分解方法
- 格式:doc
- 大小:87.00 KB
- 文档页数:9
数学数的分解数学是一门以数字和符号为基础的学科,而数的分解是其中非常重要的一个概念。
在数学中,分解数意味着将一个复杂的数拆解成几个更简单的数的组合。
这篇文章将探讨数的分解在数学中的应用,并介绍一些常见的数的分解方法。
在数学中,分解数可以帮助我们更好地理解数的性质,简化计算和解决问题。
以下将介绍几种常见的数的分解方法。
1. 质因数分解:质因数分解是将一个数表示为若干个质数的乘积。
质数是指只能被1和自身整除的数,如2、3、5、7等。
通过质因数分解,我们可以将复杂的数分解成较简单的质数的乘积,以便进行进一步的计算和分析。
例如,将数36分解为2^2 * 3^2可以更清晰地理解36的因数结构。
2. 完全平方数分解:完全平方数分解是将一个数分解为两个或多个完全平方数的和。
完全平方数是指一个数能够被另一个整数的平方表示,如1、4、9、16等。
通过完全平方数分解,我们可以将一个数表示为若干完全平方数的和,进一步探索数的性质和规律。
例如,将数30分解为25 + 4 + 1可以更好地理解30的平方结构。
3. 分数分解:分数分解是将一个分数表示为若干个更简单的分数的和或积。
通过分数分解,我们可以更灵活地处理分数的计算和比较。
例如,将一个分数表示为两个较小分数的和或积,有助于我们简化计算和转化问题的形式。
4. 十进制分解:十进制分解是将一个十进制数分解为各个位数的和。
通过十进制分解,我们可以更深入地理解数的位权和位数之间的关系,并从中探索数的规律和特性。
例如,将数1234分解为1000 + 200 + 30+ 4可以更好地理解数1234的位权结构。
5. 矩阵分解:矩阵分解是将一个矩阵表示为若干个更简单的矩阵的乘积。
通过矩阵分解,我们可以简化矩阵运算、解决线性方程组和优化问题。
矩阵分解在线性代数和数据分析中具有重要的应用。
数的分解在数学中是一个非常广泛和重要的概念,它不仅仅是一种简化计算的手段,更是一种揭示数的本质和性质的方法。
儿童分解用什么方法儿童分解是指将一个数拆分成几个小的数的相加,或者将一个形状分割成几个小的部分。
儿童分解是数学学科中的一个基础概念,它有助于儿童学习数的概念和数的运算。
儿童分解的方法有很多种,下面我将详细介绍几种常见的儿童分解方法。
一、分解数的方法1. 十进位分解法十进位分解法是将一个两位数分解成十位数和个位数的相加。
例如:将56分解成50和6。
2. 十分位分解法十分位分解法是将一个两位数分解成几个十位数的相加。
例如:将56分解成30和20。
3. 平分法平分法是将一个数平均分成若干份。
例如:将30平均分成3份,每份为10。
4. 等差分解法等差分解法是将一个数按照等差数列进行分解。
例如:将10分解成1、3、5、7、9。
5. 分段相加法分段相加法是将一个数按照规定的分段进行分解。
例如:将15分解成10和5。
二、分解形状的方法1. 分解整体法分解整体法是将一个形状分解成几个小的部分,再将这些小部分分别加起来。
例如:将一个矩形形状分解成两个小的矩形。
2. 分解面积法分解面积法是将一个形状分解成几个小的形状,再计算小的形状的面积,最后将这些面积相加。
例如:将一个三角形形状分解成两个小的三角形。
3. 分解长度法分解长度法是将一个形状的边长分解成几个小的线段,再计算这些线段的长度,最后将长度相加。
例如:将一个长方形形状的边长分解成两个小的线段。
这些方法不仅适用于儿童学习分解数和形状,也可以用于教授儿童解决实际问题的能力。
通过这些方法,儿童可以更好地理解数的概念,掌握数的分解运算,并且培养儿童的观察力、分析能力和解决问题的能力。
儿童分解的方法需要根据儿童的年龄和数学能力来选择。
对于初学者来说,可以从简单的数的分解开始,逐渐增加难度。
同时,教育者应该注重培养儿童的兴趣和激发他们对数学的探索欲望,通过一些有趣的游戏和活动来引导儿童进行分解练习,从而提高他们的学习效果。
总之,儿童分解方法的选择应根据儿童的年龄和能力来确定,分解数可以使用十进位分解法、十分位分解法、平分法、等差分解法、分段相加法等方法,分解形状可以使用分解整体法、分解面积法、分解长度法等方法。
