2015年秋季新版沪科版八年级数学上学期15.1、轴对称图形教案7
- 格式:doc
- 大小:2.10 MB
- 文档页数:4
15.1.1 轴对称图形教案15.1.1轴对称图形课题轴对称图形授课人教学目标知识技能初步认识轴对称图形,理解轴对称图形及对称轴的含义;能找出轴对称图形的对称轴.数学思考通过对生活实物和相应图片的观察、欣赏,使学生充分感受到数学与现实生活的密切联系,陶冶情操,学会感受美和欣赏美.问题解决通过观察、思考、动手操作,提高学生观察、辨析轴对称图形的能力;发展学生的空间思维.情感态度通过自主学习让学生经历获取数学知识的过程;体会轴对称在现实生活中的广泛存在和轴对称丰富的文化价值;感受数学中的美.轴对称图形的概念.能够识别轴对称图形并找出它的对称轴.新授课 课时 1课时多媒体课件 师生活动 设计意图【观察并交流】观察下列图形,你发现这些图片有什么共同特点?并把你的发现与你的同学进行交流.图15-1- 学生活动:学生观察探究并与同学进行交流.通过生活中的图片引导学生观察、感知轴对称图形,使学生在获得对轴对称图形的感性认识的同时,学会从图片中抽象出轴对称图形的共同特征. 教师点拨:这些图形都具有对称性,我们以蝴蝶的图片为例,在它身体的正中间画一条直线l,以直线l为折痕,将图片折叠,我们发现蝴蝶图片中直线l一侧的部分与另一侧的部分能够重合.我们把具有这种对称性的图形称为轴对称图形.师生合作交流:师生通过合作交流活动得到下列知识:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线就是它的对称轴.教师点拨:显然蝴蝶、雪花、枫叶、铁路标志、中国人民银行标志以及北京天坛公园里的祈年殿等都是轴对称图形.(续表)活动二:实践探究交流新知【思考并交流】生活中有许多轴对称图形,你能再举出一些例子吗?学生活动:学生分组进行交流活动.教师点拨:我们学过的汉字、数字以及英文字母中,也有一些是轴对称图形,你能举出一些例子吗?师生合作交流:师生合作交流得到答案.解:A,C,D,E,H,I,K,M,O,T,U,V,W,X,Y等.例 1 下列各图形是否是轴对称图形,如果是,请找出它的所有的对称轴.学生活动:学生自主探究并与同学进行交流.教师活动:组织引导学生进通过【教师点拨】以及【思考并交流】活动的设计引导学生进行探究活动,从而探究并归纳出轴对称图形的定义.例题的讲解是引导学生学会用新知识解决问题,其目的是巩固所学的新知识.行自主探究与合作交流活动.教师点拨:轴对称图形的对称轴可能不止一条,要防止遗漏.【操作活动】完成教材P119页“操作”活动,并与同学分享你的成果.学生活动:学生分组进行探究活动.教师活动:教师巡视并指导学生进行操作活动.活动三:开放训练体现应用【应用举例】例1 见教材P120练习第1题.变式:指出下列图形中的轴对称图形,并找出它们的对称轴.图15-1-【拓展提升】图15-1-例2 如图15-1-,点A,B,C都在方格纸的格点位置上,请你再找一个格点D,使图中的4点组成一个轴对称图形.学生活动:学生自主探究导【拓展提升】活动设计的目的一是为了巩固所学的知识,二是培养学生运用所学知识解决问题的能力以及提高学生动手操作的能力.出答案并与同学进行交流.教师活动:组织引导学生进行自主探究与合作交流活动.教师点拨:这类题目可采用先确定对称轴,再找点的办法来解决.(续表)活动四:课堂总结反思【课堂小结】1. 学生谈谈本节课的收获.2. 本节课的主要内容有:轴对称图形的定义以及轴对称图形的设计方法.培养学生的归纳能力和合作交流精神,使学生的知识系统化、条理化.【当堂训练】1. 教材P120练习.2. 教材P124习题15.1中的T1,T2.当堂检测,及时反馈学习效果.【板书设计】15.1 轴对称图形第1课时轴对称图形1. 轴对称图形的定义2. 对称轴3. 轴对称图形的设计方法提纲挈领,重点突出.【教学反思】①[授课流程反思]这节课充分利用多媒体教学,给学生以直观指导,让学生主动质疑,促使学生思考与发现,形成认识,独立获取知识和技能,另外,借助多媒体教学给学生创设宽松的学习氛围,使学生在学习中始终保持兴奋、愉悦、渴求思索的心理状态,非常利于学生主体性的发挥,以及创新能力的培养.②[讲授效果反思]本节课由于采用了图片展示、直观操作以及讨论交流反思,更进一步提升.等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生在分组活动时的积极性不高,有滥竽充数的现象,在今后的教学中有待进一步改进和完善学生的分组活动.第 11 页。
-教学设计:15.1轴对称图形一、教材分析1、教材的地位和作用:“轴对称图形”是八年级上册沪科版数学教材第15章第一节的教学内容,轴对称图形是一种常见的平面图形,在日常生活中有着广泛的应用。
教材中通过各种生活图片展示,目的是使学生从这些图形中抽象它们的共同特征.鼓励学生探索轴对称现象的共同特征,动手操作,亲自实践,收获乐趣.教材给学生自主探索留有很大空间,学生可以充分的发挥想象,以促进学生对轴对称的体验和理解.本节课是本章的第一节第一课时,对于以后学习等腰三角形,线段的垂直平分线,角平分线有很重要的铺垫作用.通过本节课的学习,可以训练学生的审美能力和图形设计能力,拓展学生的空间想象力,为学生后续学习做好充分的准备,同时这一节课也是联系数学与生活的桥梁.2、教学目标:(1)知识与技能目标:初步认识轴对称图形,理解轴对称的含义,能找出轴对称图形的对称轴.会作简单图形关于某直线的对称图形。
(2)过程与方法目标:通过观察、思考、合作交流、动手操作,提高学生的观察辨析图形的能力,发展学生的空间思维。
(3)情感态度与价值观目标:通过对丰富的轴对称现象的认识,进一步培养学生积极的情感、态度,促进观察、分析、归纳、概括等一般能力和审美能力的提高.3、教学重点与难点:教学重点:轴对称图形的概念.简单对称图形关于某直线对称的作法。
教学难点:能够识别轴对称图形并找出它的对称轴.轴对称图形的创作。
