山东省威海市文登区2019-2020学年九年级上学期期末数学试题(word无答案)
- 格式:doc
- 大小:427.10 KB
- 文档页数:7
山东省威海市文登区2019-2020学年九年级上学期期末数学试题一、选择题1.函数3x y x =-的自变量x 的取值范围是( ) A. 3x ≠B. 2x ≠C. 2x ≤D. 2x ≤且3x ≠【答案】C【解析】【分析】根据二次根式被开方数大于等于0,分式分母不等于0列式计算即可得解.【详解】由题意得,20x -≥且30x -≠,解得:2x ≤.故选:C .【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:①当函数表达式是整式时,自变量可取全体实数;②当函数表达式是分式时,考虑分式的分母不能为0;③当函数表达式是二次根式时,被开方数非负.2.若sinA cosB =,下列结论正确的是( )A. A B ∠=∠B. 90A B ∠+∠=oC. 180A B ∠+∠=oD. 以上结论均不正确 【答案】B【解析】【分析】利用互余两角的三角函数关系()90sinA cos A =︒-,得出90A B ∠∠=︒-.【详解】∵()90sinA cos A sinA cosB =︒-=,,∴90A B ∠∠︒-=,∴90A B ∠∠+=︒,故选:B .【点睛】本题考查了锐角三角函数的定义,掌握互为余角的正余弦关系:一个角的正弦值等于另一个锐角的余角的余弦值则这两个锐角互余.3.图1是一个底面为正方形的直棱柱,现将图1切割成图2的几何体,则图2的俯视图是()A. B. C. D.【答案】D【解析】【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【详解】从上面看,图2的俯视图是正方形,有一条对角线.故选:D.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.V的三个顶点均在格点上,则cos A的值为()4.如图,已知ABC【答案】D【解析】【分析】过B 点作BD ⊥AC 于D ,求得AB 、AC 的长,利用面积法求得BD 的长,利用勾股定理求得AD 的长,利用锐角三角函数即可求得结果.【详解】过B 点作BD ⊥AC 于D ,如图,由勾股定理得,AB =,AC ==∵11322ABC S AC BD BC ==⨯n n ,即BD ==在ABD n 中,AD 90B ∠=︒,AB =BD =,AD ===∴cos5AD A AB ===. 故选:D .【点睛】本题考查了解直角三角形以及勾股定理的运用,面积法求高的运用;熟练掌握勾股定理,构造直角三角形是解题的关键.5.在阳光的照射下,一块三角板的投影不会是( )A. 线段B. 与原三角形全等的三角形C. 变形的三角形D. 点【答案】D【解析】【分析】将一个三角板放在太阳光下,当它与阳光平行时,它所形成的投影是一条线段;当它与阳光成一定角度但不垂直时,它所形成的投影是三角形.【详解】解:根据太阳高度角不同,所形成的投影也不同.当三角板与阳光平行时,所形成的投影为一条线段;当它与阳光形成一定角度但不垂直时,它所形成的投影是三角形,不可能是一个点,故选D.【点睛】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应视其外在形状,及其与光线的夹角而定.6.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站在点E 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重合且高度恰好相同.此时测得墙上影子高1.2,0.6,30CD m DE m BD m ===(点,,B E D 在同一条直线上).已知小明身高EF 是1.6m ,则楼高AB 为( )A. 20mB. 21.2mC. 31.2mD. 31m【答案】B【解析】【分析】 过点C 作CN ⊥AB ,可得四边形CDME 、ACDN 是矩形,即可证明CFM CAN V V ∽,从而得出AN ,进而求得AB 的长.【详解】过点C 作CN ⊥AB ,垂足为N ,交EF 于M 点,∴四边形CDEM 、BDCN 是矩形,∴ 1.2300.6BN ME CD m CN BD m CM DE m =======,,,∴ 1.6 1.20.4MF EF ME m =-=-=,依题意知,EF ∥AB ,∴CFM CAN V V ∽, ∴CM FM CN AN =,即:0.60.430AN=, ∴AN=20,20 1.221.2AB AN BN =+=+=(米),答:楼高为21.2米.故选:B .【点睛】本题主要考查了相似三角形的应用,把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了转化的思想.7.如图,小明将一个含有45︒角的直角三角板绕着它的一条直角边所在的直线旋转一周,形成一个几何体,将这个几何体的侧面展开,得到的大致图形是( )A. B.C. D.【答案】C【解析】【分析】先根据面动成体得到圆锥,进而可知其侧面展开图是扇形,根据扇形的弧长公式求得扇形的圆心角,即可判别.【详解】设含有45︒角的直角三角板的直角边长为1,将一个含有45︒角的直角三角板绕着它的一条直角边所在的直线旋转一周,形成一个几何体是圆锥,此圆锥的底面周长为:22R ππ=,圆锥的侧面展开图是扇形,2180n r l ππ==扇形,即2180n ππ=,∴255n =≈︒,∵180255270︒<︒<︒,∴图C 符合题意,故选:C .【点睛】本题考查了点、线、面、体中的面动成体,解题关键是根据扇形的弧长公式求得扇形的圆心角. 8.已知抛物线243y x x =-+与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M .平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,则平移后的抛物线解析式为( )A. 221y x x =++B. 221y x x =+-C. 221y x x =-+D. 221y x x =--【答案】A【解析】【详解】解:当y =0,则2043x x =-+,,x ,1,,x ,3,=0,解得:x 1=1,x 2=3,,A ,1,0,,B ,3,0,,243y x x =-+=221x --(),,M 点坐标为:(2,,1,, ,平移该抛物线,使点M 平移后的对应点M '落在x 轴上,点B 平移后的对应点B '落在y 轴上,,抛物线向上平移一个单位长度,再向左平移3个单位长度即可,,平移后的解析式为:21y x =+()=221x x ++, 故选A,9.如图,在ABC V 中,,90AB AC CAB =∠=o,已知()()2,0,0,1A B ,把ABC V 沿x 轴负方向向左平移到'''A B C V 的位置,此时','B C 在同一双曲线k y x=上,则k 的值为( )A. 2-B. 4-C. 6-D. 8-【答案】C【解析】【分析】 作CN ⊥x 轴于点N ,根据AAS 证明CAN ABO ≅V V ,求得点C 的坐标;设△ABC 沿x 轴的负方向平移c 个单位,用c 表示出C '和B ',根据两点都在反比例函数图象上,求出k 的值,即可求出反比例函数的解析式.【详解】作CN ⊥x 轴于点N ,∵A(2,0)、B(0,1).∴AO=2,OB=1,∵90BAC CNA BAO ∠=∠=∠=︒,∴CAN ABO ∠=∠,在Rt CAN V 和Rt ABO V 中,90CNA BAO CAN ABO AB AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴()Rt CAN Rt ABO AAS ≅VV , ∴123AN BO CN AO NO NA AO =====+=,,,又∵点C 在第一象限,∴C(3,2);设△ABC 沿x 轴的负方向平移c 个单位,则() 32C c '-,,则()1B c '-, , 又点C '和B '在该比例函数图象上,把点C '和B '的坐标分别代入k y x =, 得()23k c c =-=-,解得:6c =,∴6k =-,故选:C .【点睛】本题是反比例函数与几何的综合题,涉及的知识有:全等三角形的判定与性质,勾股定理,坐标与图形性质,利用待定系数法求函数解析式,平移的性质.10.四位同学在研究函数y=x 2+bx+c(b,c 是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x 2+bx+c=0一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A. 甲B. 乙C. 丙D. 丁【答案】B【解析】【分析】假设两位同学的结论正确,用其去验证另外两个同学的结论,只要找出一个正确一个错误,即可得出结论(本题选择的甲和丙,利用顶点坐标求出b,c 的值,然后利用二次函数图象上点的坐标特征验证乙和丁的结论). 【详解】假设甲和丙的结论正确,则212434b c b ⎧-⎪⎪⎨-⎪⎪⎩==, 解得:24b c -⎧⎨⎩==, ∴抛物线的解析式为y=x 2-2x+4,当x=-1时,y=x 2-2x+4=7,∴乙的结论不正确;当x=2时,y=x 2-2x+4=4,的∴丁的结论正确.∵四位同学中只有一位发现的结论是错误的,∴假设成立.故选B,【点睛】本题考查了抛物线与x 轴的交点、二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质求出b,c 值是解题的关键.11.正五边形ABCDE 内接于圆,连接,,,AC AD BE BE 分别与,AC AD 交于点F ,G ,连接.DF 若2AB =,下列结论:①18FDG ∠=︒②1BF =③四边形CDEF 是菱形④2CDEF ()9S =+四边形;其中正确的个数为( )A. 4个B. 3个C. 2个D. 1个【答案】B【解析】【分析】 ①先根据正五方形ABCDE 的性质求得∠ABC ,由等边对等角可求得:∠BAC=∠ACB=36°,再利用角相等求BC=CF=CD ,求得∠CDF=∠CFD ,即可求得答案;②证明△ABF ∽△ACB ,得AB BF AC BC=,代入可得BF 的长; ③先证明CF ∥DE 且CF DE =,证明四边形CDEF 是平行四边形,再由 CF CD =证得答案; ④根据平行四边形的面积公式可得:222CDEF ()S EF DM =n 四边形,即可求得答案.【详解】①∵五方形ABCDE 是正五边形,AB BC =, ∴3601801085ABC BCD CDE ∠∠∠︒===︒-=︒, ∴36BAC ACB ∠∠==︒,∴1083672ACD BCD ACB ∠∠∠=-=︒-︒=︒,同理得:36ADE ∠=︒,∵108BAE ∠=︒,AB AE =,∴36ABE ∠=︒,∵36ADE ABE ∠∠==︒,∴1083672CBF ABC ABE ∠∠∠=-=︒-︒=︒,∴180180723672CFB CBF ACB ∠∠∠=︒--=︒-︒-︒=︒, 则CBF CFB ∠=∠,∴BC FC =,∵BC CD =,∴CD BC FC ==, ∴180180725422ACD CDF CFD ∠∠∠︒-︒-︒====︒, ∴108543618FDG CDE CDF ADE ∠∠∠∠=--=︒-︒-︒=︒; 所以①正确;②∵∠ABE=∠ACB=36°,∠BAF=∠CAB ,∴△ABF ∽△ACB , ∴AB BF AC BC=, ∵36BAC ABE ∠∠==︒,∴AF BF =,∵2BC FC AB ===,∴2AC AF FC BF BC BF =+=+=+, ∴222BF BF =+,解得:1BF =-(负值已舍);所以②正确;③∵ACD ∠ 72=︒,108CDE ∠=︒,∴ 180ACD CDE ∠∠+=︒,∴CF ∥DE ,∵2CF DE ==,∴四边形CDEF 是平行四边形,∵ 2CF CD ==,∴四边形CDEF 是菱形,所以③正确;④如图,过D 作DM ⊥EG 于M ,同①的方法可得2DG DE ==,51EG BF ==-,∴115122EM MG EG BF -====, 222222DM DE EM =-=-=⎝⎭∴222CDEF 10()4104S EF DM +==⨯=+n 四边形 所以④错误;综上,①②③正确,共3个,故选:B【点睛】本题考查了相似三角形的判定和性质,勾股定理,圆内接正五边形的性质、平行四边形和菱形的判定和性质,有难度,熟练掌握圆内接正五边形的性质是解题的关键.12.如图,y 轴右侧一组平行于y 轴的直线12345,,,,l l l l l ···,两条相邻平行线之间的距离均为1,以点O 为圆心,分别以1,2,3,4,5,6···为半径画弧,分别交y 轴, 12345,,,,l l l l l ···于点12345,,,,,P P P P P P ···则点2019P 的坐标为( )A. (B. (C. (D. ( 【答案】C【解析】【分析】 根据题意,利用勾股定理求出1P ,2P ,3P ,L ,nP 纵坐标,得到各点坐标,找到规律即可解答.【详解】如图,连接1OP 、2OP 、3OP , 点1P=1P 的坐标为( , 点2P=,点2P 的坐标为(2 , 点3P=,点3P 的坐标为(3 ,L 点nP==点n P 的坐标为(n ,∴点2019P 的坐标为(2019 ,故选:C【点睛】本题考查了一次函数图象上点的坐标特征,熟练运用勾股定理是解题的关键. 二、填空题13.从实数2,,603sin πo 中,任取两个数,正好都是无理数的概率为________. 【答案】13 【解析】【分析】画树状图展示所有等可能的结果数,再找出两次选到的数都是无理数的结果数,然后根据概率公式求解.【详解】画树状图为:则共有6种等可能的结果,其中两次选到数都是无理数有(,60sin πo )和(60,sin πo)2种, 所以两次选到的数都是无理数的概率2163==. 故答案为:13. 【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.14.如图,在ABC V 中,90,30,C A EF ∠=︒∠=︒是斜边AB 的垂直平分线,分别交,AB AC 于点,E F ,若BC =CF =______.【答案】2【解析】【分析】 连接BF ,根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF ,再根据等边对等角的性质求出的∠ABF=∠A ,然后根据三角形的内角和定理求出∠CBF ,再根据三角函数的定义即可求出CF .【详解】如图,连接BF ,∵EF 是AB 的垂直平分线,∴AF=BF ,∴30ABF A ∠∠==︒,18018030309030CBF A ABF C ∠∠∠∠=︒---=︒-︒-︒-︒=︒,在△BCF 中,∴tan CBF tan 30CF BC ∠=︒=== ∴2CF =.故答案为:2. 【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角函数的定义,熟记性质并作出辅助线是解题的关键.15.抛物线2y x mx n =-++的对称轴过点()1,5A -,点A 与抛物线的顶点B 之间的距离为4,抛物线的表达式为______.【答案】y=-x 2-2x 或y=-x 2-2x+8【解析】【分析】根据题意确定出抛物线顶点坐标,进而确定出m 与n 的值,即可确定出抛物线解析式.【详解】∵抛物线2y x mx n =-++的对称轴过点()1,5A -, ∴设顶点坐标为:()1k -,, 根据题意得:54k -=,解得:9k =或1k =抛物线2y x mx n =-++的顶点坐标为(-1,1)或(-1,9), 可得:122b m a -==-,2244144ac b n m a ---==-或2494n m --=-, 解得:2m =-,0n =或8n =,则该抛物线解析式为:22y x x =--或228y x x =--+,故答案为:22y x x =--或228y x x =--+.【点睛】本题考查了待定系数法求二次函数解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.16.如图,平行四边形,ABCD O e 分别切,,CD AD BC 于点,,E F G ,连接CO 并延长交AD 于点H ,连接,AG AG 与HC 刚好平行,若4,5AB AD ==,则O e 的直径为______.【答案】【解析】【分析】先证得四边形AGCH 是平行四边形,则AH CG =,再证得DH DC =,求得1AH =, 3DE =,证得DO ⊥HC ,根据~Rt OCE Rt DOE n n ,即可求得半径,从而求得结论.【详解】∵四边形ABCD 是平行四边形,∴AD ∥BC ,∵AG ∥HC ,∴四边形AGCH 是平行四边形,∴AH CG =,∵CG CE 、是,O 的切线,且切点为G 、E ,∴CG CE AH ==,∠GCH =∠HCD ,∵AD ∥BC ,∴∠DHC =∠GCH ,∴∠DHC =∠HCD ,∴三角形DHC 为等腰三角形,∴4DH DC AB ===,∴541AH AD DH =-=-=,∴1CE AH ==,413DE DC CE =-=-=,连接OD 、OE ,如图,∵DE DF 、是,O 的切线,且切点为E 、F ,∴DO 是∠FDE 的平分线,又∵DH DC =,∴DO ⊥HC,∴∠DOC =90︒,∵CD 切,O 于E ,∴OE ⊥CD,∵∠OCE +∠COE=90︒,∠DOE +∠COE=90︒,∴∠OCE=∠DOE ,∴~Rt OCE Rt DOE n n , ∴OE CE DE OE =,即13OE OE=,∴OE =∴,O 的直径为:故答案为:【点睛】本题考查了平行四边形的判定和性质,切线长定理,相似三角形的判定和性质,等腰三角形的判定和性质,证得DHC n 为等腰三角形是解题的关键.17.如图,点A 是反比例函数()40y x x=>的图象上一点,直线y kx b =+过点A 与y 轴交于点B ,与x 轴交于点C .过点A 做AD x ⊥轴于点D ,连接BD ,若BOC V 的面积为3,则BOD V 的面积为_______.【答案】32-+ 【解析】【分析】先由△BOC 的面积得出26b k =①,再判断出△BOC ∽△ADC ,得出24a k ab +=②,联立①②求出ab ,即可得出结论.【详解】设点A 的坐标为4(0)a a a ⎛⎫> ⎪⎝⎭,, ∴4AD OD a a==,, ∵直线y kx b =+过点A 并且与两坐标轴分别交于点B ,C ,∴()00b B b C k ⎛⎫- ⎪⎝⎭,,,, ∴ BO b =,b OC k=, ∵△BOC 的面积是3, ∴BOC 11322b S OB OC b k==⨯⨯=V n , ∴26b k =, ∴26b k =① ∵AD ⊥x 轴,∴OB ∥AD ,∴△BOC ∽△ADC , ∴OC OB CD AD=, ∴4bb k b a k a =+, ∴24a k ab +=②,联立①②解得,3ab =-舍)或3ab =-+∴BOD 11 22S OD OB ab ===V n. 【点睛】本题是反比例函数与几何的综合题,主要考查了坐标轴上点的特点,反比例函数上点的特点,相似三角形的判定和性质,得出24a k ab +=是解本题的关键.18.把两块同样大小的含60︒角的三角板的直角重合并按图1方式放置,点P 是两块三角板的边DE 与AC 的交点,将三角板CDE 绕点C 按顺时针方向旋转45︒到图2的位置,若BC a =,则点P 所走过的路程是_________.【答案】(1)2a 【解析】【分析】 两块三角板的边DE 与AC 的交点P 所走过的路程,需分类讨论,由图①的点P 运动到图②的点F ,由图②的点F 运动到图③的点G ,总路程为PF FG +,分别求解即可.【详解】如图,两块三角板的边DE 与AC 的交点P 所走过的路程,分两步走:(1)由图①的点P 运动到图②的点F ,此时:AC ⊥DE ,点C 到直线DE 的距离最短,所以CF 最短,则PF 最长,根据题意,CD BC a ==,C C 60DE BA ∠∠==︒,在Rt CDF n 中,∴sin sin 60CF CD D CD ∠==︒=;(2)由图②的点F 运动到图③的点G ,过G 作GH ⊥DC 于H ,如下图,∵45DCG ∠=︒,且GH ⊥DC ,∴CHG n 是等腰直角三角形,∴HG HC =,设CG x =,则sin 45HG HC CG x ==︒=,∴2DH CD HC a x =-=-,∴tan tan 602x GH D DH ∠=︒===解得:2x =,即CG =, 点P 所走过的路程:2PF FG PC CF CG CF PC CG CF +=-+-=+-,2a =-12a ⎛⎫= ⎪ ⎪⎝⎭故答案为:12a ⎛⎫ ⎪ ⎪⎝⎭【点睛】本题是一道需要把旋转角的概念和解直角三角形相结合求解的综合题,考查学生综合运用数学知识的能力.正确确定点P 所走过的路程是解答本题的关键.三、解答题19.(1)计算:121260453045(2tan tan cos sin --︒-⎛⎫ ⎝⎭-⎪o o o o . (2)如图,正方形纸板ABCD 在投影面a 上的正投影为1111D C B A ,其中边AB CD 、与投影面平行,,AD BC 与投影面不平行.若正方形ABCD 的边长为5厘米,145BCC ∠=o ,求其投影1111D C B A 的面积.【答案】(1)5(2. 【解析】 【分析】(1)代入特殊角的三角函数值,根据实数的混合运算法则计算即可;(2) 作BE ⊥CC 1于点E ,利用等腰直角三角形的性质求得BE 的长即可求得BC 的正投影11B C 的长,即可求得答案.【详解】(1) 121260453045(2tan tan cos sin --︒+⎛⎫ ⎝⎭-⎪o oo o21=21(4--+--2=21-+-=52; (2)过点B 作BE ⊥CC 1于点E ,在Rt BCE n 中,45BCE ∠=︒,5BC =,∴sin 45BE BC =︒=, ∵1BB ⊥11B C ,1CC ⊥11B C ,且BE ⊥CC 1, ∴四边形11BB C E 为矩形,∴11B C BE ==, ∵115C D CD ==,∴11111111522A B C D S B C C D ===n 四边形. 