的高斯信源的平均功率定义为熵功率。
如果熵功率等于信源平均功率,表示信源没有剩余;熵功率和信源的平均功率相差越大,说明信源的剩余越大。
所以信源平均功率和熵功率之差称为连续信源的剩余度。
信源熵的相对率(信源效率):实际熵与最大熵的比值信源冗余度:0H H ∞=ηηζ-=1意义:针对最大熵而言,无用信息在其中所占的比例。
3.极限熵:平均符号熵的N 取极限值,即原始信源不断发符号,符号间的统计关系延伸到无穷。
4.5.离散信源和连续信源的最大熵定理。
离散无记忆信源,等概率分布时熵最大。
连续信源,峰值功率受限时,均匀分布的熵最大。
平均功率受限时,高斯分布的熵最大。
均值受限时,指数分布的熵最大6.限平均功率的连续信源的最大熵功率:称为平均符号熵。
定义:即无记忆有记忆N X H H X H N X H X NH X H X H X H N N N N N N )()()()()()()(=≤∴≤≤若一个连续信源输出信号的平均功率被限定为p ,则其输出信号幅度的概率密度分布是高斯分布时,信源有最大的熵,其值为1log 22ep π.对于N 维连续平稳信源来说,若其输出的N 维随机序列的协方差矩阵C 被限定,则N 维随机矢量为正态分布时信源的熵最大,也就是N 维高斯信源的熵最大,其值为1log ||log 222N C e π+ 7.离散信源的无失真定长编码定理:离散信源无失真编码的基本原理原理图说明: (1) 信源发出的消息:是多符号离散信源消息,长度为L,可以用L 次扩展信源表示为: X L =(X 1X 2……X L )其中,每一位X i 都取自同一个原始信源符号集合(n 种符号): X={x 1,x 2,…x n } 则最多可以对应n L 条消息。
信息论与编码基础知识点
1.当代文明的三大科学支柱
2.信息论发展的过程
3.研究信息论的目的
4.信息理论中度量信息的基本观点
5.衡量通信系统的性能指标,对应编码是哪些?
6.信源符号自信息量的含义与计算
7.信源符号间互信息量与平均互信息量的三个含义
8.信源熵的三种物理含义。
离散信源的联合熵、条件熵、平均互信息量的含义及相互之间的关系。
10.信源的平稳性和无记忆性的含义
11.离散无记忆信源的信源熵、N次扩展的信源熵计算。
N 阶马尔科夫信源的定义
13.低阶马尔科夫信源的状态转移图、各状态的稳态分布概率(状态极限概率)、极限熵H∞=H n+1
14.信道容量的含义
15.常见信道(无噪信道、强对称、对称、准对称)容量的计算,达到信道容量时对应信源的概率分布情况。
16.香浓编码、费诺编码、哈夫曼编码方法及步骤,其编码效率的计算
17.信息率失真函数的含义
18.D max的含义
19.二、三元离散信源的R max R min D min、D max计算,及信息率失真函数R(D)的计算
20.在信道编码中检错与纠错的含意是什么?