二、学情分析学生在小学时以接触轴对称知识,七年级的时候已经接触过图形知识,有一定的观察、分析能力.本节的知识全都来源于生活,所以本节课主要利用学生已有的知识经验解决问题.三、教学方法引导探索发现法,配合演示法、讨论法和总结法.在演示、引导学生进行观察、分析、操作、抽象概括、练习巩固各个环节中运用多媒体进行辅助教学,增强直观性,提高教学效率,激发学生的学习兴趣.四.教具准备多媒体课件,镜子、剪刀、彩纸等。
五.教学过程:(一)创设情境,引轴对称。
第1课时轴对称教学目标【知识与技能】1.在生活实例中认识轴对称,能画出简单轴对称图形的对称轴.2.使学生了解轴对称图形和关于直线成轴对称的概念.3.了解轴对称图形和轴对称的联系与区别.【过程与方法】1.通过实例认识轴对称,能够识别生活中的轴对称图形及其对称轴.2.培养学生的观察能力、思维能力、动手能力、总结能力.【情感、态度与价值观】1.让学生体验到数学与生活的密切联系,发展学生的空间观念和审美观.2.通过对对称的理解和轴对称性质的把握,发展学生发现美和鉴赏美的能力.重点难点【重点】理解并掌握轴对称图形、轴对称的概念、画对称图形的对称轴.【难点】理解并掌握轴对称图形和两个图形成轴对称之间的关系.教学过程一、创设情境、导入新知教师多媒体课件出示:师:同学们认识这些图形吗?生:认识.师:你能说出它们的共同点吗?学生观察后,思考并讨论交流.生:它们的左右两边是一样的.师:对,实际上它们的左右两边是对称的.自然界中,许多物体的平面图形都具有对称性.今天我们就来研究轴对称图形.二、共同探究,获取新知学生实验一师:把一张纸对折,然后从折叠处剪出一个图形,想一想:展开后会是什么样的图形?位于折痕两侧的图案有什么关系?学生分组活动,合作交流后选代表回答实验结果.生甲:我们得到了一个美丽的图形:飞鸟,它有对称美.生乙:我们得到的是大树和五角星,它们是对称的.生丙:我们得到的是轴对称图形,位于折痕两部分的图案能够完全重合.师:你们的发现真是了不起啊!那么你们能说说什么样的图形是轴对称图形吗?生甲:能够完全重合的图形是轴对称图形.生乙:不对!应该是沿着一条直线折叠后能完全重合的图形才是轴对称图形.师:很好,如果一个图形沿着一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.请同学们尽可能多地从你周围的环境中找出轴对称的物体.学生畅所欲言.教师提示:天上飞的、地上跑的、水里游的,还有已经学过的那些简单的图形、数字、字母等都可以.生:我们组将这个平行四边形对折后,发现无论怎么对折,两边都无法重合,所以它不是一个轴对称图形.师:有道理,其他同学有没有不同的想法?生:我们组将这个平等四边形剪拼成一个长方形,而长方形对折后两边完全重合,所以我们认为它是一个轴对称图形.师:听起来好像也有道理.生甲:我们反对.因为在刚才的学习中,我们知道判断一个图形是不是轴对称图形关键是看对折后两边能否完全重合,而这个图形对折后显然无法重合.生乙:(补充)而且你们将这个图形剪拼后,已经改变了这个图形的形状和性质,所以我们认为它原本不是一个轴对称图形.师:(回到赞成“是的”一方)听了对方的阐述,再结合我们一开始探讨轴对称图形时的要求,你现在的观点是什么?生:(沉默一会儿后)现在我也同意这个平行四边形不是轴对称图形了.师:对,平行四边形不是轴对称图形.学生实验二:折纸印墨迹学生分组完成实验教师提出问题1:你发现折痕两边的墨迹形状一样吗?为什么?问题2:两边墨迹的位置与折痕有什么关系?(让学生充分观察、讨论和交流,并指名汇报):生甲:我们组发现两边的墨迹形状一样,因为它们折过去能完全重合.生乙:我们组的发现和他们一样.生丙:两边的墨迹关于折痕对称.生丁:我想补充的是两边的墨迹是关于折痕成轴对称的.师:同学们观察得真仔细啊!那你们能说说究竟什么样的两个图形成轴对称吗?生甲:一个图形和另一个图形能完全重合,这两个图形成轴对称.生乙:我不同意他的观点,应该是一个图形沿着某条直线折叠,如果它能和另一个图形重合,那么称这两个图形关于这条直线对称.师:你真是太聪明了!动画演示,师生共同总结出轴对称、对称轴及对称点的概念.教师用多媒体展示练习,学生独立思考后回答.三、深入探究师:通过刚才的学习,你们能说说轴对称与轴对称图形是否是一回事吗?生齐答:不是.师:那谁能说说它们的关系呢?(见学生面有难色,让学生先思考交流)生甲:轴对称是两个图形,轴对称图形是一个图形.师:说得好,谁还想说?生乙:它们都是沿着一条地线对折的,并且能重合.生丙:如果把成轴对称的两个图形看成一个整体,就是一个轴对称图形;如果把一个轴对称图形看成两个图形就是成轴对称.师:怎样将一个轴对称图形看成两个图形呢?生:哦,是将位于对称轴两旁的部分看成两个图形.师:你可以当小老师了!各位同学的发现合起来就是轴对称与轴对称图形的区别与联系.四、课堂小结师:生活中处处有数学,我们只有学好了数学,才能更好地运用所学的知识去解决生活中的实际问题,谁想说说你今天收获得了什么?生甲:我今天最大的收获是认识了轴对称图形和轴对称.生乙:我通过观察发现了轴对称图形和轴对称的区别和联系.生丙:通过欣赏图片,我感受到了对称图形的美.生丁:通过找生活中的轴对称物体,我体会到数学就在我们身边,生活中处处有数学知识.教学反思在学习轴对称与轴对称图形的时候,充分让学生通过实验去感知、思考、探索知识,从更深层次上理解概念.在本节课中轴对称和轴对称图形是两个重要要概念且易混淆.在教学中充分地进行比较,这样不仅能帮助学生建立、理解概念,而且有利于学生在头脑中建立起事物与概念间的内在联系,达到事半功位的效果.。
15.1 轴对称图形-沪科版八年级数学上册教案教学目标1.理解轴对称的概念及相关术语2.熟练掌握判断轴对称图形的方法3.能够绘制轴对称图形教学重点与难点1.教学重点:轴对称图形的判断和绘制方法。
2.教学难点:通过绘制具有轴对称性的图形,理解轴对称的概念。
教学过程1. 导入新知1.教师通过探讨轴对称图形在日常生活中的运用,引导学生理解本节课的主要内容。
2.教师通过例题引出本节课的概念:“轴对称”和相关术语,如轴线、对称轴、对称中心等。
2. 讲解轴对称图形的判断方法1.教师通过具体的例子讲解轴对称图形的判断方法,(如对称轴的位置,对称中心,对称关系等)让学生快速掌握轴对称图形的判断方法。
2.教师通过多个例题,引导学生独立思考并判断轴对称图形。