【点睛】本题主要考查了平行投影的性质,特殊角的三角函数值,等腰直角三角形的性质,本题理解并掌握正投影的特征是解题的关键:正投影是在平行投影中,投影线垂直于投影面产生的投影.20.一个可以自由转动的转盘,其盘面分为3等份,分别标上数字3,4,5.小颖准备转动转盘5次,现已转动3次,每一次停止后,小颖将指针所指数字记录如下:小颖继续自由转动转盘2次,判断是否可能发生“这5次指针所指数字的平均数不小于3.6且不大于3.8”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,请说明理由.(指针指向盘面等分线时为无效转次.) 【答案】能,5=9P .【解析】 【分析】根据平均数的定义求解可得后两次数字之和为8或9;根据题意画出树状图,再利用概率公式求其概率. 详解】能设第4次、第5次转出的数字分别为a 和b , 根据题意得:()13.6433 3.85a b ≤++++≤, 解得:89a b ≤+≤, 所以后两次数字之和为8或9; 画出树状图:共有9种等情况数,其中“两次数字之和为8或9”的有5种, 所以()5 3.6 3.859P =这次指针所指数字的平均数不小于且不大于. 【【点睛】本题考查用列表法或树状图的方法解决概率问题;求一元一次不等式组的方法以及概率公式的运用.求出事件的所有情况和符合条件的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.21.随着私家车的增多,“停车难”成了很多小区的棘手问题.某小区为解决这个问题,拟建造一个地下停车库.如图是该地下停车库坡道入口的设计示意图,其中,入口处斜坡AB 的坡角为20︒,水平线12,, 1.5AC m CD AC CD m =⊥=.根据规定,地下停车库坡道入口上方要张贴限高标志,以提醒驾驶员所驾车辆能否安全驶入.请求出限制高度为多少米,(结果精确到 0.1m ,参考数据:200.34sin ≈o ,200.94cos ≈o ,200.36tan ≈o ).【答案】2.6米. 【解析】 【分析】根据锐角三角函数关系得出CF 以及DF 的长,进而得出DE 的长即可得出答案. 【详解】过点D 作DE ⊥AB 于点E ,延长CD 交AB 于点F .在△ACF 中,∠ACF=90°,∠CAF=20°,AC=12, ∴CFtan CAF AC∠=, ∴tan 20120.36 4.32CF AC =︒≈⨯=n (m), ∴ 4.32 1.5 2.82DF CF CD =-=-=(m),在△DFE 中,90902070DFE CAF ∠∠=︒-=︒-︒=︒, 又∵DE ⊥AB ,∴907020FDE ∠=︒-︒=︒, ∴DEcos FDE DF∠=, ∴ 2.8220 2.820.94 2.65 2.6DE DF cos FDE cos ∠==⨯︒≈⨯=≈n (m), 答: 地下停车库坡道入口限制高度约为2.6m .【点睛】本题考查了解直角三角形的应用,主要是余弦、正切概念及运算,关键把实际问题转化为数学问题加以计算.22.如图,在平面直角坐标系中,矩形ABOC 的顶点C 在y 轴上,B 在x 轴上,把矩形ABOC 沿对角线BC 所在的直线对折,点A 恰好落在反比例函数()0ky k x=≠的图象上点D 处,BD 与y 轴交于点E ,延长CD 交x 轴于点F ,点D 刚好是CF 的中点.已知B 的坐标为()2,0-.(1)求反比例函数()0ky k x=≠的函数表达式; (2)若Q 是反比例函数()0ky k x=≠图象上的一点,P 点在x 轴上,若以,,,P Q B E 为顶点的四边形是平行四边形,请直接写出P 点的坐标_________.【答案】(1)y =;(2)1(,0)2-,1(,0)2,(72-,0).【解析】 【分析】(1)证得BD 是CF 的垂直平分线,求得30CBD DBF CBA ∠=∠=∠=︒,作DG ⊥BF 于G ,求得点D 的坐标为(1,从而求得反比例函数的解析式; (2)分3种情形,分别画出图形即可解决问题.【详解】(1) ∵四边形ABOC 是矩形, ∴AB=OC ,AC=OB , 90CAB ∠=︒, 根据对折的性质知,ABC DBC ≅n n ,∴90CDB CAB ∠=∠=︒,CBD CBA ∠=∠,AB=DB , 又∵D 是CF 的中点, ∴BD 是CF 的垂直平分线, ∴BC=BF ,CBD DBF ∠=∠, ∴CBD DBF CBA ∠=∠=∠, ∵90ABO ∠=︒,∴30CBD DBF CBA ∠=∠=∠=︒,∵点B 的坐标为()20-,, ∴2AC OB ==,在Rt ABC n 中,30CBA ∠=︒,2AC =,90CAB ∠=︒,∴AB =过D 作DG ⊥BF 于G ,如图,在Rt BDG n 中,30DBG ∠=︒,BD AB ==,90BGD ∠=︒,∴12DG BD ==3BG ==, ∴321OG BG BO =-=-=,∴点D 的坐标为( ,代入反比例函数的解析式ky x=得:1k xy ===∴反比例函数的解析式y =;(2) 如图①、②中,作EQ ∥x 轴交反比例函数的图象于点Q ,在Rt BEO n 中, 2OB =,30EBO ∠=︒,∴tan 302EO OB =︒==n∴点E 的坐标为0⎛ ⎝⎭,点Q 纵坐标与点E y =得:=, 解得:32x =,∴点Q 的坐标为323⎛ ⎝⎭, , ∴32EQ =, ∵P B E Q 、、、四点构成平行四边形,∴132PB PB EQ === ∴点1P P 、的坐标分别为102P ⎛⎫- ⎪⎝⎭,,1702P ⎛⎫- ⎪⎝⎭, ; 如图③中,2P EBQ 构成平行四边形,作QM ∥y 轴交x 轴于点M ,∵四边形2P EBQ 为平行四边形, ∴2EB P Q =,2EBP ∠ 2QP B =∠, ∴2Rt EOB Rt QMP ≅n n ,∴QM EO ==,22MP OB ==,∴点Q 的坐标为32⎛- ⎝⎭,∴32MO =, ∴2231222P O MP MO =-=-=, ∴点2P 的坐标为102⎛⎫ ⎪⎝⎭,, 综上,符合条件点P 的坐标有:102⎛⎫- ⎪⎝⎭,,702⎛⎫- ⎪⎝⎭, ,102⎛⎫ ⎪⎝⎭,; 【点睛】本题考查反比例函数综合题、矩形的性质、翻折变换、直角三角形中30度角的性质、平行四边形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用分类讨论的思想思考问题.23.某商场销售一种电子产品,进价为20元/件.根据以往经验:当销售单价为25元时,每天的销售量是250件;销售单价每上涨1元,每天的销售量就减少10件.(1)销售该电子产品时每天的销售量y (件)与销售单价x (元)之间的函数关系式为______;(2)商场决定每销售1件该产品,就捐赠()06a a <≤元给希望工程,每天扣除捐赠后可获得最大利润为1440元,求a 的值.【答案】(1)10500y x =-+;(2)a=6. 【解析】 【分析】(1)利用“实际销售量=原销售量-10×上涨的钱数”可得;(2) 根据单件利润减去捐赠数为最后单件利润,再根据销售利润等于单件利润乘以销售量即可求解. 【详解】(1) 由题意得,()250102510500y x x =--=-+, ∴函数关系式为:10500y x =-+(2)设每天扣除捐赠后可获得利润为w 元, 依题意得: (20)(10500)w x a x =---+ ()2107001050010000x a x a =-++--∵-10<0,且抛物线的对称轴为直线352ax =+, ∴当352a x =+,y 的最大值是1440, ∴35201035500144022a a a ⎡⎤⎛⎫⎛⎫+---⨯++= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 化简得:()230576a -=,解得:154a =(不合题意,舍去),26a = . 答:a 的值为6.【点睛】本题主要考查了二次函数的应用,根据销量与售价之间的关系得出函数关系式是解题关键.24.如图,AB 是O e 的直径,点C 在»AB上,»»BC 2AC =,FD 切O e 于点B ,连接AC 并延长交FD 于点D ,点E 为OB 中点,连接CE 并延长交FD 于点F ,连接AF ,交O e 于点G ,连接BG .(1)求证:3CD AC =;(2)若O e 的半径为2,求BG 的长.【答案】(1)证明见解析;(2)BG = 【解析】 【分析】(1)利用圆周角定理及¶¶2BC AC =,求得∠ABC=30°,利用切线的性质求得∠D=30°,根据直角三角形30度角的性质从而证出3CD AC =;(2)先证得△OAC 为等边三角形,求得CM 的长,过点C 作CM ⊥AO 于点M ,证出△CME ∽△FBE ,求出BF =,利用勾股定理求出AF =BG【详解】(1) 连接BC ,∵AB 是⊙O 的直径,¶¶2BC AC =,∴∠ACB=90°,∠ABC=30°,∠BAC=60°, ∴12AC AB =, ∵BD 切O e 于点B , ∴AB ⊥DB ,∴∠D=90︒-∠BAD=90︒-60°=30°, ∴AD=2AB , ∴AD=4AC , ∴3CD AC =;(2) 连接OC ,过点C 作CM ⊥AO 于点M ,∵∠BAC=60°,OA=OC , ∴△OAC 为等边三角形, ∴AC=OA=OC=2,OM=MA=1, ∵CM ⊥AO , ∴OM=MA=1OA 2=1, 在Rt ACM n 中, 2AC =,EAC 60∠=︒,∴sin EAC 2sin 6022CM AC ∠==︒=⨯=, ∵点E 为OB 中点, ∴1BE EO ==, ∴OM 2EM EO =+=, ∵BF 切O e 于点B , ∴AB ⊥FB , ∴∠FBE=90︒, ∵∠FEB=∠CEM , ∴Rt FBE Rt CME V V ∽, ∴FB BECM ME=12=,∴FB =在Rt ABF n 中,FB =4AB =,90ABF ∠=︒,∴2AF ===, ∵AB 是⊙O 的直径∴∠AGB=90°,∴BG ⊥AF , ∵1122ABF S BF AB AF BG ==n n n ,4BG =,∴BG =【点睛】本题是圆的综合题,考查了切线的性质、相似三角形的判定与性质、圆周角定理、勾股定理以及三角形面积的计算,学会添加常用辅助线,熟练掌握圆周角定理,并能进行推理计算是解决问题的关键. 25.如图1,抛物线2y ax bx c =++与x 轴交于点()()2,0,8,0A B -,与y 轴交于点()0,4C .(1)求抛物线的表达式;(2)点M 为抛物线的顶点,在y 轴上是否存在点N ,使90MNB ∠=︒?若存在,求出点N 的坐标;若不存在,说明理由;(3)如图2,位于y 轴右侧且垂直于x 轴的动直线l 沿x 轴正方向从O 运动到B (不含O 点和B 点),分别与抛物线、直线BC 以及x 轴交于点,,P E F ,过点P 作PQ BC ⊥于点Q ,求面积PQE V 的最大值.【答案】(1)213442y x x =-++;(2)不存在,理由见解析;(3)PQE S V 最大值为165. 【解析】【分析】 (1)利用待定系数法求出解析式;(2) 设点N 的坐标为(0,m ),过点M 做MH ⊥y 轴于点H ,证得△MHN ∽△NOB ,利用对应边成比例,得到2425960m m -+=,方程无实数解,所以假设错误,不存在;(3) △PQE ∽△BOC ,得22PQEBOC S PE S BC =V V ,得到215PQE S PE =V ,当PE 最大时,PQE S V 最大,求得直线BC 的解析式,设点P 的坐标为 213442n n n ⎛⎫-++ ⎪⎝⎭,,则E 142n n ⎛⎫-+ ⎪⎝⎭,,再求得PE 的最大值,从而求得答案. 【详解】(1) 把点A (-2,0)、B (8,0)、C (0,4)分别代入2y ax bx c =++,得:42064804a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得14324a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩, 则该抛物线的解析式为:213442y x x =-++; (2)不存在∵抛物线经过A (-2,0)、B (8,0),∴抛物线的对称轴为()8232x +-==, 将3x =代入213442y x x =-++得:254y =, ∴抛物线的顶点坐标为:2534M ⎛⎫ ⎪⎝⎭, ,假设在y 轴上存在点N ,使∠MNB =90︒,设点N 的坐标为(0,m ),过顶点M 做MH ⊥y 轴于点H ,∴∠MNH +∠ONB =90︒,∠MNH +∠HMN =90︒,∴∠HMN=∠ONB ,∴△MHN ∽△NOB , ∴MH HN NO OB=, ∵B (8,0),N (0,m ),2534M ⎛⎫ ⎪⎝⎭, , ∴25834OB NO m HM HN m ====-,,,, ∴25348m m -=, 整理得:2425960m m -+=,∵()2242544969110b ac =-=--⨯⨯=-<⊿,∴方程无实数解,所以假设错误, y 轴上不存在点N ,使∠MNB =90︒;(3) ∵PQ ⊥BC ,PF ⊥OB ,∴90PQE BFE BOC ∠=∠=∠=︒,∴EF ∥OC ,∴PEQ BEF BCO ∠=∠=∠,∴△PQE ∽△BOC , 得22PQEBOC S PE S BC =V V , ∵B (8,0)、C (0,4),∴8OB =,4OC =,222228480BC OB OC =+=+=, ∴BOC 11841622S OB OC ==⨯⨯=V n , ∴2222116805PQE BOC PE PE S S PE BC ==⨯=V V , ∴当PE 最大时,PQE S V 最大,设直线BC 的解析式为y kx b =+,将B (8,0)、C (0,4)代入得804k b b +=⎧⎨=⎩, 解得:124k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为142y x =-+, 设点P 的坐标为 213442n n n ⎛⎫-++ ⎪⎝⎭,, 则点E 的坐标为142n n ⎛⎫-+ ⎪⎝⎭,,∴()222131114424442244PE n n n n n n ⎛⎫=-++--+=-+=--+ ⎪⎝⎭, ∵104-<, ∴当4n =时,PE 有最大值为4, ∴PQE S V 最大值为2211164555PE =⨯=. 【点睛】本题是二次函数的综合题型,其中涉及到的知识点有:待定系数法求二次函数、一次函数解析式,点坐标,相似三角形的判定与性质和三角形的面积求法,特别注意利用数形结合思想的应用.。
威海市2020年九年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九下·郑州月考) 下列方程中,没有实数根的是()A .B .C .D .2. (2分) (2019八上·秀洲月考) 下列图案是轴对称图形的为()A .B .C .D .3. (2分) (2018九上·黄石期中) 如果将抛物线向下平移1个单位,那么所得新抛物线的表达式是()A .B .C .D .4. (2分)将A,B两位篮球运动员在一段时间内的投篮情况记录如下:投篮次数102030405060708090100 A投中次7152330384553606875数0.7000.7500.7670.7500.7600.7500.7570.7500.7560.750投中频率B投中次142332354352617080数0.8000.7000.7670.8000.7000.7170.7430.7630.7780.800投中频率下面有三个推断:①投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767.②随着投篮次数的增加,A运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A运动员投中的概率是0.750.④投篮达到200次时,B运动员投中次数一定为160次.其中合理的是()A . ①B . ②C . ①③D . ②③5. (2分) (2018九上·杭州月考) 一辆新汽车原价万元,如果每年折旧率为,两年后这辆汽车的价钱为元,则关于的函数关系式为()A . y=20(1+x)2B . y=20(1-x)2C . y=20(1+x)D . y=20+x26. (2分)(2019·枣庄模拟) 如图,在中平分交于点,过点作交于点若,则的大小为()A .B .C .D .7. (2分)若时钟上的分针走了10分钟,则分针旋转了()A . 10°B . 20°C . 30°D . 60°8. (2分) (2019八下·衢州期末) 已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线 ( x >0)经过D点,交AB于E点,且OB∙AC=160,则点E的坐标为().A . (3,8)B . (12,)C . (4,8)D . (12,4)9. (2分)如图中的正方形的边长都相等,其中阴影部分面积相等的图形的个数是()A . 1个B . 2个C . 3个D . 4个10. (2分)(2017·巨野模拟) 一水池有甲、乙、丙三个水管,其中甲、丙两管为进水管,乙管为出水管.单位时间内,甲管水流量最大,丙管水流量最小.先开甲、乙两管,一段时间后,关闭乙管开丙管,又经过一段时间,关闭甲管开乙管.则能正确反映水池蓄水量y(立方米)随时间t(小时)变化的图象是()A .B .C .D .二、填空题 (共8题;共10分)11. (1分) (2019九上·三门期末) 点M(1,2)关于原点的对称点的坐标为________.12. (1分) (2018八下·瑶海期中) 若关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0的一个根为0,则m 值是________.13. (2分)(2020·苏州模拟) 如图,点E在正方形ABCD的边AB上,以CE为边向正方形ABCD外部作正方形CEFG,连接AF, P、Q分别是AF、AB的中点,连接PQ.若AB=6,CE=4,则PQ=________.14. (2分) (2018九上·宝应月考) 如图,抛物线y=ax2+bx+c交x轴于(﹣1,0)、(3,0)两点,以下四个结论正确的是(用序号表示)________.( 1 )图象的对称轴是直线x=1(2)当x>1时,y随x的增大而减小(3)一元二次方程ax2+bx+c=0的两个根是﹣1和3(4)当﹣1<x<3时,y<0.15. (1分)(2020·西安模拟) 如图,已知,在矩形AOBC中,OB=4,OA=3,分别以OB、OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F点的反比例函数y(k>0)的图象与AC边交于点E,将△CEF沿E对折后,C点恰好落在OB上的点D处,则k的值为________.16. (1分) (2019八下·宽城期末) 如图,在平面直角坐标系中,一次函数和函数的图象交于A、B两点.利用函数图象直接写出不等式的解集是________.17. (1分) (2020八下·武汉期中) 如图,点P(-2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的坐标为________.18. (1分)观察下列图形,它们是按一定规律排列的,依照此规律,第个图形共有________个三、解答题 (共6题;共59分)19. (2分)(2017·沂源模拟) 在一个不透明的盒子里,装有三个分别写有数字﹣1,0,1的乒乓球(形状,大小一样),先从盒子里随即取出一个乒乓球,记下数字后放回盒子,摇匀后再随即取出一个乒乓球,记下数字.(1)请用树状图或列表的方法求两次取出乒乓球上数字相同的概率;(2)求两次取出乒乓球上数字之积等于0的概率.20. (15分)(2020·安顺) 如图,一次函数的图象与反比例函数的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数的图象向下平移2个单位,求平移后的图象与反比例函数图象的交点坐标;(3)直接写出一个一次函数,使其过点,且与反比例函数的图象没有公共点.21. (2分) (2018九上·丰台期末) 如图,人工喷泉有一个竖直的喷水枪AB,喷水口A距地面2m,喷出水流的运动路线是抛物线. 如果水流的最高点P到喷水枪AB所在直线的距离为1m,且到地面的距离为3.6m,求水流的落地点C到水枪底部B的距离.22. (10分)(2019·郫县模拟) 如图,AB是⊙O的直径,AC切⊙O于点A,AC=AB,CO的延长线交⊙O于点F,BP的延长线交AC于点E,连接AP、AF.(1)求证:A F∥BE;(2)求证:;(3)若AB=2,求tan∠F的值.23. (15分) (2019七下·仁寿期中) 某电信公司最近开发A、B两种型号的手机,一经营手机专卖店销售A、B两种型号的手机,上周销售1部A型3部B型的手机,销售额为8400元。