因式分解的十二种方法因式分解是一种将一个数或代数式分解成更简单的乘积的方法。
在数学中,有很多种因式分解的方法可以使用,根据不同的情况可以采用不同的方法,下面将介绍十二种常见的因式分解方法。
1.提取公因子法:当一个式子存在公因子时,可以先将公因子提取出来,然后再进行进一步的因式分解。
2. 公式法:利用公式进行因式分解,例如(a+b)^2=a^2+2ab+b^23.分组法:将一个多项式按照不同的组合方式进行分组,然后再分别进行因式分解,最后将得到的结果合并。
4.平方差公式法:对于一个二次型式,可以利用平方差公式进行因式分解,例如a^2-b^2=(a+b)(a-b)。
5. 完全平方公式法:对于一个完全平方式,可以通过完全平方公式进行因式分解,例如a^2+2ab+b^2=(a+b)^26. 二次因式法:对于一个二次多项式,可以通过二次因式法进行因式分解,例如ax^2+bx+c=a(x-x1)(x-x2),其中x1和x2为方程ax^2+bx+c=0的根。
7.和差立方公式法:对于一个和差立方的多项式,可以通过和差立方公式进行因式分解。
8. 因式分解的配方法:通过配方法进行因式分解,例如ab+ac=a(b+c)。
9.分解因式法:将一个多项式根据不同的性质进行因式分解,例如差平方分解、和的平方分解等。
10.二次根与一次根相结合法:对于一个多项式,通过将二次根与一次根相结合,得到更简单的因式分解结果。
11. 分组求积法:对于一个多项式,可以通过分组求积法进行因式分解,例如(a+b)(c+d)=ac+ad+bc+bd。
12.全等公式法:利用全等公式进行因式分解。
以上是常见的十二种因式分解方法。
不同的方法适用于不同的情况,需要根据具体的问题选择合适的方法进行因式分解。
因式分解是数学中的一个重要概念,通过因式分解可以简化计算过程,提高解题效率。
因此,掌握不同的因式分解方法对于提高数学能力和解决实际问题都有很大的帮助。
因式分解的14种方法因式分解是将一个多项式进行拆解,使其表示为更简洁的乘积形式。
因式分解可以帮助我们简化复杂的计算或者解决一些与多项式相关的问题。
在本文中,将会介绍14种常见的因式分解方法。
1.公因式提取法:当多项式中的每一项都有相同的因子时,可以将这个公因式提取出来。
例如,将多项式2x+4y表示为2(x+2y)。
2.平方差公式:当一个多项式可以写成两个平方项之差时,可以通过平方差公式进行因式分解。
例如,将多项式x^2-4表示为(x-2)(x+2)。
3.完全平方公式:当一个多项式可以写成一个平方项加上一个常数项时,可以通过完全平方公式进行因式分解。
例如,将多项式x^2+6x+9表示为(x+3)(x+3)。
4.平方和公式:当一个多项式可以写成两个平方项之和时,可以通过平方和公式进行因式分解。
例如,将多项式x^2+6x+9表示为(x+3)(x+3)。
5.差平方公式:当一个多项式可以写成两个项的平方差时,可以通过差平方公式进行因式分解。
例如,将多项式x^4-16表示为(x^2+4)(x^2-4)。
6.二次差公式:当一个多项式可以写成两个项的二次差时,可以通过二次差公式进行因式分解。
例如,将多项式x^4-16表示为(x^2+4)(x^2-4)。
7.和积公式:当一个多项式可以写成两个项的和乘以另外一个因子时,可以通过和积公式进行因式分解。
例如,将多项式x^2+3x+2表示为(x+1)(x+2)。
8.差积公式:当一个多项式可以写成两个项的差乘以另外一个因子时,可以通过差积公式进行因式分解。
例如,将多项式x^2-3x+2表示为(x-1)(x-2)。
9.二次和公式:当一个多项式可以写成两个平方项之和以及另外一个项的平方时,可以通过二次和公式进行因式分解。
例如,将多项式x^4+4x^2+4表示为(x^2+2)^210.幂次差公式:当一个多项式可以写成一个项的两个幂次差的形式时,可以通过幂次差公式进行因式分解。
例如,将多项式x^6-y^6表示为(x^3+y^3)(x^3-y^3)。
可以分解有机物的方法有机物是由碳、氢、氧、氮等元素组成的化合物,常见的有机物包括脂肪、蛋白质、碳水化合物等。
有机物的分解是指将复杂的有机物分解成简单的物质,可以通过物理、化学和生物等方法来实现。