3. 轴对称图形的绘制1.教师提醒学生需要多次尝试才能画出轴对称图形,根据以往的绘图经验或图形特征,确认应该如何选择对称轴。
2.教师通过示范,引导学生利用对称性,辅助绘制轴对称图形,并根据学生的情况指导学生完成相应的练习。
4. 小结与练习1.教师提醒学生需要重点掌握“轴对称”的概念及其判断方法。
2.教师通过多个例题辅导学生巩固所学知识,并鼓励学生自主探究和实践,通过练习深入了解轴对称图形的有关概念及应用方法。
教学效果本节课旨在让学生全面理解轴对称图形的基本概念和判断方法,同时熟练掌握绘制轴对称图形的技巧。
在教学过程中,教师通过多个例题和讲解,引导学生逐渐掌握了轴对称图形的相关知识,学生不断进行思考和实践,增强了他们的认知和技能,达到了预期的教学目标。
总结本节课主要讲解了轴对称图形的有关知识,包括:“轴对称”、“对称中心”、“对称轴”、“轴对称图形的判断方法”以及“轴对称图形的绘制方法”等方面。
在教学过程中,学生通过多次练习,掌握了轴对称图形的相关知识,提高了他们的判断与观察能力。
希望学生们能够在这门课程中,更好的理解数学的奥妙,掌握基础的数学技能,为日后的数学学习积累基础。
15.1 轴对称图形第1课时认识轴对称图形1.使学生初步认识轴对称图形,明白对称的含义,能找出轴对称图形的对称轴.2.通过观察、思考和动手操作,培养学生多种能力,渗透美的教育.重点理解轴对称图形的概念及性质,会找对称轴.难点准确找全对称轴.一、创设情境,导入新课你们看这些图形好看吗?观察这些图形有什么特点?(图形的左边和右边相同.)你能举出一些特点和上图一样的物体图形吗?(人体、昆虫、房屋、衣服……)这些图形从哪儿可以分为左边和右边?请同学到前面来指一指.(指出中间的那条线.)你怎么知道图形的左边和右边相同?(看出来的……)还有别的办法吗?用手中蝴蝶图形动手试一试,互相讨论.(对折,图形左右两边完全合在一起,也就是完全重合.)你能不能很快剪出一个图形,使左右两边能完全重合?可以讨论,也可以看一看其他同学是怎么剪的.(把纸对折起来,再剪.)二、合作交流,探究新知轴对称图形的概念.(1)轴对称图形和对称轴的定义.以剪出的图形为例,贴在黑板上.问:你们剪出的这些图形都有什么特点?(沿着一条直线对折,两侧的图形能够完全重合.)师:像这样的图形就是轴对称图形.(板书课题)折痕所在的这条直线叫做对称轴(画在图上).问:现在谁能准确说出什么是轴对称图形?什么是对称轴?板书:如果一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形,折痕所在的这条直线叫做对称轴.(2)加深理解概念.以小组为单位,说一说,你刚才剪的图形叫做什么图形?为什么?画出自己剪的图形的对称轴.注意对称轴是一条直线,两端可以无限的延长.(3)巩固概念.(投影)①判断下面的图形是不是轴对称图形?为什么?用小棒摆出对称轴.生:天安门、奖杯、汽车图是轴对称图形,金鱼图不是轴对称图形,无论怎样折,两侧都不能完全重合,因此也就没有对称轴.②拿出从方格纸上剪下来的几何图形,折一折,看一看哪些是轴对称图形,画出它们的对称轴.个人完成后,按顺序摆放在桌子上,同桌互查,再指名按顺序说.投影出示,折一折,说明是否是轴对称图形,并在( )里写明有几条对称轴.( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 学生边回答老师边填在投影片上,并用小棒摆出对称轴.【归纳总结】1.任意三角形不是轴对称图形.2.等腰三角形是轴对称图形,有一条对称轴.3.任意梯形不是轴对称图形.4.正方形是轴对称图形,有四条对称轴.(学生再折一折,老师示范.)5.平行四边形不是轴对称图形.(再折一折,沿任何一条直线折都不重合.)6.长方形是轴对称图形,有两条对称轴.(有四条对不对,折一折.)7.圆是轴对称图形,有无数条对称轴.(在你画的圆上至少画出三条对称轴.)8.等腰梯形是轴对称图形,有一条对称轴.三、运用新知,深化理解例1 下列图形中不是轴对称图形的是( )A B C D分析:解决此类问题一定要紧扣轴对称图形的定义去判断,只要能找出这个图形的对称轴,那么这个图形就是轴对称图形.A、B、D能找出对称轴,只有C不能找到对称轴.【归纳总结】判断轴对称图形的方法:根据图形的特征,尝试找到一条直线,沿这条直线对折,如果直线两边的部分能够完全重合,即可确定这个图形是轴对称图形,否则不是轴对称图形.注意尝试多角度来观察图形和对折图形.例2 如图所示,哪一组的右边图形与左边图形成轴对称?(1) (2) (3)(4) (5) (6)分析:根据轴对称的意义,经过翻折,看两个图形能否完全重合,若能重合,则两个图形成轴对称.解:(4)(5)(6).【归纳总结】动手操作或结合轴对称的概念展开想象,在脑海中尝试完成一个动态的折叠过程,就会得到结论.四、课堂练习,巩固提高1.教材P120练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知(1)决定一个图形是不是轴对称图形具备什么条件?有几条对称轴?(2)成轴对称的两个图形全等吗?全等的两个图形一定成轴对称吗?为什么?(3)本节课你学到哪些知识?有什么体会?六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P124~125习题15.1第1,2题.第2课时轴对称的性质及作轴对称图形1.通过具体实例认识轴对称,探究它的基本性质和定义.2.能作出简单平面图形经过一次或两次轴对称后的图形.3.能利用轴对称进行图案设计.重点轴对称的定义及轴对称作图.难点利用对称变换设计图案.一、创设情境,导入新课[活动1]问题(1)在一张半透明纸的左边部分,画出左手掌,如何由此得到相应的右手掌印?(2)自己动手在一张纸上画一个你最喜欢的图形,将这张纸折叠,描图后,再打开纸,看看你得到了什么?改变折痕的位置并重复几次,你又得到了什么?学生分成若干小组,选出代表发言,教师倾听学生的发言.学生动手画左手印,教师指导如何画出右手印,并强调将纸对折后描图.学生动手画图,教师观察指导,展示学生作品,听取学生的评价.二、师生互动,探究新知[活动2]如图,用刻度尺量一量图中的A,B,C,D点到对称轴的距离分别是多少厘米?