九年级上册威海数学期末试卷专题练习(解析版)一、选择题1.如图,四边形ABCD 内接于O ,若40A ∠=︒,则C ∠=( )A .110︒B .120︒C .135︒D .140︒ 2.如图,已知AB 为O 的直径,点C ,D 在O 上,若28BCD ∠=︒,则ABD ∠=( )A .72︒B .56︒C .62︒D .52︒3.如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M ,N .则线段BM ,DN 的大小关系是( )A .BM >DNB .BM <DNC .BM=DND .无法确定4.如图,在△ABC 中,点D 、E 分别在边BA 、CA 的延长线上,AB AD=2,那么下列条件中能判断DE ∥BC 的是( )A .12AE EC =B .2EC AC = C .12DE BC = D .2AC AE= 5.如图,ABC △内接于⊙O ,30BAC ∠=︒,8BC = ,则⊙O 半径为( )A .4B .6C .8D .126.在一个不透明的口袋中装有3个红球和2个白球,它们除颜色不同外,其余均相同.把它们搅匀后从中任意摸出1个球,则摸到红球的概率是( )A .14B .34C .15D .357.如图在△ABC 中,点D 、E 分别在△ABC 的边AB 、AC 上,不一定能使△ADE 与△ABC 相似的条件是( )A .∠AED=∠B B .∠ADE=∠C C .AD DE AB BC= D .AD AE AC AB= 8.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( ) A .相交B .相切C .相离D .无法确定 9.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm 10.二次函数y =()21x ++2的顶点是( )A .(1,2)B .(1,−2)C .(−1,2)D .(−1,−2)11.如图所示的网格是正方形网格,则sin A 的值为( )A .12B .22C .35D .4512.下列说法正确的是( )A .所有等边三角形都相似B .有一个角相等的两个等腰三角形相似C .所有直角三角形都相似D .所有矩形都相似二、填空题13.若x 1,x 2是一元二次方程2x 2+x -3=0的两个实数根,则x 1+x 2=____.14.在△ABC 中,∠C =90°,cosA =35,则tanA 等于 . 15.长度等于62的弦所对的圆心角是90°,则该圆半径为_____.16.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.17.如图,抛物线214311515y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.18.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.19.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.20.如图,正方形ABCD 的边长为5,E 、F 分别是BC 、CD 上的两个动点,AE ⊥EF .则AF 的最小值是_____.21.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.22.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.23.已知二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2),则y 1_____y 2.(填“>”“<”或“=”)24.如图,AE 、BE 是△ABC 的两个内角的平分线,过点A 作AD ⊥AE .交BE 的延长线于点D .若AD =AB ,BE :ED =1:2,则cos ∠ABC =_____.三、解答题25.(1)解方程:27100x x -+=(2)计算:cos60tan 452cos 45︒⨯︒-︒26.利用一面墙(墙的长度为20m ),另三边用长58m 的篱笆围成一个面积为200m 2的矩形场地.求矩形场地的各边长?27.如图,点O 为Rt △ABC 斜边AB 上的一点,以OA 为半径的⊙O 与边BC 交于点D ,与边AC 交于点E ,连接AD ,且AD 平分∠BAC .(1)试判断BC 与⊙O 的位置关系,并说明理由;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).28.定义:如图1,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,若∠MPN绕点P旋转时始终满足OM•ON=OP2,则称∠MPN是∠AOB的“相关角”.(1)如图1,已知∠AOB=60°,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,且∠MPN=150°.求证:∠MPN是∠AOB的“相关角”;(2)如图2,已知∠AOB=α(0°<α<90°),OP=3,若∠MPN是∠AOB的“相关角”,连结MN,用含α的式子分别表示∠MPN的度数和△MON的面积;(3)如图3,C是函数4yx=(x>0)图象上的一个动点,过点C的直线CD分别交x轴和y轴于点A,B两点,且满足BC=3CA,∠AOB的“相关角”为∠APB,请直接写出OP的长及相应点P的坐标.29.如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=1m,窗高CD=1.5m,并测得OE=1m,OF=5m,求围墙AB 的高度.30.解方程:(1)x2-8x+6=0(2)(x -1)2 -3(x -1) =031.如图示,在平面直角坐标系中,二次函数26y ax bx =++(0a ≠)交x 轴于()4,0A -,()2,0B ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)点D 是第二象限内的点抛物线上一动点①求ADE ∆面积最大值并写出此时点D 的坐标;②若1tan 3AED ∠=,求此时点D 坐标; (3)连接AC ,点P 是线段CA 上的动点.连接OP ,把线段PO 绕着点P 顺时针旋转90︒至PQ ,点Q 是点O 的对应点.当动点P 从点C 运动到点A ,则动点Q 所经过的路径长等于______(直接写出答案)32.如图示,AB 是O 的直径,点F 是半圆上的一动点(F 不与A ,B 重合),弦AD 平分BAF ∠,过点D 作DE AF ⊥交射线AF 于点AF .(1)求证:DE 与O 相切:(2)若8AE =,10AB =,求DE 长;(3)若10AB =,AF 长记为x ,EF 长记为y ,求y 与x 之间的函数关系式,并求出AF EF ⋅的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用圆内接四边形的对角互补计算∠C的度数.【详解】∵四边形ABCD内接于⊙O,∠A=400,∴∠C=1800-400=1400,故选D.【点睛】此题考查圆内接四边形的性质,解题关键在于利用圆内接四边形的对角互补2.C解析:C【解析】【分析】连接AD,根据同弧所对的圆周角相等,求∠BAD的度数,再根据直径所对的圆周角是90°,利用内角和求解.【详解】解:连接AD,则∠BAD=∠BCD=28°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故选:C.【点睛】本题考查圆周角定理,运用圆周角定理是解决圆中角问题的重要途径,直径所对的圆周角是90°是圆中构造90°角的重要手段.3.C解析:C【解析】分析:连接BD,根据平行四边形的性质得出BP=DP,根据圆的性质得出PM=PN,结合对顶角的性质得出∠DPN=∠BPM ,从而得出三角形全等,得出答案.详解:连接BD ,因为P 为平行四边形ABCD 的对称中心,则P 是平行四边形两对角线的交点,即BD 必过点P ,且BP=DP , ∵以P 为圆心作圆, ∴P 又是圆的对称中心, ∵过P 的任意直线与圆相交于点M 、N , ∴PN=PM , ∵∠DPN=∠BPM ,∴△PDN ≌△PBM (SAS ), ∴BM=DN .点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于中等难度的题型.理解平行四边形的中心对称性是解决这个问题的关键.4.D解析:D【解析】【分析】只要证明AC AB AE AD =,即可解决问题. 【详解】解:A.12AE EC = ,可得AE :AC=1:1,与已知2AB AD =不成比例,故不能判定 B. 2EC AC =,可得AC :AE=1:1,与已知2AB AD=不成比例,故不能判定; C 选项与已知的2AB AD =,可得两组边对应成比例,但夹角不知是否相等,因此不一定能判定;12DE BC = D. 2AC AB AE AD==,可得DE//BC , 故选D.【点睛】本题考查平行线的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.C解析:C【解析】【分析】连接OB ,OC ,根据圆周角定理求出∠BOC 的度数,再由OB =OC 判断出△OBC 是等边三角形,由此可得出结论.【详解】解:连接OB ,OC ,∵∠BAC =30°,∴∠BOC=60°.∵OB=OC,BC=8,∴△OBC是等边三角形,∴OB=BC=8.故选:C.【点睛】本题考查的是圆周角定理以及等边三角形的判定和性质,根据题意作出辅助线,构造出等边三角形是解答此题的关键.6.D解析:D【解析】【分析】根据题意即从5个球中摸出一个球,概率为3 5 .【详解】摸到红球的概率=33 235=+,故选:D.【点睛】此题考查事件的简单概率的求法,正确理解题意,明确可能发生的总次数及所求事件发生的次数是求概率的关键.7.C解析:C【解析】【分析】由题意根据相似三角形的判定定理依次对各选项进行分析判断即可.【详解】解:A、∠AED=∠B,∠A=∠A,则可判断△ADE∽△ACB,故A选项错误;B、∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB,故B选项错误;C、AD DEAB BC=不能判定△ADE∽△ACB,故C选项正确;D、AD AEAC AB=,且夹角∠A=∠A,能确定△ADE∽△ACB,故D选项错误.故选:C.【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.8.A解析:A【解析】【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与⊙O的位置关系是相交.故选A.【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.9.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.10.C解析:C【解析】【分析】因为顶点式y=a(x-h)2+k,其顶点坐标是(h,k),即可求出y=()21x++2的顶点坐标.【详解】解:∵二次函数y=()21x++2是顶点式,∴顶点坐标为:(−1,2);故选:C.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.11.C解析:C【解析】【分析】设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,解直角三角形即可得到结论.【详解】解:设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,∵224225AC BC=+==,BC=22,AD=2232AC CD+=,∵S△ABC=12AB•CE=12BC•AD,∴CE=223265525BC ADAB⨯==,∴6535525CEAsin CABC∠===,故选:C.【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.12.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A.【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.二、填空题13.【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═故答案为.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1解析:1 2 -【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═12 ba-=-故答案为12 -.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x 1+x 2=b a -,x 1•x 2=c a. 14..【解析】试题分析:∵在△ABC 中,∠C=90°,cosA =,∴.∴可设.∴根据勾股定理可得.∴.考点:1.锐角三角函数定义;2.勾股定理. 解析:43. 【解析】 试题分析:∵在△ABC 中,∠C =90°,cosA =35,∴35AC AB =. ∴可设35AC k AB k ==,.∴根据勾股定理可得4BC k =. ∴44tanA 33BC k AC k ===. 考点:1.锐角三角函数定义;2.勾股定理.15.6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =6,∠AOB =90°,且OA =OB ,在中,根据勾股定理得,即∴,故答案为:6.【点睛】解析:6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =62,∠AOB =90°,且OA =OB ,在Rt OAB 中,根据勾股定理得222OA OB AB +=,即2222(62)72OA AB === ∴236OA =,0OA >6OA ∴=故答案为:6.【点睛】本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.16.4【解析】【分析】根据图形中的数字,可以写出前n 行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第解析:4【解析】【分析】根据图形中的数字,可以写出前n 行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n 行n 个数,故前n 个数字的个数为:1+2+3+…+n =(1)2n n +, ∵当n =63时,前63行共有63642⨯=2016个数字,2020﹣2016=4, ∴2020在第64行左起第4个数,故答案为:64,4.【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.17.【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令中y=0,得x1=【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令21115y x =-中y=0,得x 1x 2∴直线AC 的解析式为1y =-, 设P (x ,31x ), ∵过点P 作⊙B 的切线,切点是Q ,BQ=1∴PQ 2=PB 2-BQ 2,2+(313x )2-1, =24283753x x , ∵43a =0<,∴PQ 2有最小值24283475()3326443,∴PQ【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ 、BQ 、PB 之间的关系式是解题的关键.18.【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧2【解析】【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,AB ===PAB PBC ∠=∠,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小,构建圆,利用勾股定理,即可得解.【详解】∵90ACB ∠=︒,3AC =,BC =,∴AB ===∴∠CAB=30°,∠ABC=60°∵PAB PBC ∠=∠,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小∴CO ⊥AB ,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴OC === ∴2CP OC OP =-=故答案为72-.【点睛】此题主要考查直角三角形中的动点综合问题,解题关键是找到点P的位置.19.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件解析:∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.20.【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,解析:25 4【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴ABEC=BECF,∴55x-=xy,∴y=﹣15x2+x=﹣15(x﹣52)2+54,∵﹣15<0,∴x=52时,y有最大值54,∴CF的最大值为54,∴DF的最小值为5﹣54=154,∴AF 254,故答案为254.【点睛】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF 的最小值.21.相离【解析】r=2,d=3, 则直线l 与⊙O 的位置关系是相离解析:相离【解析】r=2,d=3, 则直线l 与⊙O 的位置关系是相离22.4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l ==4π,故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =(n 是弧所对应的圆心角度数)解析:4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】 l =6012180π⨯=4π, 故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =180n r π(n 是弧所对应的圆心角度数) 23.>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1 和y2的大小关系.【详解】解:∵二次解析:>【解析】【分析】根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1和y2的大小关系.【详解】解:∵二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵该函数经过点(﹣1,y1),(2,y2),|﹣1﹣1|=2,|2﹣1|=1,∴y1>y2,故答案为:>.【点睛】本题考查了二次函数的增减性问题,掌握二次函数的性质是解题的关键.24.【解析】【分析】取DE的中点F,连接AF,根据直角三角形斜边中点的性质得出AF=EF,然后证得△BAF≌△DAE,得出AE=AF,从而证得△AEF是等边三角形,进一步证得∠ABC=60°,即可解析:3 2【解析】【分析】取DE的中点F,连接AF,根据直角三角形斜边中点的性质得出AF=EF,然后证得△BAF≌△DAE,得出AE=AF,从而证得△AEF是等边三角形,进一步证得∠ABC=60°,即可求得结论.【详解】取DE的中点F,连接AF,∴EF=DF,∵BE :ED =1:2,∴BE =EF =DF ,∴BF =DE ,∵AB =AD ,∴∠ABD =∠D ,∵AD ⊥AE ,EF =DF ,∴AF =EF ,在△BAF 和△DAE 中AB AD ABF D BF DE =⎧⎪∠=∠⎨⎪=⎩∴△BAF ≌△DAE (SAS ),∴AE =AF ,∴△AEF 是等边三角形,∴∠AED =60°,∴∠D =30°,∵∠ABC =2∠ABD ,∠ABD =∠D ,∴∠ABC =60°,∴cos ∠ABC =cos60°故答案为:2. 【点睛】 本题考查了全等三角形的判定和性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题25.(1)∴x 1=2,x 2=5;(2)12-【解析】【分析】(1)用因式分解法解一元二次方程;(2)先将特殊角三角形函数值代入,然后进行实数的混合运算.【详解】解:(1)27100x x -+= (2)(5)0x x --=∴x 1=2,x 2=5(2)cos60tan 4545︒⨯︒-︒121222=⨯-⨯12=-.【点睛】本题考查解一元二次方程,特殊角三角函数值的混合运算,掌握运算法则正确计算是解题关键.26.矩形长为25m,宽为8m【解析】【分析】设垂直于墙的一边为x米,则邻边长为(58-2x),利用矩形的面积公式列出方程并解答.【详解】解:设垂直于墙的一边为x米,得:x(58﹣2x)=200解得:x1=25,x2=4,当x=4时,58﹣8=50,∵墙的长度为20m,∴x=4不符合题意,当x=25时,58﹣2x=8,∴矩形的长为25m,宽为8m,答:矩形长为25m,宽为8m.【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.27.(1)BC与⊙O相切,理由见解析;(2)23π.【解析】试题分析:(1)连接OD,推出OD BC⊥,根据切线的判定推出即可;(2)连接,DE OE,求出阴影部分的面积=扇形EOD的面积,求出扇形的面积即可.试题解析:(1)BC与O相切,理由:连接OD,∵AD平分∠BAC,∴∠BAD =∠DAC ,∵AO =DO ,∴∠BAD =∠ADO ,∴∠CAD =∠ADO ,//AC OD ∴, 90ACD ∠=,∴OD ⊥BC ,∴BC 与O 相切;(2)连接OE ,ED ,60BAC OE OA ∠==,,∴△OAE 为等边三角形,60AOE ∴∠=,30ADE ,∴∠= 又1302OAD BAC ∠=∠=, ADE OAD ∴∠=∠,//ED AO ∴,AED AOD S S ∴=,∴阴影部分的面积=S 扇形ODE 60π42π.3603⨯⨯== 28.