下面将介绍一些常见的可以分解有机物的方法:1. 热分解:热分解是将有机物暴露在高温下,使其分解为简单的物质的过程。
在高温下,有机物分子内部的键会断裂,产生碳、氢、氧等简单的物质。
常见的热分解方法包括燃烧、热解、裂解等。
例如,燃烧木材可以将木质素分解为水和二氧化碳。
2. 氧化分解:氧化分解是通过氧化剂将有机物氧化分解为简单的物质。
氧化剂可以是氧气、过氧化氢等。
氧化分解的过程中,有机物的分子结构会发生改变,产生氧化产物。
例如,过氧化氢可以将有机物氧化分解为水和氧气。
3. 水解:水解是利用水将有机物分解为简单的物质的过程。
水解常见于碳水化合物、脂肪等有机物的分解过程中。
在水的作用下,有机物的分子结构会发生裂解,产生碳水化合物、脂肪酸等物质。
例如,碳水化合物在水的作用下可以分解为葡萄糖和果糖。
4. 生物分解:生物分解是利用微生物将有机物分解为简单物质的过程。
微生物可以分解有机物中的碳、氢、氧等元素,产生二氧化碳、水、氨等物质。
生物分解是自然界中常见的有机物分解方式,例如土壤中的微生物可以分解有机物质,将其转化为养分供植物吸收。
5. 酶解:酶是生物体内的催化剂,可以促进有机物的分解反应。
酶解是利用酶将有机物分解为简单物质的过程。
不同的酶可以分解不同的有机物,例如淀粉酶可以将淀粉分解为葡萄糖,脂肪酶可以将脂肪分解为甘油和脂肪酸。
以上是一些常见的可以分解有机物的方法,通过热分解、氧化分解、水解、生物分解、酶解等方式,可以将复杂的有机物分解为简单的物质,有助于物质的循环利用和环境的清洁。
在实际应用中,可以根据有机物的性质和分解需求选择合适的分解方法,达到最佳的分解效果。
因式分解8种方法有很多方法可以用来因式分解一个多项式或数字。
在这篇文章中,我将向您介绍8种常见的因式分解方法,并提供每种方法的详细解释和示例。
让我们开始吧!1.相同因式的提取这是因式分解的最基本方法之一、它适用于多项式,其中所有项都具有相同的因式。
为了因式分解,我们只需要将相同的因式从每个项中提取出来。
例如,考虑多项式6x^2+9x+3、该多项式的所有项都可以被3整除。
因此,我们可以将其因式分解为3(2x^2+3x+1)。
2.公因式的提取如果一个多项式的每个项都可以被一个公共因子整除,那么我们可以将该因子提取出来并进行因式分解。
例如,考虑多项式2x^3-6x^2+8x。
所有的项都可以被2x整除,因此我们可以将其因式分解为2x(x^2-3x+4)。
3.分组方法分组方法适用于多项式,其中有四个或更多的项。
它的思想是将多项式中的项进行分组,然后在每个组中找到一个公共因子,最后提取出这些因子。
例如,考虑多项式x^3-2x^2+3x-6、我们可以将其分为两个组:(x^3-2x^2)和(3x-6)。
在第一组中,我们可以提取出一个公因子x^2,得到x^2(x-2);在第二组中,我们可以提取出一个公因子3,得到3(x-2)。
因此,多项式的因式分解为(x^2+3)(x-2)。
4.凑整法凑整法适用于多项式,其中二次项的系数为1、它的核心思想是通过加减适当的数来凑成一个完全平方。
通过这种方法,我们可以将多项式因式分解为两个平方的差。
例如,考虑多项式x^2+4x+4、我们可以将其凑整为(x+2)^2、因此,多项式的因式分解为(x+2)(x+2)或简化为(x+2)^25.和差平方差公式如果一个多项式可以表示成两个完全平方的差,我们可以使用和差平方差公式进行因式分解。
公式如下:a^2-b^2=(a+b)(a-b)例如,考虑多项式x^2-4、可以将其因式分解为(x+2)(x-2)。
6.加法公式和减法公式加法公式和减法公式适用于三角函数等特定的函数形式。
可以分解有机物的方法
可以分解有机物的方法主要包括以下几种:
1、生物降解:这是一种自然过程,通过微生物将有机物分解成更简单的物质,如二氧化碳、水和矿物质。
这种方法被认为是可持续且环保的。
2、高温处理:在强氧化剂的作用下,将有机物经过长时间的高温处理,破坏其分子结构,使有机物分解呈气态逸散。
3、蓄热氧化技术(RTO):通过加热有机废气到760℃以上,使挥发性有机物在燃烧室中氧化分解成CO2和H2O。
4、好氧生物堆肥:利用微生物在有氧条件下降解基质中的有机物。
5、化学氧化:使用过氧化钠弹筒熔融法、封管分解法、碱熔和湿法分解等方法,将有机物中的特定元素(如磷)氧化分解。