(保留一位小数)认真度量,结果填在书上,你发现了什么?投影订正填后的结果.A点到对称轴的距离是0.6厘米.B点到对称轴的距离是1.2厘米.C点到对称轴的距离是1.2厘米.D点到对称轴的距离是0.6厘米.问:根据测量的结果你发现了什么?(A,D两点及B,C两点都分别在对称轴两侧.A,D两点到对称轴的距离相等,都是0.6厘米;B,C两点到对称轴的距离也相等,都是1.2厘米.)问:根据度量结果,你们能总结出轴对称图形的性质吗?板书:在轴对称图形中,对称轴两侧相对的点到对称轴的距离相等.验证性质.量一量五角星对称轴两侧相对应的点到对称轴的距离是否相等.[活动3]问题如果有一个图形和一条直线,如何作出这个图形关于这条直线对称的图形?出示例题例1 如图①,已知△ABC和直线l,画出与△ABC关于直线l对称的图形.图①图②提出以下思考问题:(1)△ABC关于直线l的轴对称图形是什么形状?(2)在△ABC上,取哪几个点作出其关于l的对称点?(3)如何作一个已知点的关于直线的对称点?画出对称图形△A′B′C′,如图②.教师逐步提出问题,师生共同思考分析,学生尝试作图.师生共同总结作图方法及步骤,通过折叠的方法加以验证.在此基础上,归纳出作一般平面图形的轴对称图形的方法.在学生作图中,教师应重点关注:(1)在△ABC上,是否取了A,B,C三个顶点?(2)是否掌握了作一点关于直线的对称点的方法?(3)尺规作图是否规范?[活动4]欣赏和设计自己设计一个轴对称图案.学生先欣赏轴对称图案,然后自己设计图案.教师指导,学生交流,用投影展示学生的作品.三、运用新知,深化理解例2 如图中两个四边形关于某条直线对称,根据图形提供的条件求x,y.分析:由轴对称的性质,得到两个图形全等,从而有对应角相等,对应边相等.解:因为两个四边形关于某条直线对称,∠A=∠E=120°,∠D=∠F=100°,所以∠B =∠H=70°,AB=EH=5,所以y=70°,x=5.【归纳总结】利用轴对称的性质求线段或角的方法:先根据轴对称的特征确定两个图形的对应边、对应角,然后运用轴对称的性质:对应边相等,对应角相等,把要求的边或角与已知对应边或角建立关系,从而求出待求的线段或角.例3 如图所示,以AB为对称轴,画出已知图形的轴对称图形.分析:作出点C,D,E关于直线AB的对称点C′,D′,E′,然后顺次连接即可.解:如图所示.【归纳总结】轴对称的基本作图步骤是:(1)先找出已知图形中能够确定形状的关键点,如顶点、端点或中点等;(2)分别过这些关键点向对称轴作垂线,并延长至另一侧,使其两侧的线段相等,得到的点为这些关键点的对称点;(3)顺次连接作出的点,即可得到已知图形的轴对称图形.四、课堂练习,巩固提高1.教材P122练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知这节课我们主要认识了轴对称图形,了解了轴对称图形及有关概念,进一步探讨了轴对称的特点,区分了轴对称图形和两个图形成轴对称.六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P125习题15.1第3题.第3课时用坐标表示轴对称1.能在直角坐标系中画点关于坐标轴的对称点.2.能表示点关于坐标轴对称的点的坐标,表示关于平行于坐标轴的直线的对称点的坐标.重点用坐标表示点关于坐标轴对称的点的坐标.难点找对称点的坐标之间的关系.一、创设情境,导入新课[活动1]问题在如图所示的平面直角坐标系中,画出下列已知点及其关于坐标轴的对称点,并把它们的坐标填入表格中,看看每对对称点的坐标有怎样的规律,再和同学讨论一下.再找几个点,分别画出它们的对称点,检验一下你发现的规律.(1)你能在图中描出这些点关于x轴或y轴的对称点吗?(2)观察关于x轴对称的点的坐标与原坐标之间有什么变化规律?(3)观察关于y轴对称的点的坐标与原坐标之间有什么变化规律?教师引导学生在图中找某一点的对称点,作出示范.学生按教师教给的方法逐一找到A,B,C,D,E的符合条件的点坐标.教师用课件动画闪烁表示每对对称点的位置状态.学生观察每对对称点坐标之间哪个坐标值变了,哪些没有变,变化的是符号还是绝对值?然后说出这些具体情况.在学生充分发表各自观点的基础上教师总结出结论:点(x,y)关于x轴的对称点的坐标是(x,-y),关于y轴的对称点的坐标是(-x,y).二、合作交流,探究新知[活动2]问题如图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD关于y轴和x轴对称的图形.点(x,y)关于y轴对称的点的坐标为(-x,y),因此四边形ABCD的顶点A,B,C,D 关于y轴对称的点分别为A′(__,__),B′(__,__),C′(__,__),D′(__,__),依次连接A′B′,B′C′,C′D′,D′A′,就可得到与四边形ABCD关于y轴对称的四边形A′B′C′D′.(1)你能快速写出点A,B,C,D关于x轴的对称点A′,B′,C′,D′的坐标吗?(2)你能快速写出点A,B,C,D关于y轴的对称点A″,B″,C″,D″的坐标吗?(3)连接你所得到的对称点,观察会得到怎样的图形?学生先找出关于x轴的对称点坐标.学生在黑板上描出对称点的位置.让学生顺次连接A ′B ′,B ′C ′,C ′D ′,D ′A ′以及A ″B ″,B ″C ″,C ″D ″,D ″A ″.学生思考:如何作已知图形关于坐标轴的轴对称图形. 教师给出总结. [活动3] 问题如图所示.(1)分别写出△PQR 三个顶点的坐标__________,__________,__________. (2)你能找出点P ,Q ,R 关于直线x =1的对称点吗? (3)你能找出点P ,Q ,R 关于直线y =-1的对称点吗? 学生在图中标出三个点的坐标.学生在坐标系中找到三个点的对称点的位置,并标出坐标.让学生思考关于直线x =1的对称点变化的坐标是哪个?怎样变化的?学生小组讨论. 对于关于直线y =-1的情况作同样的处理.