2018届高三数学(理)复习专题集训:专题七 概率与统计7.1含解析
- 格式:doc
- 大小:137.50 KB
- 文档页数:15
A 级1.(2017·西安市八校联考)某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将60个同学按01,02,03,…,60进行编号,然后从随机数表第9行第5列的数开始向右读,则选出的第6个个体是( )(注:下表为随机数表的第8行和第9行)A .07B .25C .42D .52解析: 依题意得,依次选出的个体分别是12,34,29,56,07,52,…因此选出的第6个个体是52,选D.答案: D2.设随机变量ξ服从正态分布N (3,4),若P (ξ<2a -3)=P (ξ>a +2),则a 的值为( ) A.73 B .2 C.53D .23解析: 由题意知,2a -3与a +2关于直线x =3对称,所以2a -3+a +2=6,解得a =73. 答案: A3.某同学为了解自己记忆成语的个数与所花费的时间(秒)的关系,做了5次试验,收集到的数据如表所示,由最小二乘法求得的回归直线方程为y ∧=0.74x +50.则m +n A .130 B .129 C .121D .118 解析: 由表中数据得,x =30,y =15(61+m +n +81+89)=15(231+m +n ),将x =30,y =15(231+m +n )代入回归直线方程,得m +n =130.故选A.答案: A4.一个样本容量为10的样本数据,它们组成一个公差不为0的等差数列{a n },若a 3=8,且a 1,a 3,a 7成等比数列,则此样本的平均数和中位数分别是( )A .13,12B .13,13C .12,13D .13,14解析: 设等差数列{a n }的公差为d (d ≠0),a 3=8,a 1a 7=a 23=64,(8-2d )(8+4d )=64,(4-d )(2+d )=8,2d -d 2=0,又d ≠0,故d =2,故样本数据为:4、6,8,10,12,14,16,18,20,22,平均数为S 1010=(4+22)×510=13,中位数为12+142=13.答案: B5.若正数2,3,4,a ,b 的平均数为5,则其标准差的最小值为( ) A .2 B .4105C .3D .215解析: 由已知得2+3+4+a +b =5×5,整理得a +b =16.其方差s 2=15[(5-2)2+(5-3)2+(5-4)2+(5-a )2+(5-b )2]=15[64+a 2+b 2-10(a +b )]=15(a 2+b 2-96)=15[a 2+(16-a )2-96]=15(2a 2-32a +160)=25(a 2-16a )+32=25(a -8)2+325, 所以当a =8时,s 2取得最小值,最小值为325,此时标准差为4105.故选B.答案: B6.高三某班有学生56人,现将所有同学随机编号,用系统抽样的方法,抽取一个容量为4的样本,已知5号、33号、47号学生在样本中,则样本中还有一个学生的编号为________.解析: 因为47-33=14,所以由系统抽样的定义可知样本中的另一个学生的编号为5+14=19.答案: 197.某校举行了由全部学生参加的校园安全知识考试,从中抽出60名学生,将其成绩分成六段[40,50),[50,60),…,[90,100]后,画出如图所示的频率分布直方图.观察图形中的信息,回答下列问题:估计这次考试的及格率(60分及以上为及格)为________________________________________________________________________,平均分为________.解析: 及格的频率是(0.015+0.03+0.025+0.005)×10=0.75,即及格率约为75%.样本的均值为45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71,以这个分数估计总体的分数即得总体的平均分数约为71.答案: 75% 718.(2017·石家庄市教学质量检测(二))设样本数据x 1,x 2,…,x 2 017的方差是4,若y i=2x i -1(i =1,2,…,2 017),则y 1,y 2,…,y 2 017的方差为________.解析: 设样本数据的平均数为x ,则y i =2x i -1的平均数为2x -1,则y 1,y 2,…,y 2 017的方差为12 017[(2x 1-1-2x +1)2+(2x 2-1-2x +1)2+…+(2x 2 017-1-2x +1)2]=4×12 017[(x 1-x )2+(x 2-x )2+…+(x 2 017-x )2]=4×4=16. 答案: 169.(2017·合肥市第二次教学质量检测)某校在高一年级学生中,对自然科学类、社会科学类校本选修课程的选课意向进行调查.现从高一年级学生中随机抽取180名学生,其中男生105名;在这180名学生中选择社会科学类的男生、女生均为45名.(1)试问:从高一年级学生中随机抽取1人,抽到男生的概率约为多少?(2)根据抽取的180名学生的调查结果,完成下面2×2列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .解析: (1)从高一年级学生中随机抽取1人,抽到男生的概率约为105180=712.(2)根据统计数据,可得2×2列联表如下:∴K 2=180×(60×45-30×45)105×75×90×90=367≈5.142 9>5.024.∴在犯错误的概率不超过0.025的前提下可以认为科类的选择与性别有关.10.(2017·太原市模拟试题)某知名品牌汽车深受消费者喜爱,但价格昂贵.某汽车经销商推出A ,B ,C 三种分期付款方式销售该品牌汽车,并对近期100位采用上述分期付款的客户进行统计分析,得到如下的柱状图.已知从A ,B ,C 三种分期付款方式的销售中,该经销商每销售此品牌汽车一辆所获得的利润分别是1万元,2万元,3万元.现甲、乙两人从该汽车经销商处,采用上述分期付款方式各购买此品牌汽车一辆.以这100位客户所采用的分期付款方式的频率代替1位客户采用相应分期付款方式的概率.(1)求甲、乙两人采用不同分期付款方式的概率;(2)记X (单位:万元)为该汽车经销商从甲、乙两人购车中所获得的利润,求X 的分布列与期望.解析: (1)由柱状图可知,1位客户采用A ,B ,C 三种分期付款方式的概率分别为0.35,0.45,0.2,则甲、乙两人都采用A 种分期付款方式的概率为0.352=0.122 5, 甲、乙两人都采用B 种分期付款方式的概率为0.452=0.202 5, 甲、乙两人都采用C 种分期付款方式的概率为0.22=0.04,∴甲、乙两人采用不同分期付款方式的概率为1-0.122 5-0.202 5-0.04=0.635. (2)由题意得,X 的所有可能取值为2,3,4,5,6, P (X =2)=0.352=0.122 5, P (X =3)=2×0.35×0.45=0.315, P (X =4)=2×0.35×0.2+0.452=0.342 5, P (X =5)=2×0.45×0.2=0.18, P (X =6)=0.22=0.04, ∴X 的分布列为∴E (X )=2×B 级1.在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (-1,1)的密度曲线)的点的个数的估计值为( )A .1 193B .1 359C .2 718D .3 413附:若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.682 6,P (μ-2σ<X ≤μ+2σ)=0.954 4. 解析: 由题意知μ=-1,σ=1,因为P (0<x ≤1)=12[P (-1-2<X ≤-1+2)-P (-1-1<X ≤-1+1)]=12×(0.954 4-0.682 6)=0.135 9,所以落入阴影部分的个数为0.135 9×10 000=1 359,故选B.答案: B2.某新闻媒体为了了解观众对某节目的喜爱与性别是否有关系,随机调查了观看该节目的观众110名,得到如下的列联表:关”.参考附表:⎝ ⎛⎭⎪⎫参考公式:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d 解析: 假设喜爱该节目和性别无关,分析列联表中数据,可得K 2=110×(40×30-20×20)260×50×60×50≈7.822>6.635,所以有99%的把握认为“喜爱该节目与否和性别有关”.答案: 99%3.