化工原理-17换热器的传热计算汇总
- 格式:ppt
- 大小:439.50 KB
- 文档页数:37
换热器热量及面积计算一、热量计算1、一般式Q=W h(H h,1- H h,2)= W c(H c,2- H c,1)式中:Q 为换热器的热负荷, kj/h 或 kw ;W 为流体的质量流量, kg/h;H 为单位质量流体的焓, kj/kg ;下标 c 和 h 分别表示冷流体和热流体,下标 1 和 2 分别表示换热器的进口和出口。
2、无相变化Q=W h c p,h(T1-T2)=W c c p,c(t2-t1)式中:c p为流体平均定压比热容,kj/(kg.℃);T为热流体的温度,℃;T为冷流体的温度,℃。
二、面积计算1、总传热系数K管壳式换热器中的K 值如下表:冷流体热流体总传热系数 K,w/(m2. ℃)水水850-1700水气体17-280水有机溶剂280-850 水轻油340-910 水重油60-280有机溶剂有机溶剂115-340 水水蒸气冷凝1420-4250 气体水蒸气冷凝30-300水低沸点烃类冷凝455-1140 水沸腾水蒸气冷凝2000-4250 轻油沸腾水蒸气冷凝455-1020 注:1w=1J/s=3.6kj/h=0.86kcal/h1kcal=4.18kj2、温差(1)逆流热流体温度 T:T1→T2冷流体温度 t :t2 ←t1温差△ t :△ t1 →△ t2△t m=(△ t2- △t1 )/ ㏑(△ t2/ △t1 )(2)并流热流体温度 T:T1→T2冷流体温度 t :t1 →t2温差△ t :△ t2 →△ t1△t m=(△ t2- △t1 )/ ㏑(△ t2/ △t1 )3、面积计算S=Q/(K. △t m)三、管壳式换热器面积计算S=3.14ndL其中, S 为传热面积 m2、n 为管束的管数、 d 为管径, m;L 为管长,m。
四、注意事项冷凝段:潜热(根据汽化热计算)冷却段:显热(根据比热容计算)。
【HETA】换热器的传热计算公式空调换热器,不管是蒸发器还是冷凝器,其都扮演着一个传热的角色。
今天我们就来讲一讲换热器传热的计算。
一:总传热速率方程1、总传热速率微分方程式2、局部总传热系数物理意义:单位传热面积、单位传热温差下的传热速率。
反映了传热过程的强度,是衡量换热器工作效率的重要参数。
注意:总传热系数的单位与对流传热系数的单位一样,都为W /(m2×°C),但温度差所代表的区域不同。
同样总传热系数也是必须与温度差和传热面积相对应的。
二:传热量的计算在传热计算中,传热速率和热负荷在数值上一般可视为相等,但其含义不同。
热负荷:由工艺条件决定的,是对换热器换热能力的要求;传热速率:换热器本身在一定的操作条件下的换热能力,是换热器本身的特性。
无相变:有相变:(1)选取经验值(2)实验(现场)测定(3)K 的计算式两流体通过壁面包括以下过程:上述过程的传热量为:以上三式相加得:比较有以下结果:1)当传热面为圆壁时:2)当传热面为平壁时:3.(1)由dQ=K×D t×dS知,总传热系数在数值上等于单位温度差下的热通量。
K的单位与的单位完全一样(W /( m 2 ×°C),或(W /(m2 ×K),但应注意温度差℃(或K)所代表的范围不同。
(2)说明:总传热系数随所取传热面的不同而不同。
今后无特别说明时均指基于外表面积的总传热系数。
(3)对圆管:(4) K 也可以表示为热阻的形式,即:表明:间壁两侧流体间传热的总热阻等于两侧流体的对流传热的热阻与管壁热传导的热阻之和。
(5)对以下几种情况可以简化:由此可看出,K值由热阻大(即h小)的一侧流体的传热所控制,要提高K,应提高h小的一侧。
(6)污垢热阻污垢热阻的存在使K降低,传热速率下降。