(1)见解析;(2)19180,sin 22MON MPN S αα∠=︒-=△;(3)43OP =,P 点坐标为46633⎛ ⎝⎭或26633⎛⎫- ⎪ ⎪⎝⎭【解析】【分析】(1)由角平分线求出∠MOP =∠NOP =12∠AOB =30°,再证出∠OMP =∠OPN ,证明△MOP ∽△PON ,即可得出结论;(2)由∠MPN 是∠AOB 的“相关角”,判断出△MOP ∽△PON ,得出∠OMP =∠OPN ,即可得出∠MPN=180°﹣12α;过点M作MH⊥OB于H,由三角形的面积公式得出:S△MON=12ON•MH,即可得出结论;(3)设点C(a,b),则ab=3,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;当点A在x轴的负半轴上时,BC=3CA不可能;当点A在x轴的正半轴上时;先求出14CAAB=,由平行线得出△ACH∽△ABO,得出比例式:14CH AH ACOB OA AB===,得出OB,OA,求出OA•OB,根据∠APB是∠AOB的“相关角”,得出OP,即可得出点P 的坐标;②当点B在y轴的负半轴上时;同①的方法即可得出结论.【详解】(1)证明:∵∠AOB=60°,P为∠AOB的平分线上一点,∴∠AOP=∠BOP=12∠AOB=30°,∵∠MOP+∠OMP+∠MPO=180°,∴∠OMP+∠MPO=150°,∵∠MPN=150°,∴∠MPO+∠OPN=150°,∴∠OMP=∠OPN,∴△MOP∽△PON,∴OM OP OP ON=,∴OP2=OM•ON,∴∠MPN是∠AOB的“相关角”;(2)解:∵∠MPN是∠AOB的“相关角”,∴OM•ON=OP2,∴OM OP OP ON=,∵P为∠AOB的平分线上一点,∴∠MOP=∠NOP=12α,∴△MOP∽△PON,∴∠OMP=∠OPN,∴∠MPN=∠OPN+∠OPM=∠OMP+∠OPM=180°﹣12α,即∠MPN=180°﹣12α;过点M作MH⊥OB于H,如图2,则S△MON=12ON•MH=12ON•OM sinα=12OP2•sinα,∵OP=3,∴S△MON=92sinα;(3)设点C(a,b),则ab=4,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;Ⅰ、当点A在x轴的负半轴上,如图3所示:BC=3CA不可能,Ⅱ、当点A在x轴的正半轴上时,如图4所示:∵BC=3CA,∴14 CAAB=,∵CH//OB,∴△ACH∽△ABO,∴14 CH AH ACOB OA AB===,∴14 b OA aOB OA-==,∴OB=4b,OA=43 a,∴OA•OB=43a•4b=163ab=643,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴64833OP OA OB=⋅==,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:4646,33⎛⎫⎪ ⎪⎝⎭;②当点B在y轴的负半轴上时,如图5所示:∵BC=3CA,∴AB=2CA,∴12 CAAB=,∵CH//OB,∴△ACH∽△ABO,∴12 CH AH ACOB OA AB===,∴12 b a OA OB OA-==∴OB=2b,OA=23 a,∴OA•OB=23a•2b=43ab=163,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴16433OP OA OB=⋅==,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:2626,33⎛⎫-⎪ ⎪⎝⎭;综上所述:点P的坐标为:4646,⎛⎫⎪⎪⎝⎭或2626,⎛⎫-⎪⎪⎝⎭.【点睛】本题考查反比例函数与几何综合,掌握数形结合和分类讨论的思想是解题的关键.29.4m【解析】【分析】首先根据DO=OE=1m,可得∠DEB=45°,然后证明AB=BE,再证明△ABF∽△COF,可得AB COBF OF=,然后代入数值可得方程,解出方程即可得到答案.【详解】解:延长OD,∵DO⊥BF,∴∠DOE=90°,∵OD=1m,OE=1m,∴∠DEB=45°,∵AB⊥BF,∴∠BAE=45°,∴AB=BE,设AB=EB=x m,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴AB COBF OF=,1.51(51)5xx+∴=+-,解得:x=4.经检验:x=4是原方程的解.答:围墙AB的高度是4m.【点睛】此题主要考查了相似三角形的应用,解决问题的关键是求出AB=BE,根据相似三角形的判定方法证明△ABF∽△COF.30.(1)x14,x24(2) x1=1,x2=4.【解析】【分析】(1)根据配方法即可求解;(2)根据因式分解法即可求解.【详解】(1)x2-8x+6=0x2-8x+16=10(x-4)2=10x-4=∴x14,x24(2)(x -1)2 - 3(x -1)=0(x -1)(x -1-3)=0(x -1)(x-4)=0∴x-1=0或x-4=0解得x1=1,x2=4.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知其解法的运用.{题型:3-选择题}{题目}{适用范围:1.七年级}{类别:常考题}{章节:[1-1-3]003}计划开设以下课外活动项目:A 一版画、B 一机器人、C 一航模、D 一园艺种植.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查(每位学生必须选且只能选一个项目),并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;扇形统计图中,选“D一园艺种植”的学生人数所占圆心角的度数是 °;(2)请你将条形统计图补充完整;(3)若该校学生总数为 1500 人,试估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总人数(1)200;72(2)60(人),图见解析(3)1050人.【解析】【分析】(1)由A类有20人,所占扇形的圆心角为36°,即可求得这次被调查的学生数,再用360°乘以D人数占总人数的比例可得;(2)首先求得C项目对应人数,即可补全统计图;(3)总人数乘以样本中B、C人数所占比例可得.【详解】(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷36360=200(人);选“D一园艺种植”的学生人数所占圆心角的度数是360°×40200=72°,故答案为:200、72;(2)C项目对应人数为:200−20−80−40=60(人);补充如图.(3)1500×8060200=1050(人),答:估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总人数为1050人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.31.(1)233642y x x =--+;(2)①503,点D 坐标为220,33⎛⎫- ⎪⎝⎭;②1533D ⎛⎫-+ ⎪ ⎪⎝⎭;(3)【解析】【分析】(1)根据点坐标代入解析式即可得解;(2)①由A 、E 两点坐标得出直线AE 解析式,设点D 坐标为()22,336t t t --+,过点D 作DF y 轴交AE 于点F ,则F 坐标为()2,2t t --,然后构建ADE ∆面积与t 的二次函数,即可得出ADE ∆面积最大值和点D 的坐标;②过点M 作MN AE ⊥,在AME ∆中,由1tan 2MAE ∠=,1tan 3MEA ∠=,AE =M 的坐标,进而得出直线ME 的解析式,联立直线ME 和二次函数,即可得出此时点D 的坐标;(3)根据题意,当点P 在点C 时,Q 点坐标为(-6,6),当点P 移动到点A 时,Q′点坐标为(-4,-4),动点Q 所经过的路径是直线QQ′,求出两点之间的距离即可得解.【详解】(1)依题意得:016460426a b a b =-+⎧⎨=++⎩,解得3432a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴233642y x x =--+ (2)①∵()4,0A -,()0,2E -∴设直线AE 为y kx b =+将A 、E 代入,得042k b b =-+⎧⎨-=⎩∴122k b ⎧=-⎪⎨⎪=-⎩ ∴直线1:22AE y x =-- 设点D 坐标为()22,336t t t --+,其中20t -<<过点D 作DF y 轴交AE 于点F ,则F 坐标为()2,2t t --∴2328DF t t =--+∴()2214328ADE S t t ∆=⋅⨯--+ 即:26416ADE S t t ∆=--+ 由函数知识可知,当13t =-时,()max 503ADE S ∆=,点D 坐标为220,33⎛⎫- ⎪⎝⎭ ②设DE 与OA 相交于点M过点M 作MN AE ⊥,垂足为N在AME ∆中,1tan 2MAE ∠=,1tan 3MEA ∠=,25AE = 设MN t =,则2AN t =,3NE t =∴2325t t +=∴255t = ∴52AM t ==∴()2,0M -∴:2ME y x =--∴2233642y x y x x =--⎧⎪⎨=--+⎪⎩∴232320x x +-=∴1197x -+=(舍去),2197x --= 当197x --=时,975y -= ∴197975,33D ⎛⎫-+- ⎪ ⎪⎝⎭(3)当点P 在点C 时,Q 点坐标为(-6,6),当点P 移动到点A 时,Q′点坐标为(-4,-4),如图所示:∴动点Q 所经过的路径是直线QQ′,∴()()226464226QQ =-+++=′故答案为26【点睛】此题主要考查二次函数以及动点综合问题,解题关键是找出合适的坐标,即可解题.32.(1)详见解析;(2)4;(3)252【解析】【分析】(1)首先连接OD ,通过半径和角平分线的性质进行等角转换,得出OD AE ∥,进而得出OD DE ⊥,即可得证;(2)首先连接BD ,得出AED ADB ∆∆∽,进而得出2A D A A E B =⋅,再根据勾股定理得出DE ;(3)首先连接DF ,过点D 作DG AB ⊥,得出AED AGD ∆∆≌,再得EDF GDB ∆∆≌,进而得出2AB AF EF =+,然后构建二次函数,即可得出其最大值.【详解】(1)证明:连接OD∵OD OA =∴12∠=∠∵AD 平分BAE ∠∴13∠=∠∴32∠=∠∴OD AE ∥∵DE AF ⊥∴OD DE ⊥又∵OD 是O 的半径∴DE 与O 相切(2)解:连接BD∵AB 为直径∴∠ADB=90°∵13∠=∠∴AED ADB ∆∆∽∴2A D A A E B =⋅∴280AD =∴Rt ADE ∆中2228084DE AD AE =-=-=(3)连接DF ,过点D 作DG AB ⊥于G∵13∠=∠,DE ⊥AE ,AD=AD∴AED AGD ∆∆≌∴AE AG =,DE=DG∴EDF GDB ∆∆≌∴EF BG =∴2AB AF EF =+即:210x y +=∴152y x =-+ ∴2152AF EF x x ⋅=-+ 根据二次函数知识可知:当5x =时,()max 252AF EF ⋅=【点睛】此题主要考查直线与圆的位置关系、相似三角形的判定与性质以及全等三角形的判定与性质与二次函数的综合应用,熟练掌握,即可解题.。
九年级上册威海数学期末试卷专题练习(解析版) 一、选择题 1.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A .2:3B .2:3C .4:9D .16:81 2.已知34a b =(0a ≠,0b ≠),下列变形错误的是( ) A .34a b = B .34a b = C .43b a = D .43a b =3.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( )A .13B .512C .12D .14.二次函数y =3(x -2)2-1的图像顶点坐标是( )A .(-2,1)B .(-2,-1)C .(2,1)D .(2,-1)5.如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是优弧BC 上一点,如果∠AOB =58º,那么∠ADC 的度数为( )A .32ºB .29ºC .58ºD .116º 6.已知△ABC ,以AB 为直径作⊙O ,∠C =88°,则点C 在( ) A .⊙O 上B .⊙O 外C .⊙O 内 7.方程(1)(2)0x x --=的解是( ) A .1x = B .2x = C .1x =或2x =D .1x =-或2x =-8.在平面直角坐标系中,点A(0,2)、B(a ,a +2)、C(b ,0)(a >0,b >0),若AB=2且∠ACB 最大时,b 的值为( )A .226+B .226-+C .242+D .2429.如图,在平面直角坐标系xOy 中,点A 为(0,3),点B 为(2,1),点C 为(2,-3).则经画图操作可知:△ABC 的外心坐标应是( )A .()0,0B .()1,0C .()2,1--D .()2,0 10.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( ) A .−2 B .2C .−4D .4 11.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤ 12.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是( )A 2B .1C 2D .2二、填空题13.如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度为_________m.14.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,当y <3时,x 的取值范围是____.15.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)16.如图,四边形ABCD 内接于⊙O ,若∠BOD=140°,则∠BCD=_____.17.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.18.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm .19.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________.20.圆锥的底面半径是4cm ,母线长是6cm ,则圆锥的侧面积是______cm 2(结果保留π).21.如图,⊙O 是正五边形ABCDE 的外接圆,则∠CAD =_____.22.如图,边长为2的正方形ABCD ,以AB 为直径作O ,CF 与O 相切于点E ,与AD 交于点F ,则CDF ∆的面积为__________.23.已知二次函数y =ax 2+bx +c 的图象如图,对称轴为直线x =1,则不等式ax 2+bx +c >0的解集是_____.24.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.三、解答题25.5G 网络比4G 网络的传输速度快10倍以上,因此人们对5G 产品充满期待.华为集团计划2020年元月开始销售一款5G 产品.根据市场营销部的规划,该产品的销售价格将随销售月份的变化而变化.若该产品第x 个月(x 为正整数)销售价格为y 元/台,y 与x 满足如图所示的一次函数关系:且第x 个月的销售数量p (万台)与x 的关系为1p x =+.(1)该产品第6个月每台销售价格为______元;(2)求该产品第几个月的销售额最大?该月的销售价格是多少元/台?(3)若华为董事会要求销售该产品的月销售额不低于27500万元,则预计销售部符合销售要求的是哪几个月?(4)若每销售1万台该产品需要在销售额中扣除m 元推广费用,当68x ≤≤时销售利润最大值为22500万元时,求m 的值.26.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,∠BAC 的平分线交⊙O 于点D ,过点D 作DE ⊥AC 交AC 的延长线于点E ,连接BD .(1)求证:DE 是⊙O 的切线;(2)若BD =3,AD =4,则DE = .27.如图,已知抛物线经过原点O ,顶点为A(1,1),且与直线-2y x 交于B ,C 两点. (1)求抛物线的解析式及点C 的坐标;(2)求△ABC 的面积;(3)若点N 为x 轴上的一个动点,过点N 作MN ⊥x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.28.如图,矩形ABCD 中,AB =6cm ,AD =8cm ,点P 从点A 出发,以每秒一个单位的速度沿A→B→C 的方向运动;同时点Q 从点B 出发,以每秒2个单位的速度沿B→C→D 的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t 秒.(1)当t = 时,两点停止运动;(2)设△BPQ 的面积面积为S (平方单位)①求S 与t 之间的函数关系式;②求t 为何值时,△BPQ 面积最大,最大面积是多少?29.已知二次函数y =ax 2+bx ﹣3的图象经过点(1,﹣4)和(﹣1,0).(1)求这个二次函数的表达式;(2)x 在什么范围内,y 随x 增大而减小?该函数有最大值还是有最小值?求出这个最值.30.已知关于x 的一元二次方程()222140x m x m +++-=. (1)当m 为何值时,方程有两个不相等的实数根?(2)设方程两根分别为1x 、2x ,且21x 、22x 分别是边长为5的菱形的两条对角线,求m 的值.31.一个四边形被一条对角线分割成两个三角形,如果被分割的两个三角形相似,我们被称为该对角线为相似对角线.(1)如图1,正方形ABCD 的边长为4,E 为AD 的中点,1AF=,连结CE .CP ,求证:EF 为四边形AECF 的相似对角线.(2)在四边形ABCD 中,120BAD ︒∠=,3AB =,6AC =,AC 平分BAD ∠,且AC 是四边形ABCD 的相似对角线,求BD 的长.(3)如图2,在矩形ABCD 中,6AB =,4BC =,点E 是线段AB (不取端点A .B )上的一个动点,点F 是射线AD 上的一个动点,若EF 是四边形AECF 的相似对角线,求BE 的长.(直接写出答案)32.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 .(2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC =②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法:①直角三角形的内心是它的等角点;②等腰三角形的内心和外心都是它的等角点;③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据面积比为相似比的平方即可求得结果.【详解】解:∵两个相似多边形的面积比为4:9,∴它们的周长比为4923. 故选B.【点睛】本题主要考查图形相似的知识点,解此题的关键在于熟记两个相似多边形的面积比为其相似比的平方.解析:B【解析】【分析】根据两内项之积等于两外项之积对各项分析判断即可得解.【详解】 解:由34a b =,得出,3b=4a, A.由等式性质可得:3b=4a ,正确;B.由等式性质可得:4a=3b ,错误;C. 由等式性质可得:3b=4a ,正确;D. 由等式性质可得:4a=3b ,正确.故答案为:B.【点睛】本题考查的知识点是等式的性质,熟记等式性质两内项之积等于两外项之积是解题的关键. 3.C解析:C【解析】【分析】根据随机事件A 的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案.【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒, ∴红灯的概率是:301302552=++. 故答案为:C.【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键. 4.D解析:D【解析】【分析】由二次函数的顶点式,即可得出顶点坐标.【详解】解:∵二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ),∴二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1).故选:D .【点睛】此题考查了二次函数的性质,二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ).解析:B【解析】【分析】根据垂径定理可得AB AC=,根据圆周角定理可得∠AOB=2∠ADC,进而可得答案.【详解】解:∵OA是⊙O的半径,弦BC⊥OA,∴AB AC=,∴∠ADC=12∠AOB=29°.故选B.【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.B解析:B【解析】【分析】根据圆周角定理可知当∠C=90°时,点C在圆上,由由题意∠C=88°,根据三角形外角的性质可知点C在圆外.【详解】解:∵以AB为直径作⊙O,当点C在圆上时,则∠C=90°而由题意∠C=88°,根据三角形外角的性质∴点C在圆外.故选:B.【点睛】本题考查圆周角定理及三角形外角的性质,掌握直径所对的圆周角是90°是本题的解题关键.7.C解析:C【解析】方程左边已经是两个一次因式之积,故可化为两个一次方程,解这两个一元一次方程即得答案.【详解】解:∵(1)(2)0x x --=,∴x -1=0或x -2=0,解得:1x =或2x =.故选:C.【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式解方程的方法是关键.8.B解析:B【解析】【分析】根据圆周角大于对应的圆外角可得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值,此时圆心F 的横坐标与C 点的横坐标相同,并且在经过AB 中点且与直线AB 垂直的直线上,根据FB=FC 列出关于b 的方程求解即可.