材料力学 机工出版社范钦珊版第四章 连接件的剪切与挤压强度工程计算
- 格式:ppt
- 大小:2.50 MB
- 文档页数:42
解:1、轴的强度计算M T τ 轴max = x = 1 3 ≤ 60 × 10 6 Wp1 π d 16 T1 ≤ 60 × 10 6 × 2、轴套的强度计算π × 66 3 × 10 −9 = 3387 N ⋅ m 16 习题 4-6 图τ 套 max = Mx T2 = ≤ 60 × 106 3 68 4 ⎞ Wp2 πD ⎛⎜1 − ( ⎟ 16 ⎝ 80 ⎠ 6 ⎡⎛ 17 ⎞ 4 ⎤ π × 80 3 −9 T2 ≤ 60 × 10 × × 10 ⎢1 − ⎜⎟⎥ = 2883 N ⋅ m 16 ⎢⎣⎝ 20 ⎠⎥⎦ 3、结论Tmax ≤ T2 = 2883 N ⋅ m = 2.883 kN ⋅ m 4-7 图示开口和闭口薄壁圆管横截面的平均直径均为 D、壁厚均为δ ,横截面上的扭矩均为 T = Mx。
试:习题 4-7 图1.证明闭口圆管受扭时横截面上最大剪应力 6τ max ≈ τ max ≈ 2M x δπ D2 3M x 2.证明开口圆管受扭时横截面上最大剪应力δ 2πD 3.画出两种情形下,剪应力沿壁厚方向的分布。
解:1.证明闭口圆管受扭时横截面上最大剪应力由于是薄壁,所以圆环横截面上的剪应力可以认为沿壁厚均匀分布(图 a1),于是有习题 4-7 解图Mx = ∫ A D D ⋅ τd A = ⋅ τ ⋅ π Dδ 2 2 由此得到δπ D 2 δπ D2 2.证明开口圆管受扭时横截面上最大剪应力根据狭长矩形扭转剪应力公式,有3M x 3M x 3M x τ max = = = 2 2 hb π D ⋅δ δ 2π D τ= 2M x 即:τ max = 2M x 3.画出两种情形下,剪应力沿壁厚方向的分布两种情形下剪应力沿壁厚方向的分布分别如图 a1 和 b2 所示。
4-8 由同一材料制成的实心和空心圆轴,二者长度和质量均相等。
材料力学课后答案范钦珊第一篇:材料力学课后答案范钦珊材料力学课后答案范钦珊普通高等院校基础力学系列教材包括“理论力学”、“材料力学”、“结构力学”、“工程力学静力学材料力学”以及“工程流体力学”。
目前出版的是前面的3种“工程力学静力学材料力学”将在以后出版。
这套教材是根据我国高等教育改革的形势和教学第一线的实际需求由清华大学出版社组织编写的。
从2002年秋季学期开始全国普通高等学校新一轮培养计划进入实施阶段新一轮培养计划的特点是加强素质教育、培养创新精神。
根据新一轮培养计划课程的教学总学时数大幅度减少为学生自主学习留出了较大的空间。
相应地课程的教学时数都要压缩基础力学课程也不例外。
怎样在有限的教学时数内使学生既能掌握力学的基本知识又能了解一些力学的最新进展既能培养学生的力学素质又能加强工程概念。
这是很多力学教育工作者所共同关心的问题。
现有的基础教材大部分都是根据在比较多的学时内进行教学而编写的因而篇幅都比较大。
教学第一线迫切需要适用于学时压缩后教学要求的小篇幅的教材。
根据“有所为、有所不为”的原则这套教材更注重基本概念而不追求冗长的理论推导与繁琐的数字运算。
这样做不仅可以满足一些专业对于力学基础知识的要求而且可以切实保证教育部颁布的基础力学课程教学基本要求的教学质量。
为了让学生更快地掌握最基本的知识本套教材在概念、原理的叙述方面作了一些改进。
一方面从提出问题、分析问题和解决问题等方面作了比较详尽的论述与讨论另一方面通过较多的例题分析特别是新增加了关于一些重要概念的例题分析著者相信这将有助于读者加深对于基本内容的了解和掌握。
此外为了帮助学生学习和加深理解以及方便教师备课和授课与每门课材料力学教师用书lⅣ程主教材配套出版了学习指导、教师用书习题详细解答和供课堂教学使用的电子教案。
本套教材内容的选取以教育部颁布的相关课程的“教学基本要求”为依据同时根据各院校的具体情况作了灵活的安排绝大部分为必修内容少部分为选修内容。
材料力学范钦珊答案1. 弹性力学1.1 弹性模量弹性模量是描述材料抵抗力学变形的能力的一个重要参数。
弹性模量E可以表示为材料的应力和应变之间的比例关系,计算公式如下:E = (σ / ε)其中,E是弹性模量,σ是应力,ε是应变。
在弹性力学中,当材料受到力的作用时,会发生弹性变形,即材料在去除力后能够回复原状。
弹性模量越大,材料的刚性越高,抵抗变形的能力越强。
1.2 剪切模量剪切模量描述了材料在受到剪切应力时抵抗剪切变形的能力。
剪切模量G可以表示为剪切应力和剪切应变之间的比例关系,计算公式如下:G = (τ / γ)其中,G是剪切模量,τ是剪切应力,γ是剪切应变。
剪切模量越大,材料的抗剪切能力越强。
1.3 泊松比泊松比描述了材料在受到应力时,沿着应力方向的变形与垂直于应力方向的变形之间的比例关系。
泊松比ν可以表示为侧向应变和纵向应变之间的比例关系,计算公式如下:ν = (-ε横/ ε纵)其中,ν是泊松比,ε横是侧向应变,ε纵是纵向应变。
泊松比的取值范围在0和0.5之间,材料越接近0.5,其纵向应变和侧向应变之间的耦合效应越强。
2. 拉伸性能材料的拉伸性能指的是材料在受到拉伸应力时的响应能力。
常见的拉伸性能参数包括杨氏模量、屈服强度、抗拉强度和伸长率。
2.1 杨氏模量杨氏模量描述了材料在拉伸应力作用下的线弹性变形能力。
杨氏模量可以表示为应力和应变之间的比例关系,计算公式如下:E = (σ / ε)其中,E是杨氏模量,σ是应力,ε是应变。
杨氏模量越大,材料的刚性越高,抵抗变形的能力越强。
2.2 屈服强度材料的屈服强度是指材料在拉伸过程中开始出现塑性变形的应力值。
在应力达到屈服强度之后,材料会发生塑性变形,即无法完全恢复原状。
屈服强度通常用σy表示。
2.3 抗拉强度材料的抗拉强度是指材料在拉伸过程中能够承受的最大应力值。
抗拉强度通常用σmax表示。
2.4 伸长率伸长率描述了材料在拉伸过程中发生塑性变形后的延展性能。