第31届夏季奥林匹克运动会于2016年8月5日~21日在巴西里约热内卢举行,下表是近几届奥运会中国代表团获得的金牌数之和y (从第26届算起,不包括之前已获得的金牌数)随时间x 变化的数据:由图可以看出,金牌数之和y 与时间x 之间存在线性相关关系. (1)求y 关于x 的线性回归方程;(2)预测第32届中国代表团获得的金牌数之和为多少?(3)现已知第31届中国代表团实际所获的金牌数为26,求残差e ∧.参考数据:x =28,y =85.6,∑i =1n (x i -x )(y i -y )=381,∑i =1n(x i -x )2=10.附:对于一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线y ∧=b ∧x +a ∧的斜率和截距的最小二乘估计分别为:b ∧=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2,a ∧=y -b ∧x .解析: (1)b ∧=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2=38110=38.1, a ∧=y -b ∧x =85.6-38.1×28=-981.2,所以金牌数之和y 关于时间x 的线性回归方程为y ∧=38.1x -981.2.(2)由(1)知,当x =32时,中国代表团获得的金牌数之和的预测值y ∧=38.1×32-981.2=238,故预测第32届中国代表团获得的金牌数之和为238枚.(3)当x =31时,中国代表团获得的金牌数之和的预测值为y ∧=38.1×31-981.2=199.9,第31届中国代表团获得的金牌数之和的真实值为165+26=191,所以残差e ∧=191-199.9=-8.9.4线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N (μ,σ2).(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P (X ≥1)及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性; ②下面是检验员在一天内抽取的16个零件的尺寸:经计算得x =116∑i =116x i =9.97,s =116∑i =116(x i -x )2=116(∑i =116x 2i -16x 2)≈0.212,其中x i 为抽取的第i 个零件的尺寸,i =1,2, (16)用样本平均数x 作为μ的估计值μ∧,用样本标准差s 作为σ的估计值σ∧,利用估计值判断是否需对当天的生产过程进行检查?剔除(μ∧-3σ∧,μ∧+3σ∧)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ-3σ<Z <μ+3σ)=0.997 4,0.997 416≈0.959 2,0.008≈0.09.解析: (1)抽取的一个零件的尺寸在(μ-3σ,μ+3σ)之内的概率为0.997 4,从而零件的尺寸在(μ-3σ,μ+3σ)之外的概率为0.002 6,故X ~B (16,0.002 6).因此P (X ≥1)=1-P (X =0)=1-0.997 416≈0.040 8. X 的数学期望为EX =16×0.002 6=0.041 6.(2)①如果生产状态正常,一个零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.002 6,一天内抽取的16个零件中,出现尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.040 8,发生的概率很小,因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.②由x =9.97,s ≈0.212,得μ的估计值为μ∧=9.97,σ的估计值为σ∧=0.212,由样本数据可以看出有一个零件的尺寸在(μ∧-3σ∧,μ∧+3σ∧)之外,因此需对当天的生产过程进行检查.剔除(μ∧-3σ∧,μ∧+3σ∧)之外的数据9.22,剩下数据的平均数为115×(16×9.97-9.22)=10.02,因此μ的估计值为10.02.i =116x 2i =16×0.2122+16×9.972≈1 591.134, 剔除(μ∧-3σ∧,μ∧+3σ∧)之外的数据9.22,剩下数据的样本方差为115×(1 591.134-9.222-15×10.022)≈0.008,因此σ的估计值为0.008≈0.09.。
2018年高考数学总复习概率及其计算(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考数学总复习概率及其计算(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考数学总复习概率及其计算(word版可编辑修改)的全部内容。
第十三章概率与统计本章知识结构图第一节概率及其计算考纲解读1。
了解随机事件发生的不确定性、频率的稳定性、概率的意义、频率与概率的区别。
2.了解两个互斥事件的概率的加法公式。
3。
掌握古典概型及其概率计算公式.4。
了解随机数的意义,能运用模拟方法估计概率。
5.了解几何概型的意义.命题趋势探究1.本部分为高考必考内容,在选择题、填空题和解答题中都有渗透。
2.命题设置以两种概型的概率计算及运用互斥、对立事件的概率公式为核心内容,题型及分值稳定,难度中等或中等以下。
知识点精讲一、必然事件、不可能事件、随机事件在一定条件下:①必然要发生的事件叫必然事件;②一定不发生的事件叫不可能事件;③可能发生也可能不发生的事件叫随机事件.二、概率在相同条件下,做次重复实验,事件A发生次,测得A发生的频率为,当很大时,A发生的频率总是在某个常数附近摆动,随着的增加,摆动幅度越来越小,这时就把这个常数叫做A的概率,记作。
对于必然事件A,;对于不可能事件A,=0.三、基本事件和基本事件空间在一次实验中,不可能再分的事件称为基本事件,所有基本事件组成的集合称为基本事件空间。
四、两个基本概型的概率公式1、古典概型条件:1、基本事件空间含有限个基本事件 2、每个基本事件发生的可能性相同()(A)=()A card P A card =Ω包含基本事件数基本事件总数2、几何概型条件:每个事件都可以看作某几何区域Ω的子集A ,A 的几何度量(长度、面积、体积或时间)记为A μ。
2018年高三数学高考考前综合提升训练:概率与统计(用时40分钟,满分80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是( ) A .1,2,3,4,5,6 B .6,16,26,36,46,56 C .1,2,4,8,16,32D .3,9,13,27,36,542.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x A.y ^=x -1 B.y ^=x +1 C.y ^=12x +88D.y ^=176 3.对四组数据进行统计,获得以下散点图,关于其相关系数的比较,正确的是( )A .r 2<r 4<0<r 3<r 1B .r 4<r 2<0<r 1<r 3C .r 4<r 2<0<r 3<r 1D .r 2<r 4<0<r 1<r 34.一枚质地均匀的正方体骰子,六个面上分别刻着一点至六点.甲、乙两人各掷骰子一次,则甲掷骰子向上的点数大于乙掷骰子向上的点数的概率为( ) A.29 B.14 C.512D.125.在一次学业水平测试中,小明成绩在60~80分的概率为0.5,成绩在60分以下的概率为0.3,若规定考试成绩在80分以上为优秀,则小明成绩为优秀的概率为( ) A .0.2B .0.3C .0.5D .0.86.对具有线性相关关系的变量x ,y 有一组观测数据(x i ,y i )(i =1,2,…,8),其回归直线方程是y ^=13x +a ,且x 1+x 2+x 3+…+x 8=2(y 1+y 2+y 3+…+y 8)=6,则实数a 的值是( )A.116B.18C.14D.127.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3,将两张卡片排在一起组成一个两位数,则所组成的两位数为奇数的概率是( ) A.16 B.13 C.12D.388.在区间(-5,5)内随机地取出一个实数a ,使得不等式2+a -a 2>0成立的概率是( ) A.110 B.310 C.510D.7109.从2名男生和2名女生中,任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为( ) A.13 B.512 C.12D.71210.已知函数f (x )=log 2x ,若在[1,4]上随机取一个实数x 0,则使得f (x 0)≥1成立的概率为( ) A.13 B.12 C.23D.3411.