【详解】解:∵AB=A(0,2)、B(a ,a +2)=解得a =4或a =-4(因为a >0,舍去)∴B(4,6),设直线AB 的解析式为y=kx+2,将B(4,6)代入可得k =1,所以y=x+2,利用圆周角大于对应的圆外角得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值. 如下图,G 为AB 中点,()2,4G ,设过点G 且垂直于AB 的直线:l y x m =-+,将()2,4G 代入可得6m =,所以6y x =-+.设圆心(),6F b b -+,由FC FB =,可知()()()2226466b b b -+=-+-+-,解得262b =(已舍去负值).故选:B.【点睛】本题考查圆的综合题,一次函数的应用和已知两点坐标,用勾股定理求两点距离.能结合圆的切线和圆周角定理构建图形找到C 点的位置是解决此题的关键.9.C解析:C【解析】外心在BC 的垂直平分线上,则外心纵坐标为-1.故选C.10.B解析:B【解析】分析:根据一元二次方程的解的定义,把x=1代入方程得关于k 的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选B .点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.11.D解析:D【解析】【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围.【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴x = ∵15x <<∴54t -<≤故答案为D .【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.12.A解析:A【解析】【分析】先求得A 、B 两点的坐标,设()6P m m -,,根据之间的距离公式列出2PB 关于m 的函数关系式,求得其最小值,即可求得答案.【详解】令0y =,则21404x -=, 解得:4x =±,∴A 、B 两点的坐标分别为:()()4040A B -,、,, 设点P 的坐标为()6m m -,, ∴()()2222246220522(5)2PB m m m m m =-+-=-+=-+,∵20>,∴当5m =时,2PB 有最小值为:2,即PB ,∵A 、B 为抛物线的对称点,对称轴为y 轴,∴O 为线段AB 中点,且Q 为AP 中点,∴122OQ PB ==. 故选:A .【点睛】本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得2PB 的最小值是解题的关键.二、填空题13.7【解析】设树的高度为m ,由相似可得,解得,所以树的高度为7m解析:7【解析】设树的高度为x m ,由相似可得6157262x +==,解得7x =,所以树的高度为7m 14.-1<x <3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x 的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x <3时,y <3,故答案为:-1<x <3.【点睛解析:-1<x <3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x 的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x <3时,y <3,故答案为:-1<x <3.【点睛】本题考查了二次函数与不等式和二次函数的对称性,此类题目,利用数形结合的思想求解更简便.15.【解析】抛物线的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x1>x2>1 时,y1>y2 .故答案为>解析:12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为> 16.110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°解析:110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=12∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°∴∠A=12∠BOD=70° ∴∠C=180°-∠A=110°,故答案为:110°.【点睛】此题考查圆周角定理,解题的关键在于利用圆内接四边形的性质求角度.17.【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函解析:22(1)2y x =+-【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是 22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键. 18.4【解析】【分析】由圆锥的母线长是5cm ,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm ,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm ,侧面积是20πcm 2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm ,侧面积是20πcm 2, 根据圆锥的侧面展开扇形的弧长为:2405S l r π===8π, 再根据锥的侧面展开扇形的弧长等于圆锥的底面周长, 可得822l r πππ===4cm . 故答案为:4.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.19.8【解析】试题分析:由题意可得,即可得到关于m的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x解析:8【解析】试题分析:由题意可得,即可得到关于m的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x轴有两个公共点;当时,抛物线与x轴只有一个公共点;时,抛物线与x轴没有公共点.20.24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,解析:24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=12×8π×6=24π(cm2).故答案为:24π.【点睛】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l•R,(l为弧长).21.36°.【解析】【分析】由正五边形的性质得出∠BAE=(5﹣2)×180°=108°,BC=CD=DE,得出 ==,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,解析:36°.【解析】【分析】由正五边形的性质得出∠BAE=15(5﹣2)×180°=108°,BC=CD=DE,得出BC=CD=DE,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,∴∠BAE=15(n﹣2)×180°=15(5﹣2)×180°=108°,BC=CD=DE,∴BC=CD=DE,∴∠CAD=13×108°=36°;故答案为:36°.【点睛】本题主要考查了正多边形和圆的关系,以及圆周角定理的应用;熟练掌握正五边形的性质和圆周角定理是解题的关键.22.【解析】【分析】运用切线长定理和勾股定理求出DF,进而完成解答.【详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt△C解析:3 2【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵CF 与O 相切于点E ,与AD 交于点F∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt △CDF 中,由勾股定理得:DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22解得:x=12,则DF=32∴CDF ∆的面积为13222⨯⨯=32 故答案为32. 【点睛】 本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.23.﹣1<x <3【解析】【分析】先求出函数与x 轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x =1,而抛物线与x 轴的一个交点坐标为(3,0),∴抛物线与x 轴的另一个解析:﹣1<x <3【解析】【分析】先求出函数与x 轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x =1,而抛物线与x 轴的一个交点坐标为(3,0),∴抛物线与x 轴的另一个交点坐标为(﹣1,0),∵当﹣1<x <3时,y >0,∴不等式ax 2+bx +c >0的解集为﹣1<x <3.故答案为﹣1<x <3.【点睛】此题主要考查二次函数的图像,解题的关键是求出函数与x 轴的另一个交点.24.相离【解析】r=2,d=3, 则直线l 与⊙O 的位置关系是相离解析:相离【解析】r=2,d=3, 则直线l 与⊙O 的位置关系是相离三、解答题25.(1)4500元;(2)7,4000;(3)4、5、6、7、8、9、10;(4)90007. 【解析】【分析】(1)利用待定系数法将(2,6500),(4,5500)代入y=kx+b 求k,b 确定表达式,求当x=6时的y 值即可;(2)求销售额w 与x 之间的函数关系式,利用二次函数的最大值问题求解;(3)分三种情况讨论假设6月份,7月份,8月份的最大销售为22500万元时,求相应的m 值,再分别求出此时另外两月的总利润,通过比较作出判断.【详解】设y=kx+b,根据图象将(2,6500),(4,5500)代入得, 2650045500k b k b , 解得,5007500k b ,∴y= -500x+7500,当x=6时,y= -500×6+7500=4500元;(2)设销售额为z 元,z=yp=( -500x+7500 )(x+1)= -500x 2+7000x+7500= -500(x-7)2+32000,∵z 与x 成二次函数,a= -500<0,开口向下,∴当x=7时,z 有最大值,当x=7时,y=-500×7+7500=4000元.答:该产品第7个月的销售额最大,该月的销售价格是4000元/台.(3)z 与x 的图象如图的抛物线当y=27500时,-500(x-7)2+32000=27500,解得,x 1=10,x 2=4∴预计销售部符合销售要求的是4,5,6,7,8,9,10月份.(4)设总利润为W= -500x 2+7000x+7500-m(x+1)= -500x 2+(7000-m)x+7500-m,第一种情况:当x=6时,-500×62+(7000-m) ×6+7500-m=22500, 解得,m=90007, 此时7月份的总利润为-500×72+(7000-90007) ×7+7500-90007≈17714<22500, 此时8月份的总利润为-500×82+(7000-90007) ×8+7500-90007≈19929<22500, ∴当m=90007时,6月份利润最大,且最大值为22500万元. 第二种情况:当x=7时,-500×72+(7000-m) ×7+7500-m=22500,解得,m=1187.5 ,此时6月份的总利润为-500×62+(7000-1187.5) ×6+7500-1187.5=23187.5>22500,∴当m=1187.5不符合题意,此种情况不存在.第三种情况:当x=8时,-500×82+(7000-m) ×8+7500-m=22500,解得,m=1000 ,此时7月份的总利润为-500×72+(7000-1000) ×7+7500-1000=24000>22500,∴当m=1000不符合题意,此种情况不存在.∴当68x ≤≤时销售利润最大值为22500万元时,此时m=90007. 【点睛】本题考查二次函数的实际应用,最大利润问题,利用二次函数的最值性质是解决实际问题的重要途径.26.(1)见解析;(2)125【解析】【分析】(1)连接OD ,如图,先证明OD ∥AE ,再利用DE ⊥AE 得到OD ⊥DE ,然后根据切线的判定定理得到结论;(2)证明△ABD ∽△ADE ,通过线段比例关系求出DE 的长.【详解】(1)证明:连接OD∵AD 平分∠BAC∴∠BAD =∠DAC∵OA =OD∴∠BAD =∠ODA∴∠ODA =∠DAC∴OD ∥AE∴∠ODE +∠E =180°∵DE ⊥AE∴∠E =90°∴∠ODE =180°-∠E =180°-90°=90°,即OD ⊥DE∵点D 在⊙O 上∴DE 是⊙O 的切线.(2)∵AB 是⊙O 的直径,∴∠ADB=90°,∵AD 平分∠BAC ,∴∠BAD=∠DAE ,在△ABD 和△ADE 中,==BDA DEA BAD DAE ∠∠⎧⎨∠∠⎩, ∴△ABD ∽△ADE , ∴AB BD AD DE=, ∵BD =3,AD =4,22BD AD +∴DE=345⨯=125. 【点睛】 本题考查了切线的判定定理,相似三角形的判定和性质,适当画出正确的辅助线是解题的关键.27.(1)y=﹣(x ﹣1)2+1,C(﹣1,﹣3);(2)3;(3)存在满足条件的N 点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0) 【解析】【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C 点坐标;(2)设直线AC 的解析式为y =kx +b ,与x 轴交于D ,得到y =2x−1,求得BD 于是得到结论;(3)设出N 点坐标,可表示出M 点坐标,从而可表示出MN 、ON 的长度,当△MON 和△ABC 相似时,利用三角形相似的性质可得MN ON AB BC =或MN ON BC AB=,可求得N 点的坐标.【详解】(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a (x ﹣1)2+1,又抛物线过原点,∴0=a (0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x ﹣1)2+1,即y=﹣x 2+2x ,联立抛物线和直线解析式可得22-2y x x y x ⎧=+⎨=⎩﹣, 解得20x y =⎧⎨=⎩或13x y =-⎧⎨=-⎩,∴B (2,0),C (﹣1,﹣3); (2)设直线AC 的解析式为y=kx+b ,与x 轴交于D ,把A (1,1),C (﹣1,﹣3)的坐标代入得13k b k b=+⎧⎨-=-+⎩, 解得:21k b =⎧⎨=-⎩, ∴y=2x ﹣1,当y=0,即2x ﹣1=0,解得:x=12,∴D (12,0), ∴BD=2﹣12=32, ∴△ABC 的面积=S △ABD +S △BCD =12×32×1+12×32×3=3; (3)假设存在满足条件的点N ,设N (x ,0),则M (x ,﹣x 2+2x ),∴ON=|x|,MN=|﹣x 2+2x|,由(2)知,,,∵MN ⊥x 轴于点N ,∴∠ABC=∠MNO=90°,∴当△ABC 和△MNO 相似时,有MN ON AB BC =或MN ON BC AB=, ①当MN ON AB BC =时,∴=|x||﹣x+2|=13|x|, ∵当x=0时M 、O 、N 不能构成三角形,∴x≠0,∴|﹣x+2|=13,∴﹣x+2=±13,解得x=53或x=73,此时N点坐标为(53,0)或(73,0);②当或MN ONBC AB=时,∴=,即|x||﹣x+2|=3|x|,∴|﹣x+2|=3,∴﹣x+2=±3,解得x=5或x=﹣1,此时N点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0).【点睛】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理及逆定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N、M的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中.28.(1)7;(2)①当0<t<4时,S=﹣t2+6t,当4≤t<6时,S=﹣4t+24,当6<t≤7时,S=t2﹣10t+24,②t=3时,△PBQ的面积最大,最大值为9【解析】【分析】(1)求出点Q的运动时间即可判断.(2)①的三个时间段分别求出△PBQ的面积即可.②利用①中结论,求出各个时间段的面积的最大值即可判断.【详解】解:(1)∵四边形ABCD是矩形,∴AD=BC=8cm,AB=CD=6cm,∴BC+AD=14cm,∴t=14÷2=7,故答案为7.(2)①当0<t<4时,S=12•(6﹣t)×2t=﹣t2+6t.当4≤t<6时,S=12•(6﹣t)×8=﹣4t+24.当6<t≤7时,S=12(t﹣6)•(2t﹣8)=t2﹣10t+24.②当0<t<4时,S=12•(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+9,∵﹣1<0,∴t=3时,△PBQ的面积最大,最小值为9.当4≤t<6时,S=12•(6﹣t)×8=﹣4t+24,∵﹣4<0,∴t =4时,△PBQ 的面积最大,最大值为8,当6<t≤7时,S =12(t ﹣6)•(2t ﹣8)=t 2﹣10t+24=(t ﹣5)2﹣1, t =7时,△PBQ 的面积最大,最大值为3,综上所述,t =3时,△PBQ 的面积最大,最大值为9.【点睛】 本题主要考查了二次函数在几何图形中的应用,涉及了分类讨论的数学思想,灵活的利用二次函数的性质求三角形面积的最大值是解题的关键.29.(1)y =x 2﹣2x ﹣3;(2)当x <1时,y 随x 增大而减小,该函数有最小值,最小值为﹣4.【解析】【分析】(1)将(1,﹣4)和(﹣1,0)代入解析式中,即可求出结论;(2)将二次函数的表达式转化为顶点式,然后根据二次函数的图象及性质即可求出结论.【详解】(1)根据题意得3430a b a b +-=-⎧⎨--=⎩, 解得12a b =⎧⎨=-⎩, 所以抛物线解析式为y =x 2﹣2x ﹣3;(2)∵y =(x ﹣1)2﹣4,∴抛物线的对称轴为直线x =1,顶点坐标为(1,﹣4),∵a >0,∴当x <1时,y 随x 增大而减小,该函数有最小值,最小值为﹣4.【点睛】此题考查的是二次函数的综合大题,掌握利用待定系数法求二次函数解析式、二次函数的图象及性质是解决此题的关键.30.(1)174m >-;(2)4m =- 【解析】【分析】(1)由根的判别式2=40b ac ∆->即可求解;(2)根据菱形对角线互相垂直且平分,由勾股定理得222125x x +=,又由一元二次方程根与系数的关系1212, b c x x x x a a+=-=,所以有()2221212122x x x x x x +-=+,据此列出关于m 的方程求解.【详解】(1)∵方程有两个不相等的实数根,∴()()22=2144=417m m m ∆+--+>0 解得:174m >-∴当174m >-时,方程有两个不相等的实数根; (2)由题意得:2221212212521?4x x x x m x x m ⎧+=⎪+=--⎨⎪=-⎩ ∴()()()222222121212=2212424925x x x x x x m m m m ++-=----=++= 解得:2m =或4m =-∵21x 、22x 分别是边长为5的菱形的两条对角线∴122 1 0x x m +=-->,即12m <-∴4m =-【点睛】本题考查一元二次方程根的判别式、结合菱形的性质考查勾股定理和韦达定理,熟知一元二次方程根与系数的关系是解题关键.31.(1)见解析(2)3)53或163或3 【解析】【分析】(1)根据已知中相似对角线的定义,只要证明△AEF ∽△ECF 即可;(2)AC 是四边形ABCD 的相似对角线,分两种情形:△ACB ~△ACD 或△ACB ~△ADC ,分别求解即可;(3)分三种情况①当△AEF 和△CEF 关于EF 对称时,EF 是四边形AECF 的相似对角线.②取AD 中点F ,连接CF ,将△CFD 沿CF 翻折得到△CFD′,延长CD′交AB 于E ,则可得出 EF 是四边形AECF 的相似对角线.③取AB 的中点E ,连接CE ,作EF ⊥AD 于F ,延长CB 交FE 的延长线于M ,则可证出EF 是四边形AECF 的相似对角线.此时BE=3;【详解】解:(1)∵四边形ABCD 是正方形,∴AB=BC=CD=AD=4,∵E 为AD 的中点,1AF=,∴AE=DE=2, 12∴==AF AE DE CD∵∠A=∠D=90°,∴△AEF∽△DCE,∴∠AEF=∠DCE,12==EF AFCE DE∵∠DCE+∠CED=90°,∴∠AEF+∠CED=90°,∴∠FEC=∠A=90°,12==AF EFAE EC∴△AEF∽△ECF,∴EF为四边形AECF的相似对角线.(2)∵AC平分BAD∠,∴∠BAC=∠DAC =60°∵AC是四边形ABCD的相似对角线,∴△ACB~△ACD或△ACB~△ADC①如图2,当△ACB~△ACD时,此时,△ACB≌△ACD∴AB=AD=3,BC=CD,∴AC垂直平分DB,在Rt△AOB中,∵AB=3,∠ABO=30°,33cos30233︒∴=⋅=∴==BO ABBD OB②当△ACB~△ADC时,如图3∴∠ABC=∠ACD∴AC2=AB•AD,∵6AC =,3AB = ∴6=3AD ,∴AD=2, 过点D 作DHAB 于H在Rt △ADH 中,∵∠HAD=60°,AD=2,11,332∴====AH AD DH AH 在Rt △BDH 中,2222419(3)=+=+=BD DH BH综上所述,BD 的长为:33或19(3)①如图4,当△AEF 和△CEF 关于EF 对称时,EF 是四边形AECF 的相似对角线,设AE=EC=x ,在Rt △BCE 中,∵EC 2=BE 2+BC 2,∴x 2=(6-x )2+42,解得x=133, ∴BE=AB-AE=6-133=53. ②如图5中,如图取AD 中点F ,连接CF ,将△CFD 沿CF 翻折得到△CFD′,延长CD′交AB 于E ,则 EF 是四边形AECF 的相似对角线.∵△AEF ∽△DFC ,∴=AE AF DF DC22623163∴=∴=∴=-=AEAEBE AB AE③如图6,取AB的中点E,连接CE,作EF⊥AD于F,延长CB交FE的延长线于M,则EF 是四边形AECF的相似对角线.则 BE=3.综上所述,满足条件的BE的值为53或163或3.【点睛】本题主要考查了相似形的综合题、相似三角形的判定和性质、矩形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.32.(1)100、130或160;(2)选择①或②,理由见解析;(3)见解析;(4)③⑤【解析】【分析】(1)根据“等角点”的定义,分类讨论即可;(2)①根据在同圆中,弧和弦的关系和同弧所对的圆周角相等即可证明;②弧和弦的关系和圆的内接四边形的性质即可得出结论;(3)根据垂直平分线的性质、等边三角形的性质、弧和弦的关系和同弧所对的圆周角相等作图即可;(4)根据“等角点”和“强等角点”的定义,逐一分析判断即可.【详解】(1)(i)若APB∠=BPC∠时,∴BPC∠=APB∠=100°(ii)若BPC CPA∠=∠时,∴12BPC CPA∠=∠=(360°-APB∠)=130°;(iii)若APB∠=CPA∠时,BPC∠=360°-APB∠-CPA∠=160°,综上所述:BPC∠=100°、130°或160°故答案为:100、130或160.(2)选择①:连接,PB PC∵DB DC =∴=DB DC∴BPD CPD ∠=∠∵180APB BPD ∠+∠=,180APC CPD ∠+∠=∴APB APC ∠=∠∴P 是ABC ∆的等角点.选择②连接,PB PC∵BC BD =∴BC BD =∴BDC BPD ∠=∠∵四边形PBDC 是圆O 的内接四边形,∴180BDC BPC ∠+∠=∵180BPD APB ∠+∠=∴BPC APB ∠=∠∴P 是ABC ∆的等角点(3)作BC 的中垂线MN ,以C 为圆心,BC 的长为半径作弧交MN 与点D ,连接BD , 根据垂直平分线的性质和作图方法可得:BD=CD=BC∴△BCD 为等边三角形∴∠BDC=∠BCD=∠DBC=60°作CD 的垂直平分线交MN 于点O以O 为圆心OB 为半径作圆,交AD 于点Q ,圆O 即为△BCD 的外接圆∴∠BQC=180°-∠BDC=120°∵BD=CD。