如传热面两侧(管壁内、外侧表面上)的污垢热阻分别用R si和表示R so,则前述的K值的计算式变为:备注:换热器要根据实际的操作情况定期清洗。
换热器计算公式范文换热器计算公式指的是用于计算换热器传热性能的各种参数和关系的数学方程。
换热器是工程领域常用的一种设备,用于将热量从一个介质传递到另一个介质。
换热器的性能与换热器的设计参数密切相关,因此计算公式对于换热器的设计和运行至关重要。
以下是一些常用的换热器计算公式:1.整体换热系数(U值)的计算公式:U=1/[(1/h₁)+δi+(1/h₂)]其中,U为整体换热系数,h₁为热源侧传热系数,h₂为冷凝侧传热系数,δi为传热面各种传热介质之间的传热阻力。
2.热量传递率(Q)的计算公式:Q = U × A × δTlm其中,Q为换热器的热量传递率,U为整体换热系数,A为传热面积,δTlm为对数平均温差。
3. 对数平均温差(δTlm)的计算公式:δTlm = [(δT₁ - δT₂) / ln(δT₁ / δT₂)]其中,δT₁为热源侧入口温度与冷凝侧出口温度的温差,δT₂为热源侧出口温度与冷凝侧入口温度的温差。
4.传热面积(A)的计算公式:A = Q / (U × δTlm)其中,A为传热面积,Q为热量传递率,U为整体换热系数,δTlm为对数平均温差。
5.热源侧传热系数(h₁)的计算公式:h₁=(k₁×ΔT₁)/δ₁其中,h₁为热源侧传热系数,k₁为热源侧传热介质的导热系数,ΔT₁为热源侧的温差,δ₁为热源侧的传热厚度。
6.冷凝侧传热系数(h₂)的计算公式:h₂=(k₂×ΔT₂)/δ₂其中,h₂为冷凝侧传热系数,k₂为冷凝侧传热介质的导热系数,ΔT₂为冷凝侧的温差,δ₂为冷凝侧的传热厚度。
7.温差比(R)的计算公式:R=δT₁/δT₂其中,R为温差比,δT₁为热源侧入口温度与冷凝侧出口温度的温差,δT₂为热源侧出口温度与冷凝侧入口温度的温差。
这些计算公式是根据传热原理和换热器的物理特性推导而来,通过这些公式可以计算出换热器的各种参数和性能,从而进行换热器的设计、选型和优化。
化工原理传热计算传热计算是化工原理中的重要内容之一,它主要用于分析和预测化工过程中的传热效果,以确定传热设备的尺寸和操作参数。
传热计算涉及热传导、对流传热和辐射传热三种传热方式,而传热计算的基本原理是热传递方程。
下面将详细介绍传热计算的基本原理和方法。
传热计算的基本原理是热传递方程,热传递方程是通过数学表达式来描述和计算物体之间的热量传递过程。
常用的热传递方程有热传导方程、对流传热方程和辐射传热方程。
热传导方程是描述物质内部传热过程的方程,其基本形式为Fourier 定律:Q/t=-λA(∆T/∆x)其中,Q/t表示单位时间内传递的热量,λ表示物质的热导率,A表示传热面积,∆T/∆x表示温度梯度。
对流传热方程是描述物体表面传热过程的方程,其基本形式为牛顿冷却定律:Q/t=hA(∆T)其中,h表示传热系数,A表示传热面积,∆T表示温度差。
辐射传热方程是描述物体间通过辐射传热的方程,其基本形式为斯特藩-波尔兹曼定律:Q/t=εσA(T1^4-T2^4)其中,ε表示发射率,σ表示斯特藩-波尔兹曼常数,A表示传热面积,T1和T2表示物体的温度。
根据传热的具体情况和传热方式,可以选择适用的热传递方程来进行传热计算。
传热计算的方法主要有传热计算公式和传热计算软件两种。
传热计算公式是根据传热方程进行推导和计算得到的。
例如,通过对热传导方程进行变形和积分,可以得到传热器的传热速率和传热面积之间的关系,从而确定传热器的尺寸。
传热计算软件是通过计算机模拟和数值计算来进行传热计算的工具。
目前市场上有很多专业的传热计算软件,例如ASPEN、HEXTRAN和HTRI等。
这些软件可以根据传热方程和物性数据,通过建立模型和求解方程组,进行传热过程的预测和分析。