从等腰直角△ABC 的斜边AB 上任取一点P ,则△APC 为锐角三角形的概率是( ) A .1 B.12 C.13D.1612.20名志愿者中女生8人,男生12人,按性别用分层抽样方法从中抽取5人,再从5人中抽取2人,则至少抽到一名女生的概率是( ) A.12 B.14 C.25D.710二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.甲、乙两名同学在5次数学测验中的成绩统计如茎叶图所示,则甲、乙两人5次数学测验的平均成绩依次为________.14.某校100名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100],则图中a 的值为________.15.在长为16 cm 的线段AB 上任意取一点C ,以CA ,CB 为邻边长做一个矩形,则该矩形面积大于60 cm 2的概率为________.16.有一底面半径为1,高为2的圆柱,点O 为这个圆柱底面圆的圆心.在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.2018年高三数学高考考前综合提升训练:概率与统计(解析版)(用时40分钟,满分80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是( ) A .1,2,3,4,5,6 B .6,16,26,36,46,56 C .1,2,4,8,16,32D .3,9,13,27,36,54解析:选B.系统抽样是等间隔抽样,故选B.2.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x A.y ^=x -1 B.y ^=x +1 C.y ^=12x +88D.y ^=176 解析:选 C.由已知得x =176,y =176,因为点(x ,y )必在回归直线上,代入选项验证可知C 正确.3.对四组数据进行统计,获得以下散点图,关于其相关系数的比较,正确的是( )A .r 2<r 4<0<r 3<r 1B .r 4<r 2<0<r 1<r 3C .r 4<r 2<0<r 3<r 1D .r 2<r 4<0<r 1<r 3解析:选A.由相关系数的定义,以及散点图所表达的含义可知r 2<r 4<0<r 3<r 1,故选A. 4.一枚质地均匀的正方体骰子,六个面上分别刻着一点至六点.甲、乙两人各掷骰子一次,则甲掷骰子向上的点数大于乙掷骰子向上的点数的概率为( ) A.29B.14C.512D.12解析:选C.依题意,所求的概率等于5+4+3+2+136=512,故选C.5.在一次学业水平测试中,小明成绩在60~80分的概率为0.5,成绩在60分以下的概率为0.3,若规定考试成绩在80分以上为优秀,则小明成绩为优秀的概率为( ) A .0.2 B .0.3 C .0.5D .0.8解析:选A.小明成绩为优秀的概率P =1-0.5-0.3=0.2,故选A.6.对具有线性相关关系的变量x ,y 有一组观测数据(x i ,y i )(i =1,2,…,8),其回归直线方程是y ^=13x +a ,且x 1+x 2+x 3+…+x 8=2(y 1+y 2+y 3+…+y 8)=6,则实数a 的值是( )A.116B.18C.14D.12解析:选B.依题意可知样本点的中心为⎝ ⎛⎭⎪⎫34,38, 则38=13×34+a ,解得a =18. 7.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3,将两张卡片排在一起组成一个两位数,则所组成的两位数为奇数的概率是( ) A.16 B.13 C.12D.38解析:选C.依题意,将题中的两张卡片排在一起组成两位数共有6种情况,其中奇数有3种情况,因此所求的概率等于36=12,故选C.8.在区间(-5,5)内随机地取出一个实数a ,使得不等式2+a -a 2>0成立的概率是( ) A.110 B.310 C.510D.710解析:选B.2+a -a 2>0, 得-1<a <2. 所以由几何概型知其概率为2--5--=310,故选B.9.从2名男生和2名女生中,任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为( ) A.13 B.512 C.12D.712解析:选A.从2名男生和2名女生中任选两人在星期六、星期日参加某公益活动,每天一人,共有12种选法,其中星期六安排一名男生,星期日安排一名女生的结果有4种,所求概率为412=13,故选A.10.已知函数f (x )=log 2x ,若在[1,4]上随机取一个实数x 0,则使得f (x 0)≥1成立的概率为( ) A.13 B.12 C.23D.34解析:选C.由f (x 0)=log 2x 0≥1,解得x 0≥2,故所求概率是4-24-1=23,故选C.11.从等腰直角△ABC 的斜边AB 上任取一点P ,则△APC 为锐角三角形的概率是( ) A .1 B.12 C.13D.16解析:选B.依题意,取AB 的中点M ,连接CM ,则CM ⊥AB ,结合图形分析可知,当点P 介于点B ,M (不含点B ,M )之间时,△APC 为锐角三角形,因此所求的概率等于12,故选B.12.20名志愿者中女生8人,男生12人,按性别用分层抽样方法从中抽取5人,再从5人中抽取2人,则至少抽到一名女生的概率是( ) A.12 B.14 C.25D.710解析:选D.每个人被抽到的概率为520=14,由分层抽样知,女生要抽8×14=2人,男生要抽3人,记女生为n 1,n 2,记男生为m 1,m 2,m 3,现从中抽取2人,则总的基本事件为(n 1,n 2),(n 1,m 1),(n 1,m 2),(n 1,m 3),(n 2,m 1),(n 2,m 2),(n 2,m 3),(m 1,m 2),(m 1,m 3),(m 2,m 3),共10个,至少有一个女生的基本事件数为7个,故概率P =710,故选D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.甲、乙两名同学在5次数学测验中的成绩统计如茎叶图所示,则甲、乙两人5次数学测验的平均成绩依次为________.解析:由茎叶图可得x 甲=72+74+88+85+965=83,x 乙=77+79+81+93+905=84.答案:83,8414.某校100名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100],则图中a 的值为________.解析:由题知组距为10,根据频率分布直方图得(0.04+0.03+0.02+2a )×10=1,解得a =0.005. 答案:0.00515.在长为16 cm 的线段AB 上任意取一点C ,以CA ,CB 为邻边长做一个矩形,则该矩形面积大于60 cm 2的概率为________.解析:设CA =x (x ∈(0,16)),则CB =16-x ,故矩形的面积S =x (16-x ),令x (16-x )>60,解得6<x <10,故所求概率P =10-616=14.答案:1416.有一底面半径为1,高为2的圆柱,点O 为这个圆柱底面圆的圆心.在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 解析:依题意得知,所求的概率等于⎝ ⎛⎭⎪⎫π×12×2-12×43π×13π×12×2=23.2答案:3。
7.概率与统计1.【2018年浙江卷】设0<p<1,随机变量ξ分布列是ξ0 1 2P则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D点睛:2.【2018年理新课标I卷】下图来自古希腊数学家希波克拉底所研究几何图形.此图由三个半圆构成,三个半圆直径分别为直角三角形ABC斜边BC,直角边AB,AC.△ABC三边所围成区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III概率分别记为p1,p2,p3,则A. p1=p2B. p1=p3C. p2=p3D. p1=p2+p3【答案】A【解析】分析:首先设出直角三角形三条边长度,根据其为直角三角形,从而得到三边关系,之后应用相应面积公式求得各个区域面积,根据其数值大小,确定其关系,再利用面积型几何概型概率公式确定出p1,p2,p3关系,从而求得结果.详解:设,则有,从而可以求得面积为,黑色部分面积为,其余部分面积为,所以有,根据面积型几何概型概率公式,可以得到,故选A.点睛:该题考查是面积型几何概型有关问题,题中需要解决是概率大小,根据面积型几何概型概率公式,将比较概率大小问题转化为比较区域面积大小,利用相关图形面积公式求得结果.【2018年理新课标I卷】某地区经过一年新农村建设,农村经济收入增加了一倍.实现翻番.为3.更好地了解该地区农村经济收入变化情况,统计了该地区新农村建设前后农村经济收入构成比例.得到如下饼图:则下面结论中不正确是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入总和超过了经济收入一半【答案】A详解:设新农村建设前收入为M,而新农村建设后收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入综合占经济收入,所以超过了经济收入一半,所以D正确;故选A.点睛:该题考查是有关新农村建设前后经济收入构成比例饼形图,要会从图中读出相应信息即可得结果.4.【2018年全国卷Ⅲ理】某群体中每位成员使用移动支付概率都为,各成员支付方式相互独立,设为该群体10位成员中使用移动支付人数,,,则A. 0.7B. 0.6C. 0.4D. 0.3【答案】B点睛:本题主要考查二项分布相关知识,属于中档题。