山东省威海市2020版九年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·娄底模拟) 将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A . 96B . 69C . 66D . 992. (2分)给出以下结论,错误的有()①如果一件事发生的机会只有十万分之一,那么它就不可能发生.②如果一件事发生的机会达到99.5%,那么它就必然发生.③如果一件事不是不可能发生的,那么它就必然发生.④如果一件事不是必然发生的,那么它就不可能发生.A . 1个B . 2个C . 3个D . 4个3. (2分) (2016九上·太原期末) 在平面直角坐标系中,反比例函数y= 的图象位于()A . 第二、四象限B . 第一、三象限C . 第一、四象限D . 第三、四象限4. (2分)点(1,-2)关于原点的对称点的坐标是()A . (1,2)B . (-1,2)C . (-1,-2)D . (1,-2)5. (2分) (2019九上·海珠期末) 把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是()A . y=﹣2x2+1B . y=﹣2x2﹣1C . y=﹣2(x+1)2D . y=﹣2(x﹣1)26. (2分)(2017·渝中模拟) 如图,△ABC的三个顶点都在⊙O上,AD是直径,且∠CAD=56°,则∠B的度数为()A . 44°B . 34°C . 46°D . 56°7. (2分) (2017九下·钦州港期中) 如图,□ABCD,E在CD延长线上,AB=6,DE=4,EF=6,则BF的长为().A . 7B . 8C . 9D . 108. (2分)用a、b、c作三角形的三边,其中不能构成直角三角形的是()A . a2=(b+c)(b﹣c)B . a:b:c=1::2C . a=32 , b=42 , c=52D . a=5,b=12,c=139. (2分) (2016九上·义马期中) 对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1 , y2=﹣x22+2x2 ,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A . 1B . 2C . 3D . 410. (2分)(2017·深圳模拟) 已知A(x1 , y1),B(x2 , y2)是反比例函数y= (k≠0)图象上的两个点,当x1<x2<0时,y1>y2 ,那么一次函数y=﹣kx+k的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限二、填空题 (共6题;共6分)11. (1分)一个口袋中有6个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,……,不断重复上述过程.小明共摸了100次 ,其中60次摸到白球.根据上述数据,小明可估计口袋中的白球大约有________ 个.12. (1分) (2018九上·丹江口期末) 在一幢高125m的大楼上掉下一个苹果,苹果离地面的高度h(m)与时间t(s)大致有如下关系:h=125﹣5t2.________秒钟后苹果落到地面.13. (1分)(2018·江津期中) 如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=________°.14. (1分)如图,点A,B是反比例函数y= (x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD=3,则S△AOC=________.15. (1分) (2019九下·江苏月考) 已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的半径为________.16. (1分)(2019·温州) 三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为________cm.三、解答题 (共9题;共90分)17. (5分)如图,矩形OABC的顶点A,C分别在x,y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数y=(k≠0)在第一象限内的图象经过点D,E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x,y轴正半轴交于点H,G,求线段OG的长.18. (5分) (2019九上·海淀期中) 生活中看似平常的隧道设计也很精巧.如图是一张盾构隧道断面结构图,隧道内部为以O为圆心AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为0.8a,顶棚到路面的距离是3.2a,点B到路面的距离为2a.请你求出路面的宽度l.(用含a的式子表示)19. (10分)(2016·南充) 在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.20. (15分) (2019九下·武威月考) 如图所示,四边形ABCD是菱形,边BC在x轴上,点A(0,4),点B (3,0),双曲线y= 与直线BD交于点D、点E.(1)求k的值;(2)求直线BD的解析式;(3)求△CDE的面积.21. (10分)(2018·北部湾模拟) 如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N 分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.22. (10分)如图,在平面直角坐标系内,O为原点,点A的坐标为(﹣3,0),经过A、O两点作半径为的⊙C,交y轴的负半轴于点B.(1)求B点的坐标;(2)过B点作⊙C的切线交x轴于点D,求直线BD的解析式.23. (10分)(2018·高台模拟) 如图,在 ABCD中,过点A作AE⊥BC ,垂足为E ,连接DE , F为线段DE上一点,且∠AFE=∠B .(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6 ,AF=4 ,求AE的长.24. (10分) (2018八下·越秀期中) 如图,在矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO 的延长线交BC于点Q。
威海市2020年(春秋版)九年级上学期期末数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2018·滨州模拟) 如图,港口A在观测站O的正东方向,某船从港口A出发,沿北偏东15°方向航行15 km到达B处,此时从观测站O处测得该船位于北偏东45°的方向,则观测站O距港口A的距离为()A . kmB . 15 kmC . kmD . 15 km2. (2分)(2020·和平模拟) 如图,正方形的边长为2,点是边上的一点,以为直径在正方形内作半圆,将沿着翻折,点恰好落在半圆上的点处,则的长为()A .B .C .D .3. (2分)抛物线y=(x﹣2)2+1的顶点坐标是()A . (﹣2,﹣1)B . (﹣2,1)C . (2,﹣1)D . (2,1)4. (2分) (2017九上·河东期末) 从数字2,3,4中任选两个数组成一个两位数,组成的数是偶数的概率是()A .B .C .D .5. (2分) (2017九上·河东期末) 如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=()A . 3cmB . 4cmC . 5cmD . 6cm6. (2分) (2017九上·河东期末) 已知正六边形的边长为2,则它的内切圆的半径为()A . 1B .C . 2D . 27. (2分) (2017九上·河东期末) 在反比例函数的每一条曲线上,y都随着x的增大而减小,则k的值可以是()A . ﹣1B . 1C . 2D . 38. (2分) (2017九上·河东期末) 用配方法解下列方程时,配方正确的是()A . 方程x2﹣6x﹣5=0,可化为(x﹣3)2=4B . 方程y2﹣2y﹣2015=0,可化为(y﹣1)2=2015C . 方程a2+8a+9=0,可化为(a+4)2=25D . 方程2x2﹣6x﹣7=0,可化为9. (2分) (2017九上·河东期末) 如图所示,在△ABC中,∠CAB=70°,现将△ABC绕点A顺时针旋转一定角度后得到△AB′C′,连接BB′,若BB′∥AC′,则∠CAB′的度数为()A . 20°B . 25°C . 30°D . 40°10. (2分)若二次函数y=(x﹣m)2﹣1,当x≤3时,y随x的增大而减小,则m的取值范围是()A . m=3B . m>3C . m≥3D . m≤311. (2分) (2017九上·河东期末) 如图,⊙O的半径为4,点P是⊙O外的一点,PO=10,点A是⊙O上的一个动点,连接PA,直线l垂直平分PA,当直线l与⊙O相切时,PA的长度为()A . 10B .C . 11D .12. (2分)(2017·西安模拟) 如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A . 1B . 2C . 3D . 4二、填空题: (共6题;共6分)13. (1分) 4xa+2b-5- 2y3a-b-3=8是二元一次方程,那么 =________14. (1分) (2017九上·满洲里期末) 如图,一男生推铅球,铅球行进高度(米)与水平距离(米)之间的关系是,则铅球推出距离________米.15. (1分) (2016九上·市中区期末) 已知抛物线y=x2+(m+1)x+m﹣1与x轴交于A,B两点,顶点为C,则△ABC面积的最小值为________.16. (1分) (2018九下·嘉兴竞赛) 如图,直线y=- x+4 分别与x轴,y轴相交于点A,B,点C在直线AB上,D是坐标平面内一点.若以点0,A,C,D为顶点的四边形是菱形,则点D的坐标是________.17. (1分)正方形的A1B1P1P2顶点P1、P2在反比例函数y=(x>0)的图象上,顶点A1、B1分别在x 轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2 ,顶点P3在反比例函数y=(x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为________.18. (1分)(2019·资阳) 给出以下命题:①平分弦的直径垂直于这条弦;②已知点、、均在反比例函数的图象上,则;③若关于x的不等式组无解,则;④将点向左平移3个单位到点,再将绕原点逆时针旋转90°到点,则的坐标为.其中所有真命题的序号是________.三、解答题 (共7题;共85分)19. (10分)已知关于x的方程有两个实数根x1 , x2.(1)求k的取值范围;(2)若,求k的值.20. (10分) (2017·天津模拟) 已知甲同学手中藏有三张分别标有数字、、1的卡片,乙同学手中藏有三张分别标有数字1、3、2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.(1)请你用树形图或列表法列出所有可能的结果;(2)现制定一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请用概率知识解释.21. (15分)(2012·杭州) 有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.(1)请写出其中一个三角形的第三边的长;(2)设组中最多有n个三角形,求n的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.22. (15分) (2017九上·河东期末) 已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)求出b、c的值,并写出此二次函数的解析式;(2)根据图象,直接写出函数值y为正数时,自变量x的取值范围;(3)当2≤x≤4时,求y的最大值.23. (10分) (2017九上·河东期末) 如图,某建筑工程队利用一面墙(墙的长度不限),用40米长的篱笆围成一个长方形的仓库.(1)求长方形的面积是150平方米,求出长方形两邻边的长;(2)能否围成面积220平方米的长方形?请说明理由.24. (10分) (2017九上·河东期末) 图1和图2中的正方形ABCD和四边形AEFG都是正方形.(1)如图1,连接DE,BG,M为线段BG的中点,连接AM,探究AM与DE的数量关系和位置关系,并证明你的结论;(2)在图1的基础上,将正方形AEFG绕点A逆时针方向旋转到图2的位置,连结DE、BG,M为线段BG的中点,连结AM,探究AM与DE的数量关系和位置关系,并证明你的结论.25. (15分) (2017九上·河东期末) 如图,直线y=﹣ x+1与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B两点.(1)求抛物线的解析式;(2)点P是第一象限抛物线上的一点,连接PA、PB、PO,若△POA的面积是△POB面积的倍.①求点P的坐标;②点Q为抛物线对称轴上一点,请直接写出QP+QA的最小值;(3)点M为直线AB上的动点,点N为抛物线上的动点,当以点O、B、M、N为顶点的四边形是平行四边形时,请直接写出点M的坐标.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共85分)19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、。
山东省威海市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共10分)1. (1分)下列方程,是一元二次方程的是()A . 2(x-1)=3x .B . =0.C . .D . x(x-1)=y.2. (1分)下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A .B .C .D .3. (1分)(2020·拉萨模拟) 将抛物线y=x2﹣2向左平移3个单位长度,再向上平移3个单位长度后,所得抛物线的解析式为()A . y=(x+3)2+3B . y=(x﹣3)2+1C . y=(x+2)2+1D . y=(x+3)2+14. (1分) (2017九上·东丽期末) 如图,是⊙ 的弦,点在圆上,已知,则()A .B .C .D .5. (1分)(2013·台州) 如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为()A . 3B . 4﹣C . 4D . 6﹣26. (1分) (2017八下·丽水期末) 用配方法解方程时,此方程可变形为()A .B .C .D .7. (1分)若圆锥的侧面展开图是一个半径为a的半圆,则圆锥的高为()A . aB . aC . 3aD .8. (1分) (2017九上·宁县期中) 某学校组织篮球比赛,实行单循环制,共有36场比赛,则参加的队数为()A . 8支B . 9支C . 10支D . 11支9. (1分) (2018七上·普陀期末) 下列说法中,正确的是()A . 将一个图形先向左平移3厘米,再向下平移5厘米,那么平移的距离是8厘米B . 将一个图形绕任意一点旋转360°后,能与初始图形重合C . 等边三角形至少旋转60°能与本身重合D . 面积相等的两个三角形一定关于某条直线成轴对称10. (1分)抛物线y=ax2+bx﹣3经过点(2,4),则代数式8a+4b+1的值为()A . 3B . 9C . 15D . ﹣15二、填空题 (共6题;共6分)11. (1分) (2019九上·大田期中) 若是方程的一个根,则的值是________.12. (1分)(2017·广州) 如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是,则圆锥的母线l=________.13. (1分)某市举办“体彩杯”中学生篮球赛,初中男子组有市直学校的A、B、C三个队和县区学校的D,E,F,G,H五个队,如果从A,B,D,E四个队与C,F,G,H四个队中各抽取一个队进行首场比赛,那么首场比赛出场的两个队都是县区学校队的概率是________.14. (1分)(2019·金台模拟) 如图,正方形ABCD的边长为2 ,点E为正方形外一个动点,∠AED=45°,P为AB中点,线段PE的最大值是________.15. (1分) (2017九上·北京月考) 抛物线顶点的坐标为________;与x轴的交点坐标为________,与y轴的交点的坐标为________16. (1分)(2018·江城模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=2.分别以AC,BC为直径画半圆,则图中阴影部分的面积为________.(结果保留π)三、解答题 (共9题;共18分)17. (1分)(2020·乌鲁木齐模拟) 关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a 的值为________.18. (1分)(2016·温州) 如图,抛物线交轴于两点,交轴于点,.(Ⅰ)求抛物线的解析式;(Ⅱ)若是抛物线的第一象限图象上一点,设点的横坐标为m,点在线段上,CD=m,当是以为底边的等腰三角形时,求点的坐标;(Ⅲ)在(Ⅱ)的条件下,是否存在抛物线上一点,使,若存在,求出点的坐标;若不存在,请说明理由.19. (2分)如图,在每个小正方形的边长均为1个单位长度的方格纸中,有△ABC和一点O,△ABC的顶点和点O均与小正方形的顶点重合.①在方格纸中,将△ABC向下平移5个单位长度得到△A1B1C1,请画出△A1B1C1;②在方格纸中,将△ABC绕点O旋转180°得到△A2B2C2,请画出△A2B2C2.20. (2分)(2018·青海) 某中学为了解学生对新闻、体育、娱乐、动画四类电视节目的喜爱情况,进行了统计调查随机调查了某班所有同学最喜欢的节目每名学生必选且只能选择四类节目中的一类并将调查结果绘成如下不完整的统计图根据两图提供的信息,回答下列问题:(1)最喜欢娱乐类节目的有________人,图中 ________;(2)请补全条形统计图;(3)根据抽样调查结果,若该校有1800名学生,请你估计该校有多少名学生最喜欢娱乐类节目;(4)在全班同学中,有甲、乙、丙、丁等同学最喜欢体育类节目,班主任打算从甲、乙、丙、丁4名同学中选取2人参加学校组织的体育知识竞赛,请用列表法或树状图求同时选中甲、乙两同学的概率.21. (2分) (2020九上·息县期末) 如图①,在与中,, .(1)与的数量关系是: ________; .(2)把图①中的绕点旋转一定的角度,得到如图②所示的图形.①求证: .②若延长交于点,则与的数量关系是什么?并说明理由.(3)若,,把图①中的绕点顺时针旋转,直接写出长度的取值范围.22. (2分) (2016九上·溧水期末) 已知关于x的一元二次方程x2﹣2x﹣m=0有两个实数根.(1)求实数m的取值范围;(2)若方程的两个实数根为x1、x2,且x1•x2=2m2﹣1,求实数m的值.23. (3分)已知函数y=﹣x2+(m﹣1)x+m(m为常数).(1)求证:不论m为何值,该函数图象的顶点都在函数y=(x+1)2的图象上.(2)当﹣2≤m≤3时,求该函数的图象的顶点纵坐标的取值范围.24. (2分)(2018·滨州模拟) 已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O 于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为,sinA= ,求BH的长.25. (3分)(2016·贺州) 如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)求AD的长;(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.参考答案一、选择题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共18分)17-1、18-1、19-1、20-1、20-2、20-3、20-4、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。