6、光催化分解法:利用催化剂和光的作用,分解挥发性有机物。
7、电催化转化:通过电催化的手段,降低反应活化能,加快有机物转化反应的过程。
8、厌氧消化技术:在厌氧条件下,厌氧微生物将湿垃圾中有机物分解转化为甲烷、二氧化碳及其他产物。
9、使用HNO3进行消解:长时间低湿消解有机物质,然后进行测定。
10、催化燃烧法:使用氧化催化剂的催化燃烧法,以及蓄热催化燃烧法,用于分解挥发性有机化合物(VOCs)。
因式分解的13种方法因式分解是将多项式分解成几个因式的乘积的过程。
它是代数中的一个重要技巧,可以帮助我们简化计算、解方程、求根等。
以下是13种常见的因式分解方法。
方法一:提公因式法提公因式法是将多项式的共同因子提出来,使得多项式可以分解为几个因子的乘积。
例如,对于多项式2x^2+4x,我们可以提取公因式2x,得到2x(x+2)。
方法二:分组提公因式法分组提公因式法是将多项式中的项按照一定的规则进行分组,然后分别提取每组的公因式。
例如,对于多项式2x^3+4x^2+3x+6,可以将其分组为(2x^3+4x^2)+(3x+6),然后对每个组提取公因式,得到2x^2(x+2)+3(x+2),再提取公因式(x+2),最终得到(x+2)(2x^2+3)。
方法三:差平方公式差平方公式是指a^2-b^2=(a+b)(a-b)。
如果我们遇到一个差平方的形式,可以直接利用差平方公式进行因式分解。
例如,对于多项式x^2-4,可以利用差平方公式得到(x+2)(x-2)。
方法四:和差化积公式和差化积公式是指a^3±b^3=(a±b)(a^2∓ab+b^2)。
如果我们遇到一个和差的形式,可以直接利用和差化积公式进行因式分解。
例如,对于多项式x^3+8,可以利用和差化积公式得到(x+2)(x^2-2x+4)。
方法五:平方差公式平方差公式是指a^2±2ab+b^2=(a±b)^2、如果我们遇到一个平方差的形式,可以直接利用平方差公式进行因式分解。
例如,对于多项式x^2+4x+4,可以利用平方差公式得到(x+2)^2方法六:二次差公式二次差公式是指a^2-b^2=(a-b)(a+b)。
如果我们遇到一个二次差的形式,可以直接利用二次差公式进行因式分解。
例如,对于多项式x^2-9,可以利用二次差公式得到(x-3)(x+3)。
方法七:完全平方公式完全平方公式是指a^2±2ab+b^2=(a±b)^2、如果我们遇到一个完全平方的形式,可以直接利用完全平方公式进行因式分解。
因式分解的14种方法因式分解是数学中的一种重要运算方法。
它可以将一个数或一个多项式分解成若干个乘积的形式,从而可以更好地理解和研究数与代数表达式的性质。
根据因式分解的对象和方法的不同,可以总结出以下14种因式分解的方法。
1.因数法:当一个数或一个多项式可以被一个常数因式整除时,可以使用因数法进行分解。
例如,对于多项式3x^2+6x,可以因式分解为3x(x+2)。
2.公因式法:当一个多项式中的每一项都有一个共同的因式时,可以使用公因式法进行分解。
例如,对于多项式6x^3+9x^2+15x,可以因式分解为3x(2x^2+3x+5)。
3.完全平方式:对于一个完全平方数,可以使用完全平方式进行分解。
例如,对于数16,可以因式分解为4^24.平方差公式:根据平方差公式,可以将两个平方差形式分解为两个因式的乘积。
例如,a^2-b^2可以分解为(a+b)(a-b)。
5. 二次三项式因式分解:对于一个二次三项式(ax^2 + bx + c),可以使用二次三项式因式分解法进行分解。
例如,对于多项式 x^2 + 4x+ 4,可以因式分解为(x + 2)^26.分组因式法:当多项式中存在多个项,但无法直接应用其他因式分解法时,可以使用分组因式法进行分解。
例如,对于多项式x^3+x^2+2x+2,可以因式分解为(x^3+x^2)+(2x+2),然后再进行进一步的分解。
7.因式分解与除法结合:当一个多项式无法直接因式分解时,可以先进行除法运算,将其分解为两个因式相乘的形式。
例如,对于多项式x^4-1,可以使用除法运算将其分解为(x^2+1)(x^2-1)。
8.差两个平方公式:根据差两个平方公式,可以将两个平方和形式分解为两个因式相乘的形式。