21.线性分组码生成矩阵与系统码生成矩阵之间的关系,系统码生成矩阵与一致校验码矩阵之间的关系,码字的生成,编码效率及最小距离的计算。
22.X n+1循环码的生成多项式g(x)与一致校验多项式h(x)的关系,对应生成矩阵和一致校验矩阵的生成,将消息利用生成矩阵生成循环码
理解相关基本概念(定理、性质)多练习课后习题(作业和讲解)。
信息论与编码1. 通信系统模型信源—信源编码—加密—信道编码—信道—信道解码—解密—信源解码—信宿 | | |(加密密钥) 干扰源、窃听者 (解密秘钥)信源:向通信系统提供消息的人或机器信宿:接受消息的人或机器信道:传递消息的通道,也是传送物理信号的设施干扰源:整个系统中各个干扰的集中反映,表示消息在信道中传输受干扰情况 信源编码:编码器:把信源发出的消息变换成代码组,同时压缩信源的冗余度,提高通信的有效性 (代码组 = 基带信号;无失真用于离散信源,限失真用于连续信源)译码器:把信道译码器输出的代码组变换成信宿所需要的消息形式基本途径:一是使各个符号尽可能互相独立,即解除相关性;二是使各个符号出现的概率尽可能相等,即概率均匀化信道编码:编码器:在信源编码器输出的代码组上增加监督码元,使之具有纠错或检错的能力,提高通信的可靠性译码器:将落在纠检错范围内的错传码元检出或纠正基本途径:增大码率或频带,即增大所需的信道容量2. 自信息:()log ()X i i I x P x =-,或()log ()I x P x =-表示随机事件的不确定度,或随机事件发生后给予观察者的信息量。
条件自信息://(/)log (/)X Y i j X Y i j I x y P x y =-联合自信息:(,)log ()XY i j XY i j I x y P x y =-3. 互信息:;(/)()(;)log log ()()()i j i j X Y i j i i j P x y P x y I x y P x P x P y ==信源的先验概率与信宿收到符号消息后计算信源各消息的后验概率的比值,表示由事件y 发生所得到的关于事件x 的信息量。
4. 信息熵:()()log ()i iiH X p x p x =-∑ 表示信源的平均不确定度,或信源输出的每个信源符号提供的平均信息量,或解除信源不确定度所需的信息量。
1第1章 概论1. 信号(适合信道传输的物理量)、信息(抽象的意识/知识,是系统传输、转换、处理的对象)和消息(信息的载体)定义;相互关系:(1信号携带消息,是消息的运载工具(2信号携带信息但不是信息本身(3同一信息可用不同的信号来表示(4同一信号也可表示不同的信息。
2. 通信的系统模型及目的:提高信息系统可靠性、有效性和安全性,以达到系统最优化.第2章 信源及信息量1. 单符号离散信源数学模型2. 自信息量定义:一随机事件发生某一结果时带来的信息量I(xi)=-log2P(xi)、单位:bit 、物理意义:确定事件信息量为0;0概率事件发生信息量巨大、性质:I(xi)非负;P(xi)=1时I(xi)=0;P(xi)=0时I(xi)无穷;I(xi)单调递减;I(xi)是随机变量。
3. 联合自信息量:I(xiyi)=- log2P(xiyj) 物理意义:两独立事件同时发生的信息量=各自发生的信息量的和、条件自信息量:I(xi/yi)=- log2P(xi/yj);物理意义:特定条件下(yj 已定)随机事件xi 所带来的信息量。
三者关系:I(xi/yi)= I(xi)+ I(yi/xi)= I(yi)+ I(xi/yi)4. 熵:定义(信源中离散消息自信息量的数学期望)、单位(比特/符号)、物理意义(输出消息后每个离散消息提供的平均信息量;输出消息前信源的平均不确定度;变量的随机性)、计算:(H(X)=-∑P(xi)log2 P(xi)) 1)连续熵和离散的区别:离散熵是非负的2)离散信源当且仅当各消息P相等时信息熵最大H (X )=log 2 n 。
3)连续信源的最大熵:定义域内的极值. 5.条件熵H(Y/X) = -∑∑P(xiyj) log2P(yj/xi),H (X /Y )= -∑∑P(xiyj) log2P(xi/yj) 、物理意义:信道疑义度H(X/Y):信宿收到Y 后,信源X 仍存在的不确定度,有噪信道传输引起信息量的损失,也称损失熵。