概率与统计热点一常见概率模型的概率几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件,互斥事件常作为解答题的一问考查,也是进一步求分布列,期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例1】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X-Y|,求随机变量ξ的分布列.解依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有i人去参加甲游戏”为事件Ai(i=0,1,2,3,4).则P(Ai )=C i4⎝⎛⎭⎪⎫13i⎝⎛⎭⎪⎫234-i.(1)这4个人中恰有2人去参加甲游戏的概率P(A2)=C24⎝⎛⎭⎪⎫132⎝⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B,则B=A3+A4,且A3与A4互斥,∴P(B)=P(A3+A4)=P(A3)+P(A4)=C34⎝⎛⎭⎪⎫133×23+C44⎝⎛⎭⎪⎫134=19.(3)依题设,ξ的所有可能取值为0,2,4.且A1与A3互斥,A与A4互斥.则P(ξ=0)=P(A2)=827,P(ξ=2)=P(A1+A3)=P(A1)+P(A3)=C 14⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫233+C 34⎝ ⎛⎭⎪⎫133×23=4081,P (ξ=4)=P(A 0+A 4)=P(A 0)+P(A 4) =C 04⎝ ⎛⎭⎪⎫234+C 44⎝ ⎛⎭⎪⎫134=1781.所以ξ的分布列是【类题通法】(1)本题44人中恰有i 人参加甲游戏的概率P =C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i,这是本题求解的关键.(2)解题中常见的错误是不能分清事件间的关系,选错概率模型,特别是在第(3)问中,不能把ξ=0,2,4的事件转化为相应的互斥事件A i 的概率和.【对点训练】甲、乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错或不答都得0分,已知甲队3人每人答对的概率分别为34,23,12,乙队每人答对的概率都是23,设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分. (1)求ξ=2的概率;(2)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率. 解 (1)ξ=2,则甲队有两人答对,一人答错,故P(ξ=2)=34×23×⎝⎛⎭⎪⎫1-12+34×⎝ ⎛⎭⎪⎫1-23×12+⎝ ⎛⎭⎪⎫1-34×23×12=1124;(2)设甲队和乙队得分之和为4为事件A ,甲队比乙队得分高为事件B.设乙队得分为η,则η~B ⎝⎛⎭⎪⎫3,23.P (ξ=1)=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×12=14,P (ξ=3)=34×23×12=14,P (η=1)=C 13·23·⎝ ⎛⎭⎪⎫132=29,P (η=2)=C 23·⎝ ⎛⎭⎪⎫232·13=49,P (η=3)=C 33⎝ ⎛⎭⎪⎫233=827,∴P(A)=P(ξ=1)P(η=3)+P(ξ=2)P(η=2)+P(ξ=3)·P(η=1) =14×827+1124×49+14×29=13, P(AB)=P(ξ=3)·P(η=1)=14×29=118,∴所求概率为P(B|A)=P (AB )P (A )=11813=16.热点二 离散型随机变量的分布列、均值与方差离散型随机变量及其分布列、均值与方差及应用是数学高考的一大热点,每年均有解答题的考查,属于中档题.复习中应强化应用题目的理解与掌握,弄清随机变量的所有取值是正确列随机变量分布列和求均值与方差的关键,对概率模型的确定与转化是解题的基础,准确计算是解题的核心,在备考中强化解答题的规范性训练.【例2】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).解 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P(A k )=23,P(B k )=13,k =1,2,3,4,5.(1)P(A)=P(A 1A 2)+P(B 1A 2A 3)+P(A 1B 2A 3A 4) =P(A 1)P(A 2)+P(B 1)P(A 2)P(A 3)+P(A 1)P(B 2)· P(A 3)P(A 4)=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681.(2)X 的可能取值为2,3,4,5.P(X =2)=P(A 1A 2)+P(B 1B 2)=P(A 1)P(A 2)+P(B 1)·P(B 2)=59,P(X =3)=P(B 1A 2A 3)+P(A 1B 2B 3)=P(B 1)P(A 2)P(A 3)+P(A 1)P(B 2)P(B 3)=29,P(X =4)=P(A 1B 2A 3A 4)+P(B 1A 2B 3B 4)=P(A 1)P(B 2)P(A 3)P(A 4)+P(B 1)P(A 2)P(B 3)P(B 4)=1081, P(X =5)=1-P(X =2)-P(X =3)-P(X =4)=881. 故X 的分布列为E(X)=2×59+3×29+4×81+5×81=81.【类题通法】求离散型随机变量的均值和方差问题的一般步骤 第一步:确定随机变量的所有可能值; 第二步:求每一个可能值所对应的概率; 第三步:列出离散型随机变量的分布列; 第四步:求均值和方差;第五步:反思回顾.查看关键点、易错点和答题规范.【对点训练】为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求: ①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.解(1)设顾客所获的奖励额为X.①依题意,得P(X=60)=C11C13C24=12,即顾客所获的奖励额为60元的概率为1 2 .②依题意,得X的所有可能取值为20,60.P(X=60)=12,P(X=20)=C23C24=12,即X的分布列为所以顾客所获的奖励额的数学期望为E(X)=20×2+60×12=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理,可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X 1的数学期望为E(X1)=20×16+60×3+100×6=60(元),X 1的方差为D(X1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X 2的数学期望为E(X2)=40×16+60×3+80×6=60(元),X 2的方差为D(X2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.热点三概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】2018年6月14日至7月15日,第21届世界杯足球赛将于俄罗斯举行,某大学为世界杯组委会招收志愿者,被招收的志愿者需参加笔试和面试,把参加笔试的40名大学生的成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示:(1)分别求出成绩在第3,4,5组的人数;(2)现决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6人进行面试.