例如,a^2+b^2可以分解为(a+b)(a-b)。
9. 三次和三项式因式分解:对于一个三次和三项式(ax^3 + bx^2 + cx + d),可以使用三次和三项式因式分解法进行分解。
因式分解的七种常见方法因式分解是代数学中非常重要的一个基本概念,可以帮我们优化计算过程,得到简化的式子。
在因式分解的过程中,需要运用不同的方法来将一个给定的式子分解为若干个简单的乘积,本文将会介绍七种常见的因式分解方法。
1. 公式法公式法是一种较为常见的因式分解方法,它可以应用于一些特定的式子。
公式法常用的公式有两个:(1)$a^2-b^2=(a+b)(a-b)$该公式被称为"a二次减b二次"公式。
它告诉我们,一个平方数减另一个平方数的结果可以表示为两个因子的乘积,并分别是它们的和与差。
例如:$16-9=7\times5=(4+3)\times(4-3)$(2)$a^3+b^3=(a+b)(a^2-ab+b^2)$该公式被称为"a立方加b立方"公式。
它告诉我们一个立方数加另一个立方数的结果可以表示为两个因子的乘积,并分别是它们的和与差减去它们的积。
例如:$8^3+1^3=513=(8+1)\times(8^2-8+1)$2. 提公因式法提公因式法是一种常用的因式分解方法。
它的主要思想是将式子中的公因式先提出来,再对剩下的部分进行因式分解。
例如:$ax^2+bx=a(x^2+\frac{b}{a}x)$在上述式子中,$a$是公因式,$(x^2+\frac{b}{a}x)$是剩余部分的因式分解。
这样我们就把原始式子分解成了两个因子的乘积。
3. 十字相乘法十字相乘法主要用于二次三项式的因式分解。
该方法基于以下思想:将二次三项式分解为两个一次三项式的乘积,其中每个一次三项式的首项系数积等于原始式子的二次项系数,常数项积等于原始式子的常数项。
例如:$ax^2+bx+c$,首先将它分解为两个一次三项式$(px+q)(rx+s)$,然后进行十字相乘运算$(px+q)(rx+s)=px\times rx+px\times s+qrx+qs$,其中最后两项括号里的$c$是常数项。
因式分解相关知识一、分解方法1、提取公因式法各项都含有的公共的因式叫做这个多项式各项的公因式.公因式可以是单项式,也可以是多项式。
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式。
具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数字母取各项的相同的字母,而且各字母的指数取次数最低的。
当各项的系数有分数时,公因式系数为各分数的最大公约数。
如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。
提出“-”号时,多项式的各项都要变号。
口诀:找准公因式,一次要提尽,全家都搬走,留1把家守,提负要变号,变形看奇偶。
2、公式法公式法,即运用公式分解因式。
公式一般有1、平方差公式a²-b²=(a+b)(a-b)2、完全平方公式a²±2ab+b²=(a±b)²对应的还可以有一个口诀:“首平方,尾平方,首尾积的二倍在中央”3、两根式:4、立方和公式:a3+b3=(a+b)(a2-ab+b2)5、立方差公式:a3-b3=(a-b)(a2+ab+b2)6、完全立方公式:(a±b)3=a3±3a2b+3ab2±b3=(a±b)3根据因式分解与整式乘法的关系,我们可以利用乘法公式把某些多项式因式分解,这种因式分解的方法叫做公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫运用公式法。
1、平方差公式:反过来为2、完全平方公式:反过来为反过来为注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。
3、两根式:4、立方和公式:a3+b3=(a+b)(a2-ab+b2)5、立方差公式:a3-b3=(a-b)(a2+ab+b2)6、完全立方公式:(a±b)3=a3±3a2b+3ab2±b3=(a±b)3公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)3、配方法对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。
