2、学到了哪些探究方法? 分类讨论 观察联想
迁移转化
四、探索应用
谢谢!
SAOM SBOE SAOG S梯形GMEB
SAOB S梯形AMEB
二、与“k ”有关的等积变形
思考:若过点A,B分别向 y轴作垂线段AM , BE,
是否也有类似的结论?
SAOM SBOE SBOG S梯形GEMA
M
.E G
SAOB S梯形AMEB
探究一点A , B是双曲线 y kx(k>0)上同一象限内的不同两点 1、过点A作AM⊥ x 轴于点M,过点B作BE⊥ y轴于点E,
连结AB,EM,AE,BM, 你能得到与上题类似的结论吗?
M
.
G
E
探究(二)点A
,
B是双曲线 y
k
x( k>0)不同象限内的两点
过这两点分别向x轴,y轴作垂线,也会有类似结论吗? 小组合作,参考探究(一)的研究方法,分析各种情况
M
E
.
B
三、反思提升
1、在探究过程中,抓住了哪些不变的性质 和不变的条件,得到了哪些结论?
连结AB,EM,AE,BM,
. E
G
M
(1)△MEA和△MEB的面积相等吗?
你还能得出哪些等积图形?
(2)根据面积关系,你能判断线段EM 与 AB存在特殊的位置关系吗?
AB∥ME
等积
平行
探究一点A , B是双曲线 y kx(k>0)上同一象限内的不同两点 2、过点A作AM⊥ y 轴于点M,过点B作BE⊥ x轴于点E,
反比例函数专题复习
反比例函数中的等积变形
双曲线
y k(k 0) x
.A(2,4)
N M
基本图形