教师引导学生从方向和数量上考虑,最后归纳结论:P (x ,y )关于直线x =1的对称点的坐标是(2-x ,y );关于直线x =m 的对称点的坐标是(2m -x ,y );关于直线y =-1的对称点坐标是(x ,-y -2);关于直线y =-n 的对称点坐标是(x ,-y -2n ).三、运用新知,深化理解例 在平面直角坐标系中,点A 关于x 轴对称的点的坐标为(7x +6y -13,y +x -4),点A 关于y 轴对称的点的坐标为(4y -2x -2,-6x -4y +5),求点A 的坐标.分析:设点A 的坐标为(a ,b ),则它关于x 轴的对称点为A ′(a ,-b ),关于y 轴的对称点为A ″(-a ,b ),即A ′与A ″的横、纵坐标分别互为相反数.据此可列方程组求出x ,y 的值.解:由题意,得⎩⎪⎨⎪⎧y +x -4=-(-6x -4y +5),7x +6y -13=-(4y -2x -2).解得⎩⎪⎨⎪⎧x =-1,y =2.所以点A 的坐标为(-8,3).【归纳总结】解答这类题的关键是弄清同一点关于两坐标轴对称的点的横、纵坐标之间的关系,再据此列方程或方程组求解.补充练习:1.分别写出点A (2,-1),B (-1,-2),C (0,4)关于直线x =2和直线y =-3的对称点坐标.2.画出△ABC 关于直线x =1的对称三角形.学生练习,并板演练习第1题和第2题.教师要关心学生做题是不是迅速准确,图形是不是画得规范.学生说出画法,并画出对称三角形.四、课堂练习,巩固提高1.教材P124练习.2.请同学们完成《探究在线·高效课堂》“随堂演练”内容.五、反思小结,梳理新知通过本节课的学习你懂得了如何画已知点的对称点吗?你能用自己所理解的话描述一下吗?六、布置作业1.请同学们完成《探究在线·高效课堂》“课时作业”内容.2.教材P125~126习题15.1第4~6题.。
轴对称图形与轴对称教学目标(一)教学知识点1.在生活实例中认识轴对称图.2.分析轴对称图形,理解轴对称的概念.(二)能力训练要求1.通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及其对称轴.2.经历观察、分析的过程,训练学生观察、分析的能力.(三)情感与价值观要求通过对丰富的轴对称现象的认识,进一步培养学生积极的情感、态度,促进观察、分析、归纳、概括等一般能力和审美能力的提高.教学重点轴对称图形的概念.教学难点能够识别轴对称图形并找出它的对称轴.教学方法启发诱导法.教具准备师:1.天安门、蝴蝶、窗花、脸谱等图片.2.多媒体课件.3.投影仪.生:剪刀、小刀、硬纸板.教学过程Ⅰ.创设情境,引入新课我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称角度考虑,自然界的许多动植物也按对称形生长,中国的方块字中些也具有对称性……对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.轴对称是对称中重要的一种,让我们一起走进轴对称世界,探索它的秘密吧!从这节课开始,我们来学习第十二章:轴对称.今天我们来研究第一节,认识什么是轴对称图形,什么是对称轴.Ⅱ.导入新课我们先来看几幅图片(出示图片),观察它们都有些什么共同特征.这些图形都是对称的.这些图形从中间分开后,左右两部分能够完全重合.对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,•甚至日常生活用品,人们都可以找到对称的例子.现在同学们就从我们生活周围的事物中来找一些具有对称特征的例子.我们的黑板、课桌、椅子等.我们的身体,还有飞机、汽车、枫叶等都是对称的.同学们回答得真好,大家举了这么多对称的例子,现在我们来看一下下面的问题,我们来研究一下什么是轴对称图形.(演示多媒体课件)观察如图12.1.2,把一张纸对折,剪出一个图案(折痕处不要完全剪断),•再打开这张对折的纸,就剪出了美丽的窗花.观察得到的窗花和图12.1.1中的图形,你能发现它们有什么共同的特点吗?(学生讨论、探究)窗花可以沿折痕对折,使折痕两旁的部分完全重合.不仅窗花可以沿一条直线对折,使直线两旁重合,上面图12.1.1中的图形也可以沿一条直线对折,使直线两旁的部分重合.这些图形沿一条直线折叠,直线两旁的部分能够互相重合.太好了!我们把这样的图形叫做轴对称图形.即(点击课件、屏幕显示):如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)•对称.了解了轴对称图形及其对称轴的概念后,我们来做一做.(屏幕显示)取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意刻出一个图案,•将纸打开后铺平,你得到两个成轴对称的图案了吗?与同伴进行交流.(学生操作、讨论,教师指导)我们经过操作、讨论、交流得知:位于折痕两侧的图案是对称的,它们可以互相重合.很好,由此我们进一步了解了轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.接下来我们来探讨一个有关对称轴的问题.有些轴对称图形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条,有的轴对称图形的对称轴甚至有无数条,•大家请看屏幕.(点击课件)你能找出它们的对称轴吗?分小组讨论.学生讨论得出结果:图(1)有四条对称轴;图(2)有四条对称轴;图(3)有无数条对称轴;图(4)有两条对称轴;图(5)有七条对称轴.大家回答得很好,看屏幕.(演示折叠过程)(1) (2) (3) (4) (5)接下来,大家想一想,你发现了什么?(屏幕显示)这些图形都是轴对称图形.可是轴对称图形指的是一个图形,而这些图形每组都是两个图形,能不能说两个图形成轴对称呢?乙同学的观察能力很强,提的问题非常好.像这样,•把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,•这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.(屏幕显示上图中的两个成轴对称图形的对称点)好,接下来我们做练习来巩固所学内容.Ⅲ.