①已知甲和乙的成绩均在第3组,求甲或乙进入面试的概率;②若从这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有X名学生被考官D 面试,求X的分布列和数学期望.解 (1)由频率分布直方图知: 第3组的人数为5×0.06×40=12. 第4组的人数为5×0.04×40=8. 第5组的人数为5×0.02×40=4.(2)利用分层抽样,在第3组,第4组,第5组中分别抽取3人,2人,1人. ①设“甲或乙进入第二轮面试”为事件A ,则 P(A)=1-C 310C 312=511,所以甲或乙进入第二轮面试的概率为511. ②X 的所有可能取值为0,1,2,P(X =0)=C 24C 26=25,P(X =1)=C 12C 14C 26=815,P(X =2)=C 22C 26=115.所以X 的分布列为E(X)=0×25+1×815+2×115=15=3.【类题通法】本题将传统的频率分布直方图与分布列、数学期望相结合,立意新颖、构思巧妙.求解离散型随机变量的期望与频率分布直方图交汇题的“两步曲”:一是看图说话,即看懂频率分布直方图中每一个小矩形面积表示这一组的频率;二是活用公式,本题中X 服从超几何分布.【对点训练】某公司为了解用户对某产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C :“A 评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.解 (1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散. (2)记C A1表示事件:“A 地区用户的满意度等级为满意或非常满意”; C A2表示事件:“A 地区用户的满意度等级为非常满意”; C B1表示事件:“B 地区用户的满意度等级为不满意”; C B2表示事件:“B 地区用户的满意度等级为满意”, 则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥, C =C B1C A1∪C B2C A2.P(C)=P(C B1C A1∪C B2C A2) =P(C B1C A1)+P(C B2C A2) =P(C B1)P(C A1)+P(C B2)P(C A2).由所给数据得C A1,C A2,C B1,C B2发生的频率分别为1620,420,1020,820,即P(C A1)=1620,P(C A2)=420,P(C B1)=1020,P(C B2)=820,故P(C)=1020×1620+820×420=0.48. 热点四 统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差)的考查,解答题中也有所考查.【例4】从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i =184,∑10i =1x 2i =720. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y ^=b ^x +a ^中,b ^=,a ^=y -b ^x ,其中x ,y 为样本平均值.解 (1)由题意知n =10,x =1n ∑n i =1x i=8010=8, y =1n ∑n i =1y i =2010=2, 又l xx =∑ni =1x 2i -n x 2=720-10×82=80, l xy =∑ni =1x i y i -n x y =184-10×8×2=24, 由此得b ^=l xy l xx =2480=0.3,a ^=y -b ^x =2-0.3×8=-0.4, 故所求线性回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b^=0.3>0),故x 与y 之间是正相关.(3)将x =7代入回归方程可以预测该家庭的月储蓄为y ^=0.3×7-0.4=1.7(千元). 【类题通法】(1)分析两个变量的线性相关性,可通过计算相关系数r 来确定,r 的绝对值越接近于1,表明两个变量的线性相关性越强,r 的绝对值越接近于0,表明两变量线性相关性越弱.(2)求线性回归方程的关键是正确运用b ^,a ^的公式进行准确的计算.【对点训练】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查.下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.(1)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?(2)将频率视为概率.1人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X.若每次抽取的结果是相互独立的,求X 的分布列、期望E(X)和方差D(X). 解 (1)完成2×2列联表如下:K 2=10060×40×55×45≈8.249>6.635, 故有99%的把握认为“读书迷”与性别有关.(2)将频率视为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率P =25. 由题意可知X ~B ⎝ ⎛⎭⎪⎫3,25,P(X =i)=C i 3⎝ ⎛⎭⎪⎫25i ⎝ ⎛⎭⎪⎫353-i (i =0,1,2,3).X 的分布列为均值E(X)=np =3×25=5, 方差D(X)=np(1-p)=3×25×⎝⎛⎭⎪⎫1-25=1825.。
2.(2016·山西四校联考)从1,2,3,4这四个数中一次随机取两个,则取出的两个数之和为偶数的概率是________.3.甲:A1、A2是互斥事件;乙:A1、A2是对立事件.那么甲是乙的______________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)4.从1,2,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个数都是奇数;③至少有一个奇数和两个数都是偶数;④至少有一个奇数和至少有一个偶数.在上述各对事件中,是对立事件的是________.5.(2016·无锡模拟)一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为715,取得两个绿球的概率为115,则取得两个同颜色的球的概率为________;至少取得一个红球的概率为________.6.(2016·泰州一模)甲乙两人下棋,若甲获胜的概率为15,甲乙下成和棋的概率为25,则乙不输棋的概率为________.7.(2016·苏、锡、常、镇一模)在一次满分为160分的数学考试中,某班40名学生的考试成绩分布如下:从该班学生中随机抽取一名学生,则该学生在这次考试中成绩不少于120分的概率为________.8.(2017·沈阳四校联考)任取一个三位正整数N,则对数log2N是一个正整数的概率是________.9.(2016·连云港模拟)在数字1,2,3,4四个数中,任取两个不同的数,其和大于积的概率是________.10.在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为________.11.在一场比赛中,某篮球队的11名队员共有9名队员上场比赛,其得分的茎叶图如图所示.从上述得分超过10分的队员中任取2名,则这2名队员的得分之和超过35分的概率为________.12.(2016·南通三模)从集合{1,2,3,4,5,6,7,8,9}中任取一个数记为x,则log2x为整数的概率为________.13.将一枚骰子(一种六个面上分别标有1,2,3,4,5,6的正方体玩具)先后抛掷2次,向上的点数分别记为m,n,则点P(m,n)落在区域|x-2|+|y-2|≤2内的概率是________.14.(2016·镇江模拟)设m,n分别为连续两次投掷骰子得到的点数,且向量a=(m,n),b=(1,-1),则向量a,b的夹角为锐角的概率是________.答案精析1.0.45 2.13 3.必要不充分 4.③5.8151415解析(1)由于“取得两个红球”与“取得两个绿球”是互斥事件,取得两个同色球,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P=715+115=815.