威海市2020初三数学九年级上册期末试题和答案 一、选择题1.如图,点I 是△ABC 的内心,∠BIC =130°,则∠BAC =( )A .60°B .65°C .70°D .80°2.如图,在平面直角坐标系中,M 、N 、C 三点的坐标分别为(14,1),(3,1),(3,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作AB ⊥AC 交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动,设点B 的坐标为(0,b ),则b 的取值范围是( )A .14-≤b ≤1B .54-≤b ≤1C .94-≤b ≤12D .94-≤b ≤1 3.如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是( )A .100mB .3mC .150mD .3 4.若将二次函数2yx 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得图象对应函数的表达式为( )A .2(2)2y x =++B .2(2)2y x =--C .2(2)2y x =+-D .2(2)2y x =-+ 5.将一副学生常用的三角板如下图摆放在一起,组成一个四边形ABCD ,连接AC ,则tan ACD ∠的值为( )A.3B.31+C.31-D.236.抛掷一枚质地均匀的硬币,若抛掷6次都是正面朝上,则抛掷第7次正面朝上的概率是()A.小于12B.等于12C.大于12D.无法确定7.如图,四边形ABCD内接于⊙O,已知∠A=80°,则∠C的度数是()A.40°B.80°C.100°D.120°8.如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3C.6 D.99.在平面直角坐标系中,将抛物线y=2(x﹣1)2+1先向左平移2个单位,再向上平移3个单位,则平移后抛物线的表达式是()A.y=2(x+1)2+4 B.y=2(x﹣1)2+4C.y=2(x+2)2+4 D.y=2(x﹣3)2+410.已知⊙O的半径为4,点P到圆心O的距离为4.5,则点P与⊙O的位置关系是()A.P在圆内B.P在圆上C.P在圆外D.无法确定11.数据3、4、6、7、x的平均数是5,这组数据的中位数是()A.4 B.4.5 C.5 D.612.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是()A.13B.14C.15D.1613.如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是()A .∠B =∠D B .∠C =∠EC .AD AB AE AC = D .AC BC AE DE = 14.二次函数y =()21x ++2的顶点是( )A .(1,2)B .(1,−2)C .(−1,2)D .(−1,−2) 15.已知抛物线与二次函数23y x =-的图像相同,开口方向相同,且顶点坐标为(1,3)-,它对应的函数表达式为( )A .23(1)3y x =--+B .23(1)3y x =-+C .23(1)3y x =+-D .23(1)3y x =-++ 二、填空题16.三角形的两边长分别为3和6,第三边的长是方程x 2﹣6x+8=0的解,则此三角形的周长是_____.17.如图,△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,AD :AB=1:3,则△ADE 与△ABC 的面积之比为______.18.如图,若抛物线2y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h -<-的解集是______.19.如图,已知Rt ABC ∆中,90ACB ∠=︒,8AC =,6BC =,将ABC ∆绕点C 顺时针旋转得到MCN ∆,点D 、E 分别为AB 、MN 的中点,若点E 刚好落在边BC 上,则sin DEC ∠=______.20.如图,ABC ∆是O 的内接三角形,45BAC ∠=︒,BC 的长是54π,则O 的半径是__________.21.长度等于62的弦所对的圆心角是90°,则该圆半径为_____.22.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________.23.如图,在ABC 中,62BC =+,45C ∠=︒,2AB AC =,则AC 的长为________.24..甲、乙、丙、丁四位同学在五次数学测验中他们成绩的平均分相等,方差分别是2.3,3.8,5.2,6.2,则成绩最稳定的同学是______.25.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =1213,BC =12,则AD 的长_____.26.如图,已知△ABC 3的等边三角形,△ABC ∽△ADE ,AB =2AD ,∠BAD =45°,AC 与DE 相交于点F ,则△AEF 的面积等于_____(结果保留根号).27.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.28.如图,已知矩形ABCD 的顶点A 、D 分别落在x 轴、y 轴,OD =2OA =6,AD :AB =3:1.则点B 的坐标是_____.29.已知二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2),则y 1_____y 2.(填“>”“<”或“=”)30.如图,点O 为正六边形ABCDEF 的中心,点M 为AF 中点,以点O 为圆心,以OM 的长为半径画弧得到扇形MON ,点N 在BC 上;以点E 为圆心,以DE 的长为半径画弧得到扇形DEF ,把扇形MON 的两条半径OM ,ON 重合,围成圆锥,将此圆锥的底面半径记为r 1;将扇形DEF 以同样方法围成的圆锥的底面半径记为r 2,则r 1:r 2=_____.三、解答题31.如图,已知矩形ABCD 的边6AB =,4BC =,点P 、Q 分别是AB 、BC 边上的动点.(1)连接AQ 、PQ ,以PQ 为直径的O 交AQ 于点E .①若点E 恰好是AQ 的中点,则QPB ∠与AQP ∠的数量关系是______;②若3BE BQ ==,求BP 的长;(2)已知3AP =,1BQ =,O 是以PQ 为弦的圆.①若圆心O 恰好在CB 边的延长线上,求O 的半径: ②若O 与矩形ABCD 的一边相切,求O 的半径.32.如图,在△ABC 中,AB=AC ,AD 是△ABC 的角平分线,E ,F 分别是BD ,AD 上的点,取EF 中点G ,连接DG 并延长交AB 于点M ,延长EF 交AC 于点N 。
2020-2021学年威海市文登区九年级上学期期末数学试卷一、选择题(本大题共12小题,共36.0分)1.下列函数的图象与y=x的图象完全一致的是()A. y=x2xB. y=(√x)2C. y=3x3D. y=√x22.当太阳光线与地面成40°角时,在地面上的一棵树的影长为10m,树高ℎ(单位:m)的范围是()A. 3<ℎ<5B. 5<ℎ<10C. 10<ℎ<15D. 15<ℎ<203.如图,在△ABC中,∠A=90°,sinB=45,则cosB等于()A. √32B. 45C. 34D. 354.如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=10,AC=6,BC=8,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A. π4B. π12C. π6D. π55.如图,已知灯塔M方圆一定范围内有镭射辅助信号,一艘轮船在海上从南向北方向以一定的速度匀速航行,轮船在A处测得灯塔M在北偏东30°方向,行驶1小时后到达B处,此时刚好进入灯塔M的镭射信号区,测得灯塔M在北偏东45°方向,则轮船通过灯塔M的镭射信号区的时间为()A. (√3−1)小时B. (√3+1)小时C. 2小时D. √3小时6.关于函数y=2x2−3,y=−12x2的图象及性质,下列说法不正确的是()A. 它们的对称轴都是y轴x2,当x>0时,y随x的增大而减小B. 对于函数y=−12x2平移得到C. 抛物线y=2x2−3不能由抛物线y=−12x2的开口宽D. 抛物线y=2x2−3的开口比y=−127.在Rt△ABC中,AB=12,BC=16,那么这个三角形的外接圆的直径是()A. 10B. 20C. 10或8D. 20或168.8.如图,小芳在某次投篮中,球的运动路线是抛物线y=x2+3.5的一部分,若命中篮圈中心,则他与篮底的距离l是()A. 3.5mB. 4mC. 4.5mD. 4.6m9.在下列叙述中,正确的个数有()①正比例函数y=2x的图象经过二、四象限;②一次函数y=2x−3中,y随x的增大而减小;③函数y=3x+1中,当x=−1时,函数值为y=−2;④一次函数y=x+1的自变量x的取值范围是全体实数.A. 1个B. 2个C. 3个D. 4个10.矩形的长为x,宽为y,面积为9,则y与x之间的函数关系用图像表示大致为()11.在平面直角坐标系中,将线段OA绕原点O逆时针旋转90°,记点A(−1,)的对应点为A1,则A1的坐标为()A. (,1)B. (1,)C. (−,−1)D. (−1,−)12.如图,是二次函数y=ax2+bx+c图象的一部分,下列结论中:①abc>0;②a−b+c<0;③ax2+bx+c+1=0有两个相等的实数根;④9a+3b+c>0.其中正确的结论的序号为()A. ①②B. .①③C. .②③D. .①④二、填空题(本大题共6小题,共18.0分))−2=______.13.计算:√3×√6−6cos45°+(−1214.张家界国际乡村音乐周活动中,来自中、日、美的三名音乐家准备在同一节目中依次演奏本国的民族音乐,若他们出场先后的机会是均等的,则按“美−日−中”顺序演奏的概率是______ .15.用一根长为24cm的铁丝围成半径为4cm的一个扇形,则此扇形的面积为______.16.如图,点A,B是双曲线y=3上的点,分别经过A,B两点向x轴,y轴作垂线段,若S阴影=2,x则S1+S2=______ .17.今年三月份王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝等进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,当销售单价是______元时,王大伯获得利润最大.18.如图,△ABC中,∠ABC=45°,∠C=30°,AD⊥AC交BC于D,以AD为边作正方形ADEF,F在AC边上,则BD的值为______.CF三、解答题(本大题共7小题,共66.0分)19.先化简,再求值:[x2−1(x−1)2−xx−1]÷12x,请选取一个适当的x的数值代入求值.20.下面哪些图形经过折叠可以围成一个棱柱?21.某艺校音乐专业自主招生考试中,所有考生均参加了“声乐”和“器乐”两个科目的考试,成绩都分为五个等级.对某考场考生两科考试成绩进行了统计分析,绘制了如下统计表和统计图(不完整).根据以上信息,解答下列问题:(1)求表中a,b,c,d的值,并补全条形统计图;(2)若等级A,B,C,D,E分别对应10分,8分,6分,4分,2分,求该考场“声乐”科目考试的平均分.(3)已知本考场参加测试的考生中,恰有两人的这两科成绩均为A,在至少一科成绩为A的考生中,随机抽取两人进行面试,求这两人的两科成绩均为A的概率.22.如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(4,2),直线y=−12x+52与边AB,BC分别相交于点M,N,函数y=kx(x>0)的图象过点M.(1)试说明点N也在函数y=kx(x>0)的图象上;(2)将直线MN沿y轴的负方向平移得到直线M′N′,当直线M′N′与函数y═kx(x>0)的图象仅有一个交点时,求直线M′N′的解析式.23.某山区为改善办学条件,依山新建一座教学楼,校门A处,有一坡度i=5:12的斜坡AB,在坡顶B处(铅直高度为10米)看教学楼CF的楼顶C的仰角∠CBF=53°,在E处仰角C的仰角∠CEF=63.4°,按规划要在离B点6米远的E处建一悬挂国旗的旗杆.(1)求斜坡AB的长度;(2)求旗杆处离教学楼的距离.(参考数据:tan63.4°≈2,tan53°≈43)24.问题呈现:如图1,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,BE⊥DC交DC的延长线于点E.求证:BE是⊙O的切线.问题分析:连接OB,要证明BE是⊙O的切线,只要证明OB______BE,由题意知∠E=90°,故只需证明OB______DE.解法探究:(1)小明对这个问题进行了如下探索,请补全他的证明思路:如图2,连接AD,由∠ECB是圆内接四边形ABCD的一个外角,可证∠ECB=∠BAD,因为OB=OC,所以______,因为BD=BA,所以______,利用同弧所对的圆周角相等和等量代换,得到______,所以DE//OB,从而证明出BE是⊙O的切线.(2)如图3,连接AD,作直径BF交AD于点H,小丽发现BF⊥AD,请说明理由.(3)利用小丽的发现,请证明BE是⊙O的切线.(要求给出两种不同的证明方法).25.如图,抛物线y=√33x2+23√3x−√3交x轴于点A、B.交y轴于点C.(1)求直线AC的解析式,(2)若P为直线AC下方抛物线上一动点,连接AP、CP,以PC为对角线作平行四边形ACDP,当平行四边形ACDP面积最大时,作点C关于x轴的对称点Q,此时线段MN在直线AQ上滑动(M在N的左侧),MN=√3,连按BN,PM,求BN+NM+MP的最小值及平行四边形ACDP的最大面积;(3)将△BOC沿直线AC平移,当B的对应点B′落在直线AQ上时,将平移后的△B′O′C′绕B′沿顺时针方向旋转α(0°≤α≤180°),直线O′C与直线MQ和x轴分别交于点G、H,当△AGH为等腰三角形时,求AG的长.参考答案及解析1.答案:C解析:解:A 、y =x 2x ,自变量x 不能等于0,故与y =x 的图象不完全一致,故此选项错误;B 、y =(√x)2,自变量x 不能为负数,故与y =x 的图象不完全一致,故此选项错误;C 、y =3x 3=x ,自变量x 可以取任意实数,故与y =x 的图象完全一致,故此选项正确;D 、y =|x|,对应函数值,始终是非负数,故与y =x 的图象不完全一致,故此选项错误; 故选:C .根据函数中自变量的取值范围以及函数值的取值范围得出与y =x 的图象完全一致的图象即可. 此题主要考查了函数图象,根据函数中自变量以及函数值得出是解题关键.2.答案:B解析:解:AC =10.①当∠A =30°时,BC =ACtan30°=10×√33≈5.7. ②当∠A =45°时,BC =ACtan45°=10.∴5.7<ℎ<10,故选B .利用坡度算出坡角最大或最小时树高的范围即可.本题主要考查三角函数的定义,利用三角函数的定义求得相应角度时树的高度是解题的关键. 3.答案:D解析:解:∵在△ABC 中,∠A =90°,sinB =45,∴cosB =√1−sin 2B =√1−(45)2=35.故选D .根据sinB 的值结合sin 2B +cos 2B =1即可得出cosB 的值,此题得解.本题考查了同角三角函数的关系,熟练掌握同角的正、余弦值的平方和为1是解题的关键. 4.答案:C解析:解:∵AB =10,AC =6,BC =8,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径=6+8−102=2,∴S△ABC=12AC⋅BC=12×8×6=24,S圆=4π,∴小鸟落在花圃上的概率=4π24=π6;故选:C.根据AB=10,AC=6,BC=8,得出AB2=BC2+AC2,根据勾股定理的逆定理得到△ABC为直角三角形,于是得到△ABC的内切圆半径,求得直角三角形的面积和圆的面积,即可得到结论.本题考查了几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半.同时也考查了勾股定理的逆定理.5.答案:B解析:解:连接MC,过M点作MD⊥AC于D.在Rt△ADM中,∵∠MAD=30°,∴AD=√3MD,在Rt△BDM中,∵∠MBD=45°,∴BD=MD,∴BC=2MD,∴BC:AB=2MD:(√3−1)MD=2:√3+1.故轮船通过灯塔M的镭射信号区的时间为(√3+1)小时.故选:B.连接MC,过M点作MD⊥AC于D.根据三角函数的定义,在Rt△ADM中可得AD=√3MD,在Rt△BDM 中可得BD=MD,根据垂径定理可得BC=2MD,依此求出BC:AB的值即可求解.考查了解直角三角形的应用−方向角问题,本题关键是得到AD=√3MD,BC=2MD.6.答案:D解析:解:在y=2x2−3中,对称轴为y轴,在y=−12x2中对称轴为y轴,开口向下,当x>0时,y随x的增大而减小,故A、B正确;∵2≠−12,∴抛物线y=2x2−3不能由抛物线y=−12x2平移得到,故C正确;∵2>|−1|,2x2的开口窄,故D不正确;∴抛物线y=2x2−3的开口比y=−12故选D.由抛物线解析式可得出对称轴、增减性及开口大小等,再进行逐项判断即可.本题主要考查二次函数的性质,掌握二次函数的开口大小与二次项系数的大小有关是解题的关键.7.答案:D解析:解:根据题意得(1)斜边是BC,即外接圆直径是16;(2)斜边是AC,即外接圆直径是√122+162=20;故选D.这个三角形的外接圆直径是斜边长,有两种情况情况:(1)斜边是BC,即外接圆直径是8;(2)斜边是AC,即外接圆直径是斜边的一半.本题考查的是直角三角形的外接圆半径,重点在于理解直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆.8.答案:Bx2+3.5中得:解析:解:如图,把C点纵坐标y=3.05代入y=−15x=±1.5(舍去负值),即OB=1.5,所以l=AB=2.5+1.5=4.x平方+3.5中得:令解:把y=3.05代入y=−15x1=1.5,x2=−1.5(舍去),∴L=2.5+1.5=4米.故选B.9.答案:B解析:解:①正比例函数y=2x的图象经过一、三象限,故①错误;②一次函数y=2x−3中,y随x的增大而增大,故②错误;③函数y=3x+1中,当x=−1时,函数值为y=−2,故③正确;④一次函数y=x+1的自变量x的取值范围是全体实数,故④正确.则正确的个数为2个.故选:B.①利用正比例函数的性质判断即可;②利用一次函数的性质判断即可;③将x=−1代入y=3x+1中,计算即可;④利用一次函数的性质判断即可.此题主要考查了一次函数的性质,一次函数图象上点的坐标特征,熟记一次函数图象上的坐标特征,一次函数图象的性质是解题的关键.10.答案:C解析:解析:解:∵y=(x>0),∴y是x的反比例函数,故选C.11.答案:C解析:如图.∵A(−1,),∴OB=1,AB=.将线段OA绕原点O逆时针旋转90°,即将△OAB绕原点O逆时针旋转90°到达图中△OA1B1的位置.根据旋转的性质,OB1=1,A1B1=.∴点A1(−,−1).故选C.12.答案:D解析:解:①由抛物线的开口方向向上可推出a>0,与y轴的交点在y轴的负半轴上可推出c=−1<0,>1>0,a>0,得b<0,对称轴为x=−b2a故abc>0,故①正确;>1,抛物线与x轴的一个交点交于(2,0),(3,0)之间,则另一个交点在②由对称轴为直线x=−b2a(0,0),(−1,0)之间,所以当x=−1时,y>0,所以a−b+c>0,故②错误;③抛物线与y轴的交点为(0,−1),由图象知二次函数y=ax2+bx+c图象与直线y=−1有两个交点,故ax2+bx+c+1=0有两个不相等的实数根,故③错误;④x=3时,y=ax2+bx+c=9a+3b+c>0,故④正确;故选:D.由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对各个结论进行判断.本题考查了二次函数的图象与系数的关系,解答此类问题的关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定,解题时要注意数形结合思想的运用.13.答案:4)−2解析:解:√3×√6−6cos45°+(−12=3√2−6×√22+4=4故答案为:4.首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.14.答案:16解析:解:根据题意可得:三名音乐家在同一节目中依次演奏本国的民族音乐,共6种情况;①美−日−中;②美−中−日;③中−日−美;④中−美−日;⑤日−美−中;⑥日−中−美;则按“美−日−中”顺序演奏的概率是16.列举出所有情况,看按“美−日−中”顺序演奏的情况占所有情况的多少即为所求的概率.