随堂练习(一)下面的图形是轴对称图形吗?如果是,你能指出它的对称轴吗?(图略)(学生口答)图(1)是轴对称图形,它的对称轴是过蝴蝶头和尾的直线.图(2)也是轴对称图形.它的对称轴是过第一架飞机头和尾的直线.图(3)是轴对称图形.它的对称轴是中间那条竖直的线.图(4)不是轴对称图形.图(5)是轴对称图形,它有四条对称轴.大家回答得很好,看来同学们已能判断轴对称图形并找出它的对称轴了.(二)下面给出的每幅图中的两个图案是轴对称的吗?如果是,试着找出它们的对称轴,并找出一对对称点.答案:图(1)(3)(4)中的两个图案是轴对称的,图(2)不是.•其对称轴及对称点如图.Ⅳ.课时小结这节课我们主要认识了轴对称图形,了解了轴对称图形及有关概念,进一步探讨了轴对称的特点,区分了轴对称图形和两个图形成轴对称.Ⅴ.课后作业课本习题.Ⅵ.活动与探究成轴对称的两个图形全等吗?如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等吗?这两个图形对称吗?过程:(学生操作)在硬纸板上画两个成轴对称的图形,再用剪刀将这两个图形剪下来看是否重合.再在硬纸板上画出一个轴对称图形,然后将该图形剪下来,•再沿对称轴剪开,看两部分是否能够完全重合.结论:成轴对称的两个图形全等.如果把一个轴对称图形沿对称轴分成两个图形,这两个图形全等,并且也是成轴对称的.轴对称是说两个图形的位置关系,而轴对称图形是说一个具有特殊形状的图形.轴对称的两个图形和轴对称图形,都要沿某一条直线折叠后重合;如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成轴对称;反过来,•如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形.。
word平面直角坐标系中的轴对称1.理解和掌握在平面直角坐标系中作出已知图形的轴对称图形;(重点)2.掌握关于坐标轴对称的点的坐标的特征;(难点)3.经历丰富材料的学习过程,提升对图形的观察、分析、判断、归纳等能力.一、情境导入十一黄金周,吸引了许多游客.一天,小红在天安门广场玩,一位外国友人向小红问西直门的位置,可小红只知道东直门的位置,不过,小红想了想,就准确地告诉了他.你知道为什么吗?结合老的地图向学生介绍:老城关于中轴线成轴对称设计,东直门、西直门就关于中轴线对称.如果以天安门为原点,分别以长安街和中轴线为x轴和y轴,就可以在这个平面图上建立直角坐标系,各个景点的地理位置就可以用坐标表示出来.提问:这些景点关于坐标轴的对称点你可以找出来吗?这些对称点的坐标与已知点的坐标有什么关系呢?二、合作探究探究点一:关于坐标轴对称的点的坐标特点【类型一】求已知点关于x轴(或y轴)对称的点的坐标如图,点A关于y轴的对称点的坐标是( )A.(5,3) B.(3,5)C .(5,-3)D .(3,-5)解析:根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.由图可知,点A 的坐标是(-5,3),所以,点A 关于y 轴的对称点的坐标是(5,3).故选A.方法总结:本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【类型二】 利用两点成轴对称的性质求整式或字母的值在平面直角坐标系中,点A 关于x 轴对称的点的坐标为(7x +6y -13,y +x -4),点A 关于y 轴对称的点的坐标为(4y -2x -2,-6x -4y +5),求点A 的坐标.解析:设点A 的坐标为(a ,b ),则它关于x 轴的对称点为A ′(a ,-b ),关于y 轴的对称点为A ″(-a ,b ),即A ′与A ″的横、纵坐标分别互为相反数.据此可列方程组求出x ,y 的值.解:由题意,得⎩⎪⎨⎪⎧y +x -4=-(-6x -4y +5),7x +6y -13=-(4y -2x -2).解得⎩⎪⎨⎪⎧x =-1,y =2.所以点A 的坐标为(-8,3).方法总结:解答这类题的关键是弄清同一点关于两坐标轴对称的点的横、纵坐标之间的关系,再据此列方程或方程组求解.探究点二:作关于x 轴(或y 轴)对称的图形如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别是A (-4,1)、B (-2,4)、C (-1,2).(1)△ABC 关于y 轴的对称图形是△A ′B ′C ′,请写出点A ′,B ′,C ′的坐标并作出对称图; (2)△A ′B ′C ′关于x 轴的对称图形是△A ″B ″C ″,请写出点A ″,B ″,C ″的坐标并作出对称图; (3)△A ″B ″C ″关于y 轴的对称图形是△A B C ,请写出点A ,B ,C 的坐标并作出对称图;(4)若以x 轴为对称轴作△A B C 的对称图,会和△ABC 重合吗?请总结这四次对称的坐标变化规律.解析:点(x ,y )关于x 轴对称的点的坐标为(x ,-y );点(x ,y )关于y 轴对称的点的坐标为(-x ,y ).根据图形在平面直角坐标系中关于x ,y 轴对称的规律,很容易找到对称点.解:(1)点A ′,B ′,C ′的坐标分别是(4,1)、(2,4)、(1,2),对称图如下图△A ′B ′C ′; (2)点A ″,B ″,C ″的坐标分别是(4,-1)、(2,-4)、(1,-2),对称图如下图△A ″B ″C ″; (3)点A,B,C的坐标分别是(-4,-1)、(-2,-4)、(-1,-2)对称图如下图△ABC ;(4)以x 轴为对称轴作△A B C 的对称图,得到三角形的坐标分别是(-4,1)、(-2,4)、(-1,2),正好是△ABC 的三个顶点的坐标,规律列表如下:发现经过这四次对称变化,图形又“转”回原处.方法总结:在平面直角坐标系中,如果两个图形关于y 轴对称,那么这两个图形对称点的横坐标互为相反数、纵坐标相等;如果两个图形关于x 轴对称,那么这两个图形对称点的横坐标相等、纵坐标互为相反数;“成轴对称的两个图形的对称点的连线段被对称轴垂直平分”是轴对称作图的依据.