属于拆项、补项法的一种特殊情况。
也要注意必须在与原多项式相等的原则下进行变形。
例如:x2+3x-40=x2+3x+2.25-42.25=(x+1.5)2-(6.5)2=(x+8)(x-5).二、分解因式技巧掌握:1、①分解因式是多项式的恒等变形,要求等式左边必须是多项式。
②分解因式的结果必须是以乘积的形式表示。
③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。
④分解因式必须分解到每个多项式因式都不能再分解为止。
注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。
2.提公因式法基本步骤:(1)找出公因式(2)提公因式并确定另一个因式①第一步找公因式可按照确定公因式的方法先确定系数再确定字母②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式③提完公因式后,另一因式的项数与原多项式的项数相同3、分解方法分组分解法分组分解是分解因式的一种简洁的方法,下面是这个方法的详细讲解。
能分组分解的多项式有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。
比如:ax+ay+bx+by=a(x+y)+b(x+y)=(a+b)(x+y)我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。
同样,这道题也可以这样做。
ax+ay+bx+by=x(a+b)+y(a+b)=(a+b)(x+y)几道例题:1.5ax+5bx+3ay+3by解法:原式=5x(a+b)+3y(a+b)=(5x+3y)(a+b)说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。
2.x2-x-y2-y解法:原式=(x2-y2)-(x+y)=(x+y)(x-y)-(x+y)=(x+y)(x-y-1)利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决。
三一分法,例:a2-b2-2bc-c2原式=a2-(b+c)2=(a-b-c)(a+b+c)十字相乘法十字相乘法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。
十字相乘法在解题时是一个很好用的方法,也很简单。
这种方法有两种情况。
①x2+(p+q)x+pq型的式子的因式分解这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。
因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x2+(p+q)x+pq=(x+p)(x+q) .例1:x2-2x-8=(x-4)(x+2)②kx2+mx+n型的式子的因式分解如果有k=ab,n=cd,且有ad+bc=m时,那么kx2+mx+n=(ax+c)(bx+d).例2:分解7x2-19x-6图示如下:a=7 b=1 c=2 d=-3因为-3×7=-21,1×2=2,且-21+2=-19,所以,原式=(7x+2)(x-3).十字相乘法口诀:分二次项,分常数项,交叉相乘求和得一次项。
例3:6X2+7X+2第1项二次项(6X2)拆分为:2×3第3项常数项(2)拆分为:1×22(X)3(X)1 2对角相乘:1×3+2×2得第2项一次项(7X)纵向相乘,横向相加。
十字相乘法判定定理:若有式子ax2+bx+c,若b2-4ac为完全平方数,则此式可以被十字相乘法分解。
与十字相乘法对应的还有双十字相乘法,也可以学一学。
拆添项法这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。
要注意,必须在与原多项式相等的原则下进行变形。