信息论与编码第⼀章1、信息,信号,消息的区别信息:是事物运动状态或存在⽅式的不确定性的描述消息是信息的载体,信号是消息的运载⼯具。
2、1948年以“通信的数学理论”(A mathematical theory of communication )为题公开发表,标志着信息论的正式诞⽣。
信息论创始⼈:C.E.Shannon(⾹农)第⼆章1、⾃信息量:⼀个随机事件发⽣某⼀结果后所带来的信息量称为⾃信息量,简称⾃信息。
单位:⽐特(2为底)、奈特、笛特(哈特)2、⾃信息量的性质(1)是⾮负值(2) =1时, =0, =1说明该事件是必然事件。
(3) =0时, = , =0说明该事件是不可能事件。
(4)是的单调递减函数。
3、信源熵:各离散消息⾃信息量的数学期望,即信源的平均信息量。
)(log )(])(1[log )]([)( 212i ni i i i a p a p a p E a I E X H ∑=-===单位:⽐特/符号。
(底数不同,单位不同)信源的信息熵;⾹农熵;⽆条件熵;熵函数;熵。
4、信源熵与信息量的⽐较(书14页例2.2.2)()log () 2.1.3 i i I a p a =-()5、信源熵的意义(含义):(1)信源熵H(X)表⽰信源输出后,离散消息所提供的平均信息量。
(2)信源熵H(X)表⽰信源输出前,信源的平均不确定度。
(3)信源熵H(X)反映了变量X 的随机性。
6、条件熵:(书15页例2.2.3) 7、联合熵:8、信源熵,条件熵,联合熵三者之间的关系:H(XY)= H(X)+H(Y/X) H(XY)= H(Y)+H(X/Y)条件熵⼩于⽆条件熵,H(Y/X)≤H(Y)。
当且仅当y 和x 相互独⽴p(y/x)=p(y),H(Y/X)=H(Y)。
两个条件下的条件熵⼩于⼀个条件下的条件熵H(Z/X,Y)≤H(Z/Y)。
当且仅当p(z/x,y)=p(z/y)时取等号。
联合熵⼩于信源熵之和, H(YX)≤H(Y)+H(X)当两个集合相互独⽴时得联合熵的最⼤值 H(XY)max =H(X)+H(Y) 9、信息熵的基本性质:(1)⾮负性;(2)确定性;(3)对称性;(4)扩展性(5)可加性 ( H(XY) = H(X)+ H(Y) X 和Y 独⽴ H (XY )=H (X )+ H (Y/X )H (XY )=H (Y )+ H (X/Y ) )(6)(重点)极值性(最⼤离散熵定理):信源中包含n 个不同离散消息时,信源熵H(X)有当且仅当X 中各个消息出现的概率全相等时,上式取等号。
“信息论与编码”复习1.消息、信号、信息的含义、定义及区别。
信息是指各个事物运动的状态及状态变化的方式。
消息是指包含信息的语言,文字和图像等。
信号是消息的物理体现。
消息是信息的数学载体、信号是信息的物理载体信号:具体的、物理的消息:具体的、非物理的信息:非具体的、非物理的同一信息,可以采用不同形式的物理量来载荷,也可以采用不同的数学描述方式。
同样,同一类型信号或消息也可以代表不同内容的信息2.信息的特征与分类。
1接收者在收到信息之前,对其内容是未知的,所以信息是新知识,新内容;2信息是能使认识主体对某一事物的未知性或不确定性减少的有用知识;3信息可以产生,也可以消失,同时信息可以被携带,被存储及处理;4信息是可以量度的,信息量有多少的差别。
31948年,Shannon提出信息论,“通信中的数学理论”—现代信息论的开创性的权威论文,为信息论的创立作出了独特的贡献。
4.通信系统的物理模型(主要框图),各单元(方框)的主要功能及要解决的主要问题。
信源的核心问题是它包含的信息到底有多少,怎样将信息定量地表示出来,即如何确定信息量。
信宿需要研究的问题是能收到或提取多少信息。
信道的问题主要是它能够传送多少信息,即信道容量的多少。
5.通信的目的?要解决的最基本问题?通信有效性的概念。
提高通信有效性的最根本途径?通信可靠性的概念。
提高通信可靠性的最根本途径?通信安全性的概念,提高通信安全性的最根本途径?通信系统的性能指标主要是有效性,可靠性,安全性和经济性。
通信系统优化就是使这些指标达到最佳。
从提高通信系统的有效性意义上说,信源编码器的主要指标是它的编码效率,即理论上所需的码率与实际达到的码率之比。
提高通信有效性的最根本途径是信源编码。
减少冗余。