作轴对称图形,只要先求出已知图形中的一些特殊点的对称点的坐标,描出并连接即可得到对称图;研究规律问题时,要从特殊到一般,要逐步推导;感受图形的对称变化带来的坐标变化. 三、板书设计对称轴原始点 关于y 轴对称 关于x 轴对称 关于y 轴对称关于x轴对称(x ,y )(-x ,y ) (-x ,-y ) (x ,-y )(x ,y )平面直角坐标系中的轴对称⎩⎪⎨⎪⎧关于x 轴对称的两个点横坐标相等,纵坐标互为相反数;关于y 轴对称的两个点纵坐标相等,横坐标互为相反数.本节课采用探究、发现式教学法,通过找具有一定代表性,分别位于四个象限及坐标轴的一些点的对称点及坐标,寻找关于坐标轴对称的点的坐标的一般规律,培养学生观察、归纳、分析问题、解决问题的能力,并通过研究线段之间的关系发现点的坐标之间的关系,使学生体验数形结合思想.然后通过把对称轴是坐标轴变成了直线x =1和y =-1的变式探究,使学生再次体验数形结合的思想,并拓展到直线x =m 和y =n ,使学生学会通过寻找线段之间的关系来求点的坐标并形成方法.。
教学设计:15.1轴对称图形15.1 轴对称图形一、教材分析1、教材的地位和作用:“轴对称图形”是八年级上册沪科版数学教材第15章第一节的教学内容,教材中提供了建筑物、枫叶、蜻蜓、雪花等图片,目的是使学生从这些图形中抽象它们的共同特征.教材在安排上通过学生观察图片,鼓励学生探索轴对称现象的共同特征,动手操作,亲自实践,体验活动的乐趣.教材给学生自主探索留有很大空间,学生可以充分的发挥想象,以促进学生对轴对称的体验和理解.本节课是本章的第一节,对于以后学习等腰三角形,线段的垂直平分线,角平分线有很重要的铺垫作用.通过本节课的学习,可以训练学生的审美能力和图形设计能力,拓展学生的空间想象力,为学生后续学习做好充分的准备,同时这一节课也是联系数学与生活的桥梁.2、教学目标:(1)知识与技能目标:初步认识轴对称图形,理解轴对称的含义,能找出轴对称图形的对称轴.(2)过程与方法目标:通过观察、思考、动手操作,提高学生的观察辨析图形的能力,发展学生的空间思维。
(3)情感态度与价值观目标:通过对丰富的轴对称现象的认识,进一步培养学生积极的情感、态度,促进观察、分析、归纳、概括等一般能力和审美能力的提高.3、教学重点与难点:教学重点:轴对称图形的概念.教学难点:能够识别轴对称图形并找出它的对称轴.二、学情分析学生在七年级的时候已经接触过图形知识,有一定的观察,分析能力.本节的知识全都来源于生活,所以本节利用学生已有的能力来学习知识、解决问题.三、教学策略和方法教学方法和手段:基于本节课内容和八年级学生的心理及思维发展的特点,在教学中选择引导探索发现法,配合演示法、讨论法和总结法的使用.在演示、引导学生进行观察、分析、操作、抽象概括、练习巩固各个环节中运用多媒体进行辅助教学,增强直观性,提高教学效率,激发学生的学习兴趣.学法指导:本课的学习,学生应立足于自身已有的生活经验,自觉地运用自身已具备的初步的数学活动经验通过观察、分析、操作、抽象概括等共同探讨,以数学角度对问题进行分析研究,进而逐步形成正确的数学观.四、教具准备多媒体课件.五、教学过程:(一)图片欣赏,导入新课:师:同学们,老师今天给大家带来了一些的图片,请大家欣赏,在欣赏的同时观察这些图片有什么共同特征?屏幕展示中外建筑、自然界物体中的轴对称图片(略).师:你们看到的这些图片好看吗?这些图片除了线条优美,颜色鲜艳以外,还有什么共同特征?请同学们借助教具分组讨论.生:图片的左边和右边相同.师:对,它们的左边和右边的结构都是一样的.教师用多媒体展示课件:折叠蝴蝶.得出“它们沿着某条直线折叠后,直线两旁的部分能完全重合”的特征.师:符合这些特征的图形是对称的.今天我们就一起来研究图形的对称性,展示课题:15.1轴对称图形.(二)观察归纳,探究概念师:你能归纳出轴对称图形的定义吗?生:······师生共同归纳出轴对称图形的定义:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形. 这条直线叫做对称轴.(三)动脑思考,巩固新知1、走进生活下列生活中常见的图标,是轴对称图形的是()A B C D2、走进图形说一说,我们在数学上已经学习过哪些基本几何图形?它们是轴对称图形吗?(四)提高训练,深化理解活动一:想一想:0-9十个数字中,哪些是轴对称图形?(抢答)0 1 2 3 4 5 6 7 8 9 活动二:下列英文字母中,哪些是轴对称图形?A C D E F G H I J L M N O P Q R S T U V W X Y Z活动三:猜字游戏:下面给出了轴对称图形的一半和对称轴,猜一猜这是什么汉字?合作交流:如图是4×4正方形网格,其中已有3个小正方形涂成了黑色,现在要从其余13个白色小方格中选出一个也涂成黑色的,使图形成为轴对称图形,请试一试.(五)课堂总结,发展潜能通过今天的学习,你有什么收获与体会?(1)我做了……(2)我知道了……(3)我感受到了……学生回忆归纳,教师指导.(六)布置作业必做题:完成书本125页习题第2题选做:请用两个完全相同的含有30度角的直角三角板,拼出轴对称图形。
15.1.1 轴对称图形的教案-沪科版八年级数学上册一、教学目标1.了解什么是轴对称图形。
2.能够判断一个图形是否具有轴对称性。
3.能够找到图形的对称轴。
4.能够根据对称轴绘制轴对称图形。
二、教学准备1.教师准备:–沪科版八年级数学上册课本。
–沪科版八年级数学上册教师用书。
–相应的课件和教学工具。
2.学生准备:–数学工具(尺子、直尺等)。
–笔记本和铅笔。
–沪科版八年级数学上册练习册。
三、教学过程导入新知1.让学生观察一些日常生活中的图形,让他们描述这些图形是否具有轴对称性。
引导学生思考什么是轴对称图形。
学习轴对称图形的定义1.教师给出轴对称图形的定义:“轴对称图形是指可以通过一个轴进行翻转,使图形重合的图形。
”2.教师通过示例和图示来解释和展示轴对称图形的特征。
判断图形是否具有轴对称性1.教师通过一些实例来让学生自己判断图形是否具有轴对称性。
2.教师提供一些简单的几何图形,让学生观察并试着找出图形的对称轴。
3.学生通过直观观察和推理来判断图形是否具有轴对称性,并找出对称轴。