(2)由于事件A“至少取得一个红球”与事件B“取得两个绿球”是对立事件,则至少取得一个红球的概率为P(A)=1-P(B)=1-115=1415.6.4 5解析“乙不输棋”的对立事件为“甲获胜”,P(乙不输棋)=1-P(甲获胜)=4 5.7.0.3解析成绩不少于120分的学生有12人,所以抽取的这名学生在这次考试中的成绩不少于120分的概率为1240=0.38.1 300解析三位正整数共有900个,使log2N为正整数,N为29,28,27共三个,概率为3 900=1 300.9.1 2解析从1,2,3,4中任取两数可能为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个可能的基本事件,其中和大于积的有(1,2),(1,3),(1,4),故概率为1 2.10.2 5解析如图为正六边形ABCDEF,从6个顶点中随机选择4个顶点,共有15种选法,其中构成的四边形是梯形的有ABEF、BCDE、ABCF、CDEF、ABCD、ADEF,共6种选法,故构成的四边形是梯形的概率为P=615=25.11.310解析 从得分超过10分的队员中任取2名,一共有以下10种不同的取法:(12,14),(12,15),(12,20),(12,22),(14,15),(14,20),(14,22),(15,20),(15,22),(20,22),其中这2名队员的得分之和超过35分的取法有以下3种:(14,22),(15,22),(20,22),故所求概率 P =310. 12.49解析 能使log 2x 为整数的x 有1,2,4,8,所以P =49. 13.1136解析 由题意可得所有可能的基本事件共36个. 当m =1时,1≤n ≤3,故符合条件的基本事件有3个; 当m =2时,1≤n ≤4,故符合条件的基本事件有4个; 当m =3时,1≤n ≤3,故符合条件的基本事件有3个;当m =4时,n =2,故符合条件的基本事件有1个.故共有11个符合条件的基本事件,即所求概率为1136. 14.512解析 向量a ,b 的夹角为锐角,所以a ·b >0,所以m -n >0,即m >n . 所以P =5+4+3+2+16×6=1536=512.。
1.以客观题形式考查抽样方法,样本的数字特征和回归分析,独立性检验的基本思路、方法及相关计算与推断.2.本部分较少命制大题,若在大题中考查多在概率与统计、算法框图等知识交汇处命题,重点考查抽样方法,频率分布直方图和回归分析或独立性检验,注意加强抽样后绘制频率分布直方图,然后作统计分析或求概率的综合练习.3.以客观题形式考查古典概型与几何概型、互斥事件与对立事件的概率计算. 4.与统计结合在大题中考查古典概型与几何概型.一、统计与统计案例 1.抽样方法三种抽样方法的比较2.统计图表(1)在频率分布直方图中:①各小矩形的面积表示相应各组的频率,各小矩形的高=频率组距;②各小矩形面积之和等于1;③中位数左右两侧的直方图面积相等,因此可以估计其近似值.(2)茎叶图当数据有两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.当数据有三位有效数字,前两位相对比较集中时,常以前两位为茎,第三位(个位)为叶(其余类推). 3.样本的数字特征 (1)众数在样本数据中,频率分布最大值所对应的样本数据(或出现次数最多的那个数据). (2)中位数样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取当中两个数据的平均数作为中位数.(3)平均数与方差样本数据的平均数x -=1n (x 1+x 2+…+x n ).方差s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2].注意:(1)现实中总体所包含的个体数往往较多,总体的平均数与标准差、方差是不知道(或不可求)的,所以我们通常用样本的平均数与标准差、方差来估计总体的平均数与标准差、方差.(2)平均数反映了数据取值的平均水平,标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定.4.变量间的相关关系(1)利用散点图可以初步判断两个变量之间是否线性相关.如果散点图中的点从整体上看大致分布在一条直线的附近,我们说变量x 和y 具有线性相关关系.(2)用最小二乘法求回归直线的方程 设线性回归方程为y ^=b ^x +a ^,则⎩⎪⎨⎪⎧b ^=∑i =1nx i -x-y i -y-∑i =1nx i -x-2=∑i =1nx i y i -n x -y-∑i =1nx 2i -n x -2a ^=y --b ^x-.注意:回归直线一定经过样本的中心点(x -,y -),据此性质可以解决有关的计算问题. 5.回归分析r=∑i =1nx i -x -y i -y-∑i =1nx i -x-2∑i =1ny i -y-2,叫做相关系数.相关系数用来衡量变量x 与y 之间的线性相关程度;|r |≤1,且|r |越接近于1,相关程度越高,|r |越接近于0,相关程度越低.6.独立性检验假设有两个分类变量X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(称为2×2列联表)为则K 2=a +b +c +d ad -bc a +b c +da +cb +d,若K 2>3.841,则有95%的把握说两个事件有关; 若K 2>6.635,则有99%的把握说两个事件有关; 若K 2<2.706,则没有充分理由认为两个事件有关. 7.随机事件的概率随机事件的概率范围:0≤P (A )≤1;必然事件的概率为1,不可能事件的概率为0. 8.古典概型①计算一次试验中基本事件的总数n ;②求事件A 包含的基本事件的个数m ;③利用公式P (A )=mn 计算.9.一般地,如果事件A 、B 互斥,那么事件A +B 发生(即A 、B 中有一个发生)的概率,等于事件A 、B 分别发生的概率的和,即P (A +B )=P (A )+P (B ).10.对立事件:在每一次试验中,相互对立的事件A 和A -不会同时发生,但一定有一个发生,因此有P (A -)=1-P (A ).11.互斥事件与对立事件的关系 对立必互斥,互斥未必对立.12.几何概型一般地,在几何区域D 内随机地取一点,记事件“该点落在其内部区域d 内”为事件A ,则事件A 发生的概率P (A )=d 的测度D 的测度.考点一 事件与概率例1.(2016·课标Ⅱ,18,12分,中)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值.(3)记续保人本年度的保费为X ,则X 的分布列为EX =0.85a ×0.30+a ×0.15+1.25a ×0.20+1.5a ×0.20+1.75a ×0.10+2a ×0.05=1.23a . 因此续保人本年度的平均保费与基本保费的比值为1.23a a=1.23.【变式探究】(2015·广东,4)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A .1 B.1121 C.1021 D.521解析 从袋中任取2个球共有C 215=105种取法,其中恰好1个白球1个红球共有C 110C 15=50种取法,所以所取的球恰好1个白球1个红球的概率为50105=1021.答案 C考点二 古典概型例2.【2017山东,理8】从分别标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是(A )518 (B )49 (C )59(D )79 【答案】C【解析】标有1, 2, ⋅⋅⋅, 9的9张卡片中,标奇数的有5张,标偶数的有4张,所以抽到的2张卡片上的数奇偶性不同的概率是115425989C C =⨯ ,选C. 【变式探究】袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A.521B.1021C.1121D .1【变式探究】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )A.15B.25C.35D.45解析 从这5个点中任取2个,有C 25=10种取法,满足两点间的距离不小于正方形边长的取法有C 24=6种,因此所求概率P =610=35.故选C.答案 C考点三 随机数与几何概型例3.【2017课标1,理】如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B【解析】设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为24a π.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221248a a ππ⋅=,选B. 