提高可靠性:信道编码。
增加冗余。
提高安全性:加密编码。
6.随机事件的不确定度和它的自信息量之间的关系及区别?单符号离散信源的数学模型,自信息量、条件自信息量、联合自信息量的含义?信源符号不确定度:具有某种概率的信源符号在发出之前,存在不确定度,不确定度表征该符号的特性。
信息论与编码基类一、引言信息论与编码是计算机科学和通信工程中的重要学科之一,它研究的是如何在传输和存储信息时,通过合理的编码方法,提高信息的传输效率和可靠性。
信息论与编码涉及到了信号处理、数据压缩、差错检测与纠正等多个方面,对于现代通信技术的发展和应用起到了重要的推动作用。
二、信息论基础2.1 信息的度量信息论的基础是对信息的度量,通过定义信息的度量方法可以量化信息的大小。
其中最著名的度量方法是香农熵,它描述了一个信源中包含的信息量。
香农熵的计算公式为:H(X)=−∑Pni=1(x i)log2(P(x i))其中,X表示随机变量,P(x i)表示该随机变量取值为x i的概率。
2.2 信道容量信道容量是信息论中的一个重要概念,它表示了在给定的信道条件下,能够传输的最大信息速率。
信道容量受到信道带宽、信噪比以及误码率等因素的影响。
香农定理给出了信道容量的计算公式:C=Blog2(1+S N )其中,C表示信道容量,B表示信道带宽,S表示信号平均功率,N表示噪声功率。
三、编码方法编码是将原始数据转换成特定格式的过程,通过编码可以提高信息的传输效率和可靠性。
在信息论与编码中,包括了很多种不同的编码方法,下面介绍几种常见的编码方法。
3.1 基本编码方法最基本的编码方法包括了非归零编码(NRZ)、归零编码(RZ)和曼彻斯特编码等。
这些编码方法通过改变信号的电平或者电平过渡的规则来表示原始数据。
例如,NRZ编码将高电平表示1,低电平表示0;RZ编码将每个1分成两个等时长的周期,并在每个周期的开始处引入一个电平过渡。
3.2 压缩编码方法压缩编码是一种将冗余信息去除以减小数据大小的方法。
在信息论与编码中,常用的压缩编码方法有霍夫曼编码、算术编码和字典编码等。
这些编码方法通过统计数据中的出现频率来分配短码给高频率的数据,从而减小编码后的数据大小。
3.3 差错编码方法差错编码是一种能够在传输过程中检测和纠正错误的编码方法。
信息论与编码期末复习(基本上涵盖了所有考点,有了这份资料,期末绝不会挂科)1填空题1、信息论研究的主要问题是如何提高信息传输系的性和性,对应这两个性能数字通讯系统量化指标分别为和。
2、若给定离散概率空间[X,p(x)]表示的信源,则该信源中的信源消息(事件)x的自信息量可表I(x)=;该信源平均自信息量(即信源的熵)可表示为H(X)=E[I(x)]= 。
3、在离散联合概率空间[XY,P(xy)] 上随机变量I(xy) 的数学期望H(XY)= ,若集合X与集合Y相互独立,则H(XY)= 。
4、若给定离散联合概率空间[XY,P(xy)],则x与y之间的互信息量I(x;y)= ;平均互信息量可用熵和条件熵表示即I(X;Y)= = ,其中条件熵H(X|Y)通常称为熵,条件熵H(Y|X) 称为____________熵;若集合X与集合Y相互独立,则H(X|Y) = ,H(Y|X) = ,平均互信息量I(X;Y)= 。
5、离散信源的冗余度是R表示信源消息的可压缩____________,设信源符号集的最大熵为Ho,实际熵为H∞,则冗余度R可表示为______________;信源编码目的就是通过减少或消除信源____________来提高信息传输效率,因此信源编码亦称__________性编码,而信道编码则称__________性编码。
6、对于连续随机变量,在峰值功率受限于P m的条件下,取得最大相对熵的最佳概率密度函数是一个恒值即W opt(x)=_________,称W(x)为__________分布,这时最大相对熵H cmax=__________。
7、对于平均功率受限,均值不为零的一维连续随机变量的方差为定值时,其取得最大相熵的最佳概率密度函数为_________ ,最大相对熵H cmax=__________。
正态分布,即Wopt(x)=8、假设任一随机变量X与一正态分布随机变量具有相同的相对熵Hc,则其等效正态分布的随机变量X的熵功率为P=;可以用信号平均功率和熵功率的相对差值_________来表示连续信源的冗余度。