绘制轴对称图形1.教师给出一个简单的图形,并指导学生根据对称轴绘制该图形的轴对称图形。
2.学生根据对称轴绘制图形的轴对称图形。
3.教师展示学生绘制的轴对称图形,并指导学生进行讨论和比较。
巩固练习1.学生进行练习册上相关的练习题,巩固所学知识。
拓展延伸1.提供更复杂的图形,让学生进行观察、判断和绘制轴对称图形。
四、教学总结通过本节课的学习,我们了解了轴对称图形的概念和特征,学会了判断图形是否具有轴对称性,并能够根据对称轴绘制轴对称图形。
五、课后作业1.完成课堂练习册上相关的练习题。
2.查找一些日常生活中的轴对称图形,并写下你的观察和思考。
注意:这是一个示例教案,教师根据具体情况可以适当调整教学内容和安排。
A
B
F
D
C
E
2
题图
15.1轴对称图形
【教学目标】 知识与技能
1、知道线段垂直平分线的概念。
2、知道成轴对称的两个图形全等,对称轴是对称点连线的垂直平分线。
过程与方法
1、探索并了解线段垂直平分线的有关性质,通过作对称轴提高学生的作图能力。
2、经历探索轴对称性质的活动,积累数学活动经念,进一步发展空间观念和表达能力。
情感、态度与价值观
1、让学生体验到数学与生活的密切联系,发展学生的空间观念和审美观。
2、通过对对称的理解和轴对称性质的把握,发展学生发现美和鉴赏美的能力。
【重点难点】
重点:会利用轴对称性质作对称点、对称图形等。
难点:据题目要求画出轴对称图形。
【教学过程】 一、复习引导:
1、如果一个平面沿着一条直线折叠,直线两旁的部分能够_____,那么这个图形叫轴对称图形,这条直线叫____。
2、如图所示,六边形 ABCDEF 是轴对称图形,CF 所 在的直线是它的对称轴,若∠AFC +∠BCF =150º, 则∠AFE +∠BCD 的大小是【 】
A 、150º
B 、300º
C 、210º
D 、330º
二、导入新课,提示课题
请欣赏下列一组图片,思考它们的共同特点。
以上这些图片中的景物,
可以看着它们在一条直线的两旁,
如果沿着这条直线折叠,
两个图形重合。
轴对称:
l A
C
B A'
C'
B'O 1O 2
O 3
“思考”图
第6
题
1、平面内两个图形在一条直线的两旁,如果沿着这条直线折叠,这两个图形能够重合,那么称这两个图形成轴对称,这条直线就是对称轴。
折叠后重合的两点叫做对应点(也叫对称点)
2、一个轴对称图形,如果把它沿对称轴分成两个图形,那么这两个图形关于这条轴对称。
三、合作探究
问题1:什么叫做线段的垂直平分? 经过线段的中点,并且垂直于这条线段的直线叫做线段的垂直平分线,又叫做线段的中垂线。
问题2:轴对称的性质
如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;反过来,成轴对称的两个图形中,对应点的连线被对称轴垂直平分。
问题3:如图,△ABC 与△A ′B ′C ′,关于 直线 l 对称,点 A ′、B ′、C ′ 分别是点 A 、B 、C 的对应点。
连接 AA ′,设AA ′ 与直线 l 交于点 O 1。
⑴ 直线 l 与线段 AA ′ 有怎样的位置关系? ⑵ O 1A 与 O 1A ′ 的长度有何关系?
问题4:由于△ABC 与△A ′B ′C ′关于直线 l 对称,将△ABC 与沿直线 l 折叠后,它与△A ′B ′C ′ 重合,所以有:O 1A __O 1A ′,∠O 2O 1A =∠O 2O 1A ′=___º。
问题5:直线CD 是线段AB 的垂直平分线,已知AB =10cm ,则OA =___cm 。
问题6:在折纸活动中,小明制作了一张 △ABC 纸片,点D ,E 分别在边AB ,AC 上,将 △ABC 沿着DE 折叠压平,A 与 A ′重合, 若∠A =75º,则∠1+∠2等于【 】 A 、150º B 、210º C 、105º D 、75º
三、例题讲解
例 1 :如图,直线 CD 是线段 AB 的垂直平分线,已知
AB =10cm ,则 OA =___cm 。
B
A
例 2 :如图所示,在折纸活动中,小明制作了一张 △ABC 纸片,点 D ,E 分别在边 AB ,
AC 上,将△ABC 沿着 DE 折叠压平,A 与 A ′ 重合,若∠A =75º,则∠1+∠2等于【 】
A 、150º B、210º C 、105º D、75º
C
B
四、巩固练习
请同学们做一做教材第122页“练习”。
小组检查学生做的结果如何. 五、课堂小结
1、平面内两个图形在一条直线的两旁,如果沿着这条直线折叠,这两个图形能够重合,那么称这两个图形成轴对称,这条直线就是对称轴。
折叠后重合的两点叫做对应点(也叫对称点)
2、经过线段的中点并且垂直于这条线段的直线叫做这条线段的垂直平分线,又叫做线段的中垂线。
3、如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;反过来,成轴对称的两个图形中,对应点的连线被对称轴垂直平分。
六、课后练习:
1、平面内两点 A 、B 的对称轴是___________。
2、点A 、B 关于直线l 对称,P 是直线l 上的任意一点,则下列说法不正确的是【 】 A 、线段 AB 与直线 l 垂直 B 、直线l 是点A 和点B 的对称轴 C 、线段PA 与线段PB 相等 D 、如PA =PB ,则点P 是线段AB 的中点
3、如图所示,点P 关于 OA ,OB 的对称点分别为点C ,D ,连接CD ,交OA 于点M ,交
OB 于点N ,若△PMN 的周长等于8cm ,则CD 为___cm 。
4、如图所示,在△ABC 中,∠ACB =90º,∠A =20º,若将△ABC 沿 CD 折叠,使 B 点落在 AC 边上的 E 处,则∠ADE 的度数是【 】
A 、30º B、40º C、50º D、55º
【思考】
如图,△ABC 和△A ′B ′C ′关于直线MN 对称,△A ′B ′C ′和△A ″B ″C ″关于直线EF 对称。
⑴ 画出直线EF ;
⑵ 直线MN 与EF 相交于点O ,试探究直线MN ,EF 所夹锐角 α 与∠BOB ″的数量关系。
第 3 题
N
M P D
C B
A
O
B″
A″
B′
A′
N
M
C
B
A
思考题。