【变式探究】 (2016·课标Ⅰ,4,易)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.34【答案】B 【解析】由题意知,小明在7:50至8:30 之间到达发车站,故他只能乘坐8:00或8:30发的车,所以他等车时间不超过10分钟的概率P =10+1040=12. 【变式探究】(2016·课标Ⅱ,10,中)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4n mB.2nm C.4m n D.2m n【答案】C 【解析】由题意知,m n =π4,故π=4m n ,即圆周率π的近似值为4m n.考点四条件概率与相互独立事件的概率例4.【2017课标II,理18】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg)某频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)附:22()()()()()n ad bcKa b c d a c b d-=++++【答案】(1)0.4092;(2)见解析;(3)52.35kg().(2)根据箱产量的频率分布直方图得列联表()222006266343815.70510010096104K ⨯⨯-⨯=≈⨯⨯⨯由于15.705 6.635>故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50kg 的直方图面积为()0.0040.0200.04450.340.5++⨯=<,箱产量低于55kg 的直方图面积为()0.0040.0200.044+0.06850.680.5++⨯=>故新养殖法箱产量的中位数的估计值为0.5-0.3450+52.35kg 0.068≈(). 【变式探究】投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312解析 该同学通过测试的概率为p =0.6×0.6+C 12×0.4×0.62=0.648. 答案 A【变式探究】(2014·新课标全国Ⅱ,5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.45解析 由条件概率可得所求概率为0.60.75=0.8,故选A.答案 A考点五 正态分布例5.【2017课标1,理19】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==≈,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=0.09≈.【答案】(1)0.0416.(2)(i )见解析;(ii )0.09. 【解析】(1)抽取的一个零件的尺寸在()3,3μσμσ-+之内的概率为0.9974,从而零件的尺寸在()3,3μσμσ-+之外的概率为0.0026,故()~16,0.0026X B .因此()()11010.99740.0408P X P X ≥=-==-=.X 的数学期望为160.00260.0416EX =⨯=.(2)(i )如果生产状态正常,一个零件尺寸在()3,3μσμσ-+之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在()3,3μσμσ-+之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii )由9.97,0.212x s =≈,得μ的估计值为ˆ9.97μ=, σ的估计值为ˆ0.212σ=,由样本数据可以看出有一个零件的尺寸在()3,ˆˆˆ3ˆμσμσ-+之外,因此需对当天的生产过程进行检查. 剔除()3,ˆˆˆ3ˆμσμσ-+之外的数据9.22,剩下数据的平均数为()1169.979.2210.0215⨯-=,因此μ的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除()3,ˆˆˆ3ˆμσμσ-+之外的数据9.22,剩下数据的样本方差为()2211591.1349.221510.020.00815--⨯≈,因此σ0.09≈.【变式探究】在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( )附:若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.682 6, P (μ-2σ<X ≤μ+2σ)=0.954 4.A .2 386B .2 718C .3 413D .4 772答案 C【变式探究】(2014·新课标全国Ⅰ,18)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x 和样本方差s 2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2.(ⅰ)利用该正态分布,求P (187.8<Z <212.2);(ⅱ)某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用(ⅰ)的结果,求E (X ).附:150≈12.2.若Z ~N (μ,σ2),则P (μ-σ<Z <μ+σ)=0.682 6, P (μ-2σ<Z <μ+2σ)=0.954 4.解 (1)抽取产品的质量指标值的样本平均数x 和样本方差s 2分别为x -=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200, s 2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)(ⅰ)由(1)知,Z ~N (200,150),从而P (187.8<Z <212.2)=P (200-12.2<Z <200+12.2)=0.682 6.(ⅱ)由(ⅰ)知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知X ~B (100,0.682 6),所以E (X )=100×0.682 6=68.26.考点六 离散型随机变量的分布列例6.【2017天津,理16】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为111,,234. (Ⅰ)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 【答案】(Ⅰ)见解析;(Ⅱ)1148. 【解析】(Ⅰ)解:随机变量X 的所有可能取值为0,1,2,3.()111101112344P X ⎛⎫⎛⎫⎛⎫==-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()11111111111111111123423423424P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯-⨯-+-⨯⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, ()111111111121112342342344P X ⎛⎫⎛⎫⎛⎫==-⨯⨯+⨯-⨯+⨯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()1111323424P X ==⨯⨯=. 所以,随机变量X 的分布列为随机变量X 的数学期望()012342442412E X =⨯+⨯+⨯+⨯=. (Ⅱ)解:设Y 表示第一辆车遇到红灯的个数, Z 表示第二辆车遇到红灯的个数,则所求事件的概率为()()()()()()()10,11,00110P Y Z P Y Z P Y Z P Y P Z P Y P Z +====+=====+==1111111142424448=⨯+⨯=.所以,这2辆车共遇到1个红灯的概率为1148. 【变式探究】(2016·山东,19,12分,中)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望EX .解:(1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”,记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”,记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +A -BCD +AB -CD +ABC -D +ABCD -. 