例如:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=(bc+ca)(c-a)+(bc-ab)(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b).配方法对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。
属于拆项、补项法的一种特殊情况。
也要注意必须在与原多项式相等的原则下进行变形。
例如:x2+3x-40=x2+3x+2.25-42.25=(x+1.5)2-(6.5)2=(x+8)(x-5).二次多项式(根与系数关系二次多项式因式分解)例:对于二次多项式aX2+bX+c(a≠0).当△=b2-4ac≥0时,设aX2+bX+c=0的解为X1,X2=a(X2-(X1+X2)X+X1X2)=a(X-X1)(X-X2).分解步骤编辑①如果多项式的各项有公因式,那么先提公因式;②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解④分解因式,必须进行到每一个多项式因式都不能再分解为止。
也可以用一句话来概括:“先看有无公因式,再看能否套公式。
十字相乘试一试,分组分解要相对合适。
”例题编辑1.分解因式(1+y)2-2x2(1+y2)+x4(1-y)2.解:原式=(1+y)2+2(1+y)x2(1-y)+x4(1-y)2-2(1+y)x2(1-y)-2x2(1+y2)(补项)=[(1+y)+x2(1-y)]2-2(1+y)x2(1-y)-2x2(1+y2)(完全平方)=[(1+y)+x2(1-y)]2-(2x)2=[(1+y)+x2(1-y)+2x][(1+y)+x2(1-y)-2x]=(x2-x2y+2x+y+1)(x^2-x2y-2x+y+1)=[(x+1)2-y(x2-1)][(x-1)2-y(x2-1)]=[(x+1)2-y(x+1)(x-1)][(x-1)2-y(x+1)(x-1)]=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y).2.求证:对于任何整数x,y,下式的值都不会为33:x5+3x4y-5x3y2-15x2y3+4xy4+12y5.解:原式=(x5+3x4y)-(5x3y2+15x2y3)+(4xy4+12y5)=x4(x+3y)-5x2y2(x+3y)+4y4(x+3y)=(x+3y)(x4-5x2y2+4y4)=(x+3y)(x2-4y2)(x2-y2)=(x+3y)(x+y)(x-y)(x+2y)(x-2y).当y=0时,原式=x5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y 互不相同,而33不能分成四个以上不同因数的积,所以原命题成立。
3..△ABC的三边a、b、c有如下关系式:-c2+a2+2ab-2bc=0,求证:这个三角形是等腰三角形。
分析:此题实质上是对关系式的等号左边的多项式进行因式分解。
证明:∵-c2+a2+2ab-2bc=0,∴(a+c)(a-c)+2b(a-c)=0.∴(a-c)(a+2b+c)=0.∵a、b、c是△ABC的三条边,∴a+2b+c>0.∴a-c=0,即a=c,△ABC为等腰三角形。
4.把-12x2n×yn+18xn+2yn+1-6xn×yn-1分解因式。
解:-12x2n×yn+18xn+2yn+1-6xn×yn-1=-6xn×yn-1(2xn×y-3x2y2+1).[1]三、四个注意因式分解中的四个注意,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。
现举下例,可供参考。
例1 把-a2-b2+2ab+4分解因式。
解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-[(a-b)2-4]=-(a-b+2)(a-b-2)这里的“负”,指“负号”。
如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。
防止学生出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误。