本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.15.答案:32cm2解析:解:用一根长为24cm的铁丝围成半径为4cm的一个扇形,则此扇形的弧长=24−4−4=16,则此扇形的面积为:12×16×4=32(cm2),故答案为:32cm2.求出扇形的弧长,根据扇形面积公式计算即可.本题考查的是扇形面积的计算,掌握S扇形=12lR(其中l为扇形的弧长)是解题的关键.16.答案:2解析:解:∵点A,B是双曲线y=3x上的点,∴S1+S阴影=S2+S阴影=3,∴S1+S2=6−2S阴影=6−4=2.故答案为2.先根据反比例函数系数k的几何意义求出S1+S阴影及S2+S阴影的值,进而可得出S1+S2的值.本题考查的是反比例函数系数k的几何意义,熟知在反比例函数y=kx(k≠0)图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|是解答此题的关键.17.答案:20解析:解:设王大伯获得的利润为W,则W=(x−10)[180−10(x−12)]=−10x2+400x−3000=−10(x−20)2+1000,∵a=−10<0,∴当x=20时,W取最大值,最大值为1000.故答案为:20.设王大伯获得的利润为W,根据“总利润=单个利润×销售量”,即可得出W关于x的函数关系式,利用配方法将W关于x的函数关系式变形为W=−10(x−20)2+1000,根据二次函数的性质即可解决最值问题.本题考查了二次函数的应用,解题的关键是根据数量关系找出W关于x的函数关系式;本题属于中档题,难度不大.18.答案:12解析:解:作AH⊥BC于H.设正方形的边长为a.在Rt△ACD中,AD=a,∠C=30°,∴CD=2a,AC=√3a,CF=√3a−a,在Rt△ABH中,∵∠B=45°,∴AH=BH=√32a,在Rt△ADH中,DH=12AD=12a,∴BD=BH−DH=√32a−12a,∴BDCF =√32a−12a√3a−a=12,故答案为12.作AH⊥BC于H.设正方形的边长为a.想办法求出CF、BD即可解决问题;本题考查解直角三角形,正方形的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数解决问题,属于中考常考题型.19.答案:解:[x2−1(x−1)2−xx−1]÷12x=[(x+1)(x−1)(x−1)2−xx−1]⋅2x,=1x−1⋅2x,=2xx−1.当x=2时,原式=4.解析:先化简分式,再取x=2代入求值.本题主要考查了分式的化简求值,解题的关键是正确的化简分式.20.答案:解:①中间是四个矩形,矩形两边分别是四边形,故能围成棱柱;②中间是四个矩形,矩形两边分别是四边形,故能围成棱柱;③中间是四个矩形,矩形一边有两个四边形,另一边没有四边形,故不能为成棱柱;④中间是四个矩形,矩形两边分别是四边形,故能围成棱柱;⑤中间是三个矩形,矩形两边分别是四边形,故不能围成棱柱.解析:根据几棱柱展开可得侧面是几个矩形,矩形的两边分别是相同的几边形.本题考查了展开图折叠成几何体,中间是几个矩形,两边分别是相同的几边形,可以围成棱柱.21.答案:解:(1)此考场的考生人数为:100.25=40;a=40×0.075=3,b=1540=0.375,c=40−3−10−15−8=4,d=440=0.1,器乐考试A等3人;(2)考生“声乐”考试平均分:(3×10+10×8+15×6+8×4+4×2)÷40=6分;(3)因为声乐成绩为A 等的有3人,器乐成绩为A 等的有3人,由于本考场考试恰有2人两科均为A 等,不妨记为A′,A′′,将声乐成绩为A 等的另一人记为b ,在至少一科成绩为A 等考生中随机抽取两人有六种情形,两科成绩均为A 等的有一种情形,所以概率为16.解析:(1)得出考生人数,进而得出a ,b ,c 的数值.(2)利用平均数公式即可计算考场“声乐”科目考试的平均分.(3)通过概率公式计算即可.本小题主要考查统计与概率的相关知识,具体涉及到频率分布直方图、平均数及古典概型等内容. 22.答案:解:(1)∵矩形OABC 的顶点B 的坐标为(4,2),∴点M 的横坐标为4,点N 的纵坐标为2,把x =4代入y =−12x +52,得y =12,∴点M 的坐标为(4,12),把y =2代入y =−12x +52,得x =1,∴点N 的坐标为(1,2),∵函数y =k x (x >0)的图象过点M ,∴k =4×12=2, ∴y =2x (x >0),当x =1时,y =21=2,∴N(1,2)也在函数y =k x (x >0)的图象上;(2)设直线M′N′的解析式为y =−12x +b ,由{y =−12x +b y =2x ,得x 2−2bx +4=0, ∵直线y =−12x +b 与函数y═k x (x >0)的图象仅有一个交点,∴(−2b)2−4×4=0,解得b =2,b 2=−2(舍去),∴直线M′N′的解析式为y =−12x +2.解析:本题考查了用待定系数法求反比例函数的解析式,一次函数与反比例函数的交点问题,矩形的性质等知识点的应用,主要考查学生应用性质进行计算的能力,题目比较好,难度适中.(1)根据矩形OABC的顶点B的坐标为(4,2),可得点M的横坐标为4,点N的纵坐标为2,把x=4代入y=−12x+52,得y=12,可求点M的坐标为(4,12),把y=2代入y=−12x+52,得x=1,可求点N的坐标为(1,2),根据待定系数法可求函数y=kx(x>0)的解析式,再图象过点M,求出k的值,验证N(1,2)是否在y=2x的图象上即可.(2)设直线M′N′的解析式为y=−12x+b,由{y=−12x+by=2x得x2−2bx+4=0,再根据判别式即可求解.23.答案:解:(1)如图,过点B作BG⊥AD于点G,则BG=10,∵i=BGAG =512,∴AG=24,则AB=√AG2+BG2=√102+242=26,答:斜坡AB的长度为26米;(2)设EF=x米,则BF=6+x(米),∵在Rt△BCF中,CF=BFtan∠CBF=(6+x)tan53°,在Rt△ECF中,CF=EFtan∠CEF=tan63.4°x,∴(6+x)tan53°=tan63.4°x,解得:x=6⋅tan53°tan63.4∘−tan53∘≈12,答:旗杆处离教学楼的距离约为12米.解析:(1)作BG⊥AD,由BG=10、i=BGAG =512得AG=24,根据勾股定理求解可得;(2)设EF=x米,则BF=6+x(米),由CF=BFtan∠CBF=EFtan∠CEF得出关于x的方程,解之可得.本题考查了解直角三角形的应用−仰角和俯角问题,解直角三角形的应用−坡度和坡比问题,正确理解题意是解题的关键.24.答案:⊥;//;(1)∠CBO=∠BCO;∠BAD=∠BDA;∠ECB=∠CBO;(2)如图3,连接OD,∴OD=OA,∵BD=BA,∴BF垂直平分AD,即:BF⊥AD(垂径定理),(3)方法1,∵BF⊥AD,∴∠BHD=90°,∵∠ABC=90°,∴AC是⊙O的直径,∴∠ADC=90°,∵∠E=90°,∴四边形BEDH是矩形,∴∠EBO=90°,∴BE是⊙O的切线;方法2,∵BF⊥AD,∴AH=DH(垂径定理),∵∠ABC=90°,∴AC是⊙O的直径,∴AO=CO,∴OH是△ACD的中位线,∴OH//DC,即:DE//OB,∵∠E=90°,∴∠EBO=90°,∴BE是⊙O的切线.解析:解:问题分析:故答案为:⊥,//;解法探究:(1)故答案为:∠CBO=∠BCO,∠BAD=∠BDA,∠ECB=∠CBO;(2)如图3,连接OD,∴OD=OA,∵BD=BA,∴BF垂直平分AD,即:BF⊥AD(垂径定理),(3)方法1,∵BF⊥AD,∴∠BHD=90°,∵∠ABC=90°,∴AC是⊙O的直径,∴∠ADC=90°,∵∠E=90°,∴四边形BEDH是矩形,∴∠EBO=90°,∴BE 是⊙O 的切线;方法2,∵BF ⊥AD ,∴AH =DH(垂径定理),∵∠ABC =90°,∴AC 是⊙O 的直径,∴AO =CO ,∴OH 是△ACD 的中位线,∴OH//DC ,即:DE//OB ,∵∠E =90°,∴∠EBO =90°,∴BE 是⊙O 的切线.问题分析:直接得出结论即可;解法探究:(1)根据证明方法直接写出结论;(2)先判断出OD =OA ,再用垂径定理即可得出结论;(3)方法1,先判断出AC 是⊙O 的直径,进而判断出四边形BEDH 是矩形即可;方法2,先判断出AH =DH ,再判断出AC 是⊙O 的直径,进而判断出OH 是△ACD 的中位线,即可得出DE//OB ,即可得出结论;此题是圆的综合题,主要考查了圆的性质,垂径定理,切线的判定,矩形的判定和性质,三角形的中位线,解本题的关键是∠EBO =90°,本题(3)还可以通过证明∠OBD =∠BDC 来证明结论,还可以通过证明∠BOC =∠DCO 来证明结论.25.答案:解:(1)当y =0时,√33x 2+23√3x −√3=0, 解得:x 1=1,x 2=−3,∴A(−3,0),B(1,0),当x =0时,y =−√3∴C(0,−√3),设直线AC 解析式为y =kx +b ,∴{−3k +b =00+b =−√3 解得:{k =−√33b =−√3∴直线AC 解析式为y =−√33x −√3; (2)设与AC 平行的直线解析式为y =−√33x +ℎ, 联立y =√33x 2+23√3x −√3与y =−√33x +ℎ, 当△=0时,点P 到直线AC 的距离最大,∴7+4√33ℎ=0,∴ℎ=−7√34,∴y =−√33x −7√34, ∴点P 的坐标为(−32,−5√34),此时平行四边形ACDP面积最大;S 四边形ACDP =2S △ACP =2(S 梯形AEFC −S △AEP −S △FCP )=2×12×3×(5√34+√34)−2×12×3×32−2×32×√34=33√38−92; 点C 关于x 轴的对称点Q ,C(0,−√3),∴Q(0,√3),则AQ 的直线解析式为y =√33x +√3, 设点B 关于直线AQ 的对称点为B′(a,b),∴{−√3=b a−11+a2⋅√33+√3=b 2,∴{a =−1b =2√3, ∴B′(−1,2√3),过点B′作MN 的平行线,过M 作B′N 的平行线,两线相交于点B′′,过点B′′作x 轴平行线,过点B′作y 轴平行线,相交于点G ,∴MN =B′′B′,∵直线AQ 与x 轴的夹角为30°,∴∠B′′GB′=30°,∴B′′G =32,B′G =√32, ∴B′′(−52,3√32), 当B′′,M ,P 三点共线时,BN +NM +MP 的值最小,∴BN +NM +MP =B′′P +NM ,∵B′′P =√3794, ∴BN +NM +MP 的最小值为√3+√3794;(3)平移后B′的坐标为(−1,2√33), O′是在以B′为圆心O′B′长为半径的半圆上运动,当以A 为圆心,AH 为半径的圆经过圆心B′时,AH =AG ,∴△AGH 为等腰三角形,∴AG =2√393. 解析:(1)分别令抛物线解析式y =0求点A 坐标,x =0求点C 坐标,用待定系数法即求得直线AC 解析式.(2)与AC 平行的直线与抛物线有唯一交点时,平行四边形ACDP 面积最大;设点B 关于直线AQ 的对称点为B′(a,b),利用对称性求出B′的坐标,过点B′作MN 的平行线,过M 作B′N 的平行线,两线相交于点B′′,过点B′′作x 轴平行线,过点B′作y 轴平行线,相交于点G ,当B′′,M ,P 三点共线时,BN +NM +MP 的值最小;(3)求出平移后B′的坐标为(−1,2√33),O′是在以B′为圆心O′B′长为半径的半圆上运动,当以A 为圆心,AH 为半径的圆经过圆心B′时,AH =AG ,此时△AGH 为等腰三角形.本题考查二次函数的图象及性质;通过对称性,利用三角形两边之和大于第三边,将两边的和的最小值转化为线段的长,将平行四边形面积的最大值转化为利用一次函数与二次函数只有一个交点,将等腰三角形的存在性问题转化为两圆之间的关系是解题的关键.。
2019-2020年九年级第一学期期末考试数学试题一、选择题(本大题共有8 小题,每小题 3 分,共 24 分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母填涂在答题卡相应位置上).......1.已知一组数据: 5, 9, 13, 13, 5.下列说法正确的是(▲ ).平均数是 9.极差是 4.众数是 9.中位数是 13A B C D2.下列函数表达式中,一定为二次函数的是(▲ )..y ax 2bx c C.s 2t2D.y x21A y 3x﹣1B x3.一只不透明的袋子中装有 5 个黑球4 个白球,这些球除颜色外都相同,搅匀后从中任意摸出 1 个球,摸到白球的概率为(▲ )A.1B.1C.4D.4 94594.对于二次函数y x128 的图像,下列说法正确的是(▲ )A.开口向下B.对称轴是直线x1C.顶点坐标是(1,﹣8)D.可由y x2的图像平移得到5.下列各组图形一定相似的是(▲ )A.两个矩形B.两个等边三角形.各有一角是 80°的两个等腰三角形.各角都是 135°的两个八边形C D6.如图,在直角坐标系中,有两点A(6,3)、 B(6,0),以原点 O为位似中心,位似比为1,在第一像限内3把线段 AB缩小后得到线段CD,则点 C的坐标为(▲ )A.(2,1)B.(2,0)C.(3,3)D.(3,1)(第6题)7.如果关于x的一元二次方程( m-1) x2+2 x+1=0有两个不相等的实数根,那么m的取值范围是(▲ )A. m>2B. m<2C. m>2且 m≠1D.m<2且 m≠18.如图,一次函数y1x 5 与二次函数y2ax 2bx c 的图像相交于A、 B 两点,则y yy y yB函数 y ax 2 1 b x 5 c 的图像可能为(▲ )二、填空题(本大题共有10 小题,每小题 3 分,共 30 分.不需写出解答过程,请把答案直接填写在答题卡相应位置上).......9.若⊙O的半径为5cm,点A到圆心O的距离为 4cm,那么点A与⊙O的位置关系是:点A 在⊙ O▲.(填“上”、“内”、“外”)10.某小区 2014 年绿化面积为500 平方米,计划 2016 年绿化面积要达到720 平方米.如果每年绿化面积的增长率相同,那么这个增长率是▲.11.若圆锥的底面半径是2cm,母线长是9cm,则它的侧面展开图的面积是▲2 cm.12.将二次函数y x2的图像向右平移 3 个单位,再向上平移1个单位后,所得图像的函数表达式是▲.13.如图,⊙O的半径为2,C1是函数y=1 221x2x 的图像, C 是函数 y =的图像,则阴影部22分的面积是▲.14.若线段=2,点C 是线段的黄金分割点,且>,则的长是▲.AB AB AC BC ACC EODA B(第 13 题)(第15题)15.如图,⊙O中,∠AOB= 110°,点C、D是优弧AEB上任两点,则∠C+∠ D的度数是▲°.16.如图,⊙O的半径是5,△ABC是⊙O的内接三角形,过圆心线,垂足为E、F、G,连接 EF.若 OG﹦2,则 EF=▲O 分别作.AB、BC、AC的垂17.如图,在正方形网格中,每个小正方形的边长均相等,点A、 B、 O 均在格点处,则cos AOB▲.18.如图,等腰△ABC中,AB AC 4 ,BC=m,点D是边AB的中点,点P是边BC上的动点,且不与B、C重合,DPQ B ,射线PQ交 AC于点 Q.当点 Q总在边 AC上..时, m 的最大值是▲.AGO A O C A QE D FB B(第 16 题)(第 17 题)B P(第18题)C三、解答题(本大题共有 10 小题,共96 分.请在答题卡指定区域内作答,解答时应写出必.......要的文字说明、证明过程或演算步骤)19.(本题满分 10 分)( 1)解方程:x22x 1 0 (用配方法);1( 2)计算:8 4 cos45o013.14220.(本题满分8 分)如图,在△ABC 中,已知∠ C=90°,∠ B=60°, BC=2.( 1)求边AB、AC的长;B( 2)求△ABC内切圆⊙O的半径r.CA21.(本题满分8 分)某班组织了一次经典诵读比赛,男女生各 5 人组成甲、乙两队参与比赛,成绩如下表(10 分制):甲队810999乙队1088109( 1)甲队成绩的平均数是▲分,乙队成绩的平均数是▲分;(2)分别计算两队成绩的方差;(3)根据( 1)、( 2)计算的结果,你认为那一队的成绩较好,并说明理由。
山东省威海市文登区2019-2020学年九年级上学期期末数学试题
(word无答案)
一、单选题
(★) 1 . 函数的自变量的取值范围是()
A.B.C.D.且
(★) 2 . 若,下列结论正确的是()
A.B.C.D.以上结论均不正确
(★) 3 . 图1是一个底面为正方形的直棱柱,现将图1切割成图2的几何体,则图2的俯视图是()
A.B.C.D.
(★) 4 . 如图,已知的三个顶点均在格点上,则的值为()
A.B.C.D.
(★★) 5 . 在阳光的照射下,一块三角板的投影不会是()
A.线段B.与原三角形全等的三角形
C.变形的三角形D.点
(★) 6 . 如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站在点处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重合且高度恰好相同.此时测得墙上影子高(点在同一条直线上).已知小明身高是,则楼高为()
A.B.C.D.
(★) 7 . 如图,小明将一个含有角的直角三角板绕着它的一条直角边所在的直线旋转一周,形成一个几何体,将这个几何体的侧面展开,得到的大致图形是()
A.B.
C.D.
(★★) 8 . 已知抛物线与 x轴相交于点 A, B(点 A在点 B左侧),顶点为 M.平
移该抛物线,使点 M平移后的对应点 M'落在 x轴上,点 B平移后的对应点 B'落在 y轴上,则
平移后的抛物线解析式为()
A. B. C. D.
(★) 9 . 如图,在中,,已知,把沿轴负方向向左平移到的位置,此时在同一双曲线上,则的值为()
A.B.C.D.
(★★) 10 . 四位同学在研究函数y=x 2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x 2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,
已知这四位同学中只有一位发现的结论是错误的,则该同学是( )
A.甲B.乙C.丙D.丁
(★★) 11 . 正五边形内接于圆,连接分别与交于点,,连
接若,下列结论:① ② ③四边形是菱形④
;其中正确的个数为()
A.个B.个C.个D.个
(★★) 12 . 如图,轴右侧一组平行于轴的直线···,两条相邻平行线之间的距离
均为,以点为圆心,分别以···为半径画弧,分别交轴,···于点···则点的坐标为()
A.B.
C.D.
二、填空题
(★) 13 . 从实数中,任取两个数,正好都是无理数的概率为________.
(★) 14 . 如图,在中,是斜边的垂直平分线,分别交
于点,若,则______.
(★) 15 . 抛物线的对称轴过点,点与抛物线的顶点之间的距离为
,抛物线的表达式为______.
(★★) 16 . 如图,平行四边形分别切于点,连接并延长交于点,连接与刚好平行,若,则的直径为
______.
(★★) 17 . 如图,点是反比例函数的图象上一点,直线过点与轴交于点,与轴交于点.过点做轴于点,连接,若的面积为,则
的面积为_______.
(★★) 18 . 把两块同样大小的含角的三角板的直角重合并按图1方式放置,点是两块三角板的边与的交点,将三角板绕点按顺时针方向旋转到图2的位置,若
,则点所走过的路程是_________.
三、解答题
(★) 19 . (1)计算:
. (2)如图,正方形纸板 在投影面 上的正投影为
,其中边
与投影面平行,
与投影面不平行.若正方形 的边长为 厘米,
,求其投影
的面积.
(★) 20 . 一个可以自由转动的转盘,其盘面分为 等份,分别标上数字
.小颖准备转动转
盘 次,现已转动 次,每一次停止后,小颖将指针所指数字记录如下:
次数
数字
小颖继续自由转动转盘 次,判断是否可能发生“这 次指针所指数字的平均数不小于 且不
大于
”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,请说明理
由.(指针指向盘面等分线时为无效转次.)
(★★) 21 . 随着私家车的增多,“停车难”成了很多小区的棘手问题.某小区为解决这个问题,拟
建造一个地下停车库.如图是该地下停车库坡道入口的设计示意图,其中,入口处斜坡 的坡角为
,水平线
.根据规定,地下停车库坡道入口上方要张贴限
高标志,以提醒驾驶员所驾车辆能否安全驶入.请求出限制高度为多少米,(结果精确到 ,
参考数据:
,
,
).
(★★) 22 . 如图,在平面直角坐标系中,矩形
的顶点 在 轴上, 在 轴上,把矩
形 沿对角线
所在的直线对折,点 恰好落在反比例函数
的图象上点
处,
与 轴交于点 ,延长 交 轴于点
,点
刚好是
的中点.已知 的坐标为
.
(1)求反比例函数的函数表达式;
(2)若是反比例函数图象上的一点,点在轴上,若以为顶点的
四边形是平行四边形,请直接写出点的坐标 _________.
(★★) 23 . 某商场销售一种电子产品,进价为元/件.根据以往经验:当销售单价为元时,
每天的销售量是件;销售单价每上涨元,每天的销售量就减少件.
(1)销售该电子产品时每天的销售量(件)与销售单价(元)之间的函数关系式为______;
(2)商场决定每销售件该产品,就捐赠元给希望工程,每天扣除捐赠后可获得最
大利润为元,求的值.
(★★) 24 . 如图,是的直径,点在上,,FD切于点,连接并延长交于点,点为中点,连接并延长交于点,连接,交
于点,连接.
(1)求证:;
(2)若的半径为,求的长.
(★★) 25 . 如图1,抛物线与轴交于点,与轴交于点.
(1)求抛物线的表达式;
(2)点为抛物线的顶点,在轴上是否存在点,使?若存在,求出点
的坐标;若不存在,说明理由;
(3)如图2,位于轴右侧且垂直于轴的动直线沿轴正方向从运动到(不含点和点),分别与抛物线、直线以及轴交于点,过点作于点,求面积
的最大值.。