信息论与编码《信息论与编码》复习提纲第1章绪论1、信息的概念,通俗、⼴义、狭义的概念2、信息、消息、信号3、通信系统模型4、通信系统的技术指标,有效性、可靠性第2章信源与信息熵1、信源的分类2、信源的数学模型3、马尔克夫信源4、离散信源的⾃信息、信息熵5、条件熵和联合熵6、互信息及其性质7、条件熵之间的关系,维拉图8、信息熵的性质9、信息熵的计算,各种概率的计算、各种熵的计算(例2-9, p.21)10、连续信源的熵,绝对熵和相对熵11、最⼤熵定理,峰值功率受限、平均功率受限12、离散序列信源的熵,平均符号熵、条件熵、极限熵13、信源冗余度及产⽣的原因第3章信道与信道容量1、信道模型,转移矩阵、2、信道种类:BSC、DMC、离散时间⽆记忆信道、波形信道3、信道容量的定义4、⼏种特殊信道的信道容量、BSC信道C~ε曲线5、离散序列信道及其容量(BSC⼆次扩展信道)6、连续信道及其容量,Shannon公式7、信源与信道的匹配,信道冗余度第4章信息率失真函数1、失真函数、失真矩阵、平均失真2、信息率失真函数,定义、物理意义,保真度准则3、信息率失真函数的性质,信息率失真函数曲线4、信息率失真函数与信道容量的⽐较5、某些特殊情况下R(D) 的表⽰式第5章信源编码1、信源编码的基本概念(主要任务、基本途径)2、码的基本概念、分类3、唯⼀可译码的含义,充要条件4、码树图及即时码的判别5、定长编码定理,编码信息率,编码效率6、变长编码定理(Shannon第⼀定理),编码剩余度,紧致码7、Shannon编码,⾃信息与码长的联系8、Fano编码,与码树图的联系、是否是紧致码9、Huffman编码,计算平均码长、信息传输率、编码效率(例5-7, p.96)10、Shannon第三定理(限失真编码定理)及逆定理11、游程编码,基本原理、特性、主要应⽤12、算术编码,基本思想第6章信道编码1、差错,差错符号,差错⽐特,差错图样类型2、纠错码分类,差错控制系统分类3、随机编码,Shannon第⼆定理(信道编码定理),差错概率、译码规则、平均差错概率4、可靠性函数曲线5、差错控制途径、措施,噪声均化、交错(交织)6、码距与纠、检错能⼒7、最优译码、最⼤似然译码、最⼩汉明距离译码8、线性分组码,基本概念,码重9、⽣成矩阵和校验矩阵,系统形式(例6-2, p.137)10、伴随式与标准阵列译码11、循环码及其特征,⼏种常⽤循环码12、卷积码,基本概念、编码原理、编码器结构、卷积码描述⽅法、Viterbi译码第7章加密编码1、加密编码中的基本概念2、安全性,保密性,真实性3、对称(单密钥)体制与⾮对称(双密钥)体制1.信息论研究的⽬的是提⾼信息系统的___可靠性___,____有效性____,____安全性___,以便达到系统的最优化。
信息论与编码基础知识点
(仅供复习参考,不作为出卷依据)
1.当代文明的三大科学支柱
2.信息论发展的过程
3.信息论的奠基人,代表作?
4.信息理论中度量信息的基本观点
5.一个通信系统中常用的编码有哪些?其目标是什么?6.信源符号自信息量的含义与计算
7.信源符号间互信息量与平均互信息量的三个含义(对应公式)
8.信源熵的三种物理含义。
9.离散信源的联合熵、条件熵、平均互信息量的含义及相互之间的关系。
10.平均互信息量的三种物理含义、性质及相应的公式,与信道容量、信息率失真函数的关系
11.信源的平稳性和无记忆性的含义
12.离散无记忆信源的信源熵、N次扩展的信源熵计算。
N 阶马尔科夫信源的定义
14.低阶(1、2)马尔科夫信源的状态转移图、各状态的稳态分布概率(状态极限概率)、极限熵H∞=H n+1
15.信道容量的含义
16.常见信道(无噪信道、强对称、对称、准对称)容量的计算,达到信道容量时对应信源的概率分布情况。
17.二进制香农编码、费诺编码、哈夫曼编码方法及步骤,其编码效率的计算
18.信息率失真函数的含义
19.D max的含义
20.二、三元离散信源的R max R min D min、D max计算,及等概
率信源分布信息率失真函数R(D)的计算
21.在信道编码中检错与纠错的含意是什么?
22.最小码距?最小码距与检错、纠错的能力关系
理解相关基本概念(定理、性质)多练习课后习题(作业和讲解)。