传热计算软件的优点是计算速度快、结果准确,并且可以进行复杂的传热计算,但需要一定的计算机技术和软件操作技能。
在进行传热计算时,需要明确传热参数和计算目标,并确定适用的传热方程和计算方法。
换热器是工业过程中常用的设备,用于在两种流体之间传递热量。
换热器的热计算方法通常涉及到确定热量传递速率、传热表面积和温度变化等参数。
以下是换热器的一般热计算方法:
传热速率计算:
热传导:对于热传导,可以使用导热方程来计算热传导的速率,通常表示为q = k * A * ΔT / L,其中q是传热速率,k是材料的导热系数,A是传热表面积,ΔT是温度差,L是传热距离。
对流传热:对于对流传热,通常使用牛顿冷却定律,q = h * A * ΔT,其中q是传热速率,h 是对流传热系数,A是传热表面积,ΔT是温度差。
温差和温度计算:
确定入口和出口流体的温度,以便计算温差(ΔT)。
温差是热交换的驱动力。
温度分布:在一些情况下,需要考虑温度在换热器内的分布,通常需要使用数学模型和计算方法。
传热表面积计算:
传热表面积(A)是一个关键参数,它可以根据传热速率和温差来计算,通常使用q = U * A * ΔT,其中U是总传热系数。
U值取决于换热器的类型和结构,可通过实验测定或计算得出。
流体性质计算:
确定流体的物性参数,如密度、热导率、比热容等,以便计算传热速率和温度变化。
对于多组分混合物,需要使用混合物物性计算方法。
性能和效率计算:
根据热计算结果,可以计算换热器的性能和效率参数,如效率、热传导系数等。
需要注意的是,换热器的热计算通常需要考虑多种因素,包括传热方式、流体性质、流速、换热器类型和结构等。
根据具体的应用和情况,可能需要使用不同的计算方法和模型。
通常,工程师和热力学专家会根据具体问题的需求来选择合适的计算方法,并使用专业的软件工具来辅助热计算和设计。
换热器的传热计算换热器的传热计算包括两类:一类是设计型计算,即根据工艺提出的条件,确定换热面积;另一类是校核型计算,即对换热面积的换热器,核算其传热量、流体的流量或温度。
这两种计算均以热量衡算和总传热速率方程为根底。
换热器热负荷Q 值一般由工艺包提供,也可以由所需工艺要求求得。
Q=W c p Δt ,假设流体有相变,Q=c p r 。
热负荷确定后,可由总传热速率方程〔Q=K S Δt 〕求得换热面积,最后根据"化工设备标准系列"确定换热器的选型。
其中总传热系数K=0011h Rs kd bd d d Rs d h d o m i i i i ++++ 〔1〕在实际计算中,总传热系数通常采用推荐值,这些推荐值是从实践中积累或通过实验测定获得的,可以从有关手册中查得。
在选用这些推荐值时,应注意以下几点:1. 设计中管程和壳程的流体应与所选的管程和壳程的流体相一致。
2. 设计中流体的性质〔粘度等〕和状态〔流速等〕应与所选的流体性质和状态相一致。
3. 设计中换热器的类型应与所选的换热器的类型相一致。
4. 总传热系数的推荐值一般围很大,设计时可根据实际情况选取中间的*一数值。
假设需降低设备费可选取较大的K 值;假设需降低操作费用可取较小的K 值。
5. 为保证较好的换热效果,设计中一般流体采用逆流换热,假设采用错流或折流换热时,可通过安德伍德〔Underwood〕和鲍曼〔Bowman〕图算法对Δt进展修正。
虽然这些推荐值给设计带来了很大便利,但是*些情况下,所选K值与实际值出入很大,为防止盲目烦琐的试差计算,可根据式〔1〕对K值估算。
式〔1〕可分为三局部,对流传热热阻、污垢热阻和管壁导热热阻,其中污垢热阻和管壁导热热阻可查相关手册求得。
由此,K值估算最关键的局部就是对流传热系数h的估算。
影响对流传热系数的因素主要有:1.流体的种类和相变化的情况液体、气体和蒸气的对流传热系数都不一样。
牛顿型和非牛顿型流体的也有区别,这里只讨论牛顿型对流传热系数。