由事件的独立性与互斥性,得P (E )=P (ABCD )+P (A -BCD )+P (AB -CD )+P (ABC -D )+P (ABCD -)=P (A )P (B )P (C )P (D )+P (A -)P (B )·P (C )P (D )+P (A )P (B -)P (C )P (D )+P (A )P (B )P (C -)P (D )+P (A )P (B )P (C )·P (D -) =34×23×34×23+2×⎝⎛14×23×34×23+34×13×34×⎭⎫23=23. 所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6. 由事件的独立性与互斥性,得可得随机变量X 的分布列为所以数学期望EX =0×1144+1×572+2×25144+3×112+4×512+6×14=236.【变式探究】(2015·安徽,17)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结果.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望).解 (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A .P (A )=A 12A 13A 25=310.(2)X 的可能取值为200,300,400. P (X =200)=A 22A 25=110,P (X =300)=A 33+C 12C 13A 22A 35=310, P (X =400)=1-P (X =200)-P (X =300)=1-110-310=610.故X 的分布列为E (X )=200×110+300×310+400×610=350.考点七 均值与方差例7.【2016高考江苏卷】已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________▲________. 【答案】0.1【解析】这组数据的平均数为1(4.7 4.8 5.1 5.4 5.5) 5.15++++=,2222221(4.7 5.1)(4.8 5.1)(5.1 5.1)(5.4 5.1)(5.5 5.1)0.15S ⎡⎤∴=-+-+-+-+-=⎣⎦.故答案应填:0.1, 【变式探究】如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E (X )=( )A.126125B.65C.168125D.75解析 由题意可知涂漆面数X 的可能取值为0,1,2,3. 由于P (X =0)=27125,P (X =1)=54125,P (X =2)=36125,P (X =3)=8125,故E (X )=0×27125+1×54125+2×36125+3×8125=150125=65.答案 B考点八 抽样方法例8.【2017天津,理16】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为111,,234. (Ⅰ)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 【答案】(Ⅰ)见解析;(Ⅱ)1148. 【解析】(Ⅰ)解:随机变量X 的所有可能取值为0,1,2,3.()111101112344P X ⎛⎫⎛⎫⎛⎫==-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()11111111111111111123423423424P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯-⨯-+-⨯⨯-+-⨯-⨯= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, ()111111111121112342342344P X ⎛⎫⎛⎫⎛⎫==-⨯⨯+⨯-⨯+⨯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()1111323424P X ==⨯⨯=. 所以,随机变量X 的分布列为随机变量X 的数学期望()012342442412E X =⨯+⨯+⨯+⨯=. (Ⅱ)解:设Y 表示第一辆车遇到红灯的个数, Z 表示第二辆车遇到红灯的个数,则所求事件的概率为()()()()()()()10,11,00110P Y Z P Y Z P Y Z P Y P Z P Y P Z +====+=====+==1111111142424448=⨯+⨯=. 所以,这2辆车共遇到1个红灯的概率为1148. 【变式探究】(2016·山东,3,易)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20, 22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A .56B .60C .120D .140(2015·陕西,2)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .167B .137C .123D .93解析 由题干扇形统计图可得该校女教师人数为:110×70%+150×(1-60%)=137.故选B. 答案 B【变式探究】(2014·湖南,2)对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3解析 因为采取简单随机抽样、系统抽样和分层抽取样本时,总体中每个个体被抽中的概率相等,故选D.答案 D考点九 频率分布直方图与茎叶图例9.(2015·安徽,6)若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为( )A .8B .15C .16D .32解析 法一 由题意知,x 1+x 2+…+x 10=10x , s 1则y =1n [(2x 1-1)+(2x 2-1)+…+(2x 10-1)]=1n [2(x 1+x 2+…+x 10)-n ]=2x -1, 所以S 22s 1,故选C.答案 C【变式探究】(2015·重庆,3)重庆市2013年各月的平均气温(℃)数据的茎叶图如下: 则这组数据的中位数是( )0 1 2 28 9 2 5 80 0 0 3 3 8 1 2A .19B .20C .21.5D .23解析 从茎叶图知所有数据为8,9,12,15,18,20,20,23,23,28,31,32,中间两个数为20,20,故中位数为20,选B.答案 B考点十 变量间的相关关系及统计案例例10.(2015·新课标全国Ⅱ,31)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图.以下结论不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关解析 从2006年,将每年的二氧化硫排放量与前一年作差比较,得到2008年二氧化硫排放量与2007年排放量的差最大,A 选项正确;2007年二氧化硫排放量较2006年降低了很多,B 选项正确;虽然2011年二氧化硫排放量较2010年多一些,但自2006年以来,整体呈递减趋势,即C 选项正确;自2006年以来我国二氧化硫年排放量与年份负相关,D 选项错误,故选D.答案 D【变式探究】(2015·福建,4)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y ∧=b ∧x +a ∧,其中b ∧=0.76,a ∧=y -b∧x .据此估计,该社区一户年收入为15万元家庭的年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元解析 回归直线一定过样本点中心(10,8),∵b ∧=0.76,∴a ∧=0.4,由y ∧=0.76x +0.4得当x =15万元时,y∧=11.8万元.故选B.答案 B1.【2017课标1,理】如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8 C .12D .π4【答案】B2.【2017浙江,8】已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1—p i ,i =1,2. 若0<p 1<p 2<12,则A .1E()ξ<2E()ξ,1D()ξ<2D()ξB .1E()ξ<2E()ξ,1D()ξ>2D()ξC .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ【答案】A 【解析】112212(),(),()()E p E p E E ξξξξ==∴<111222121212()(1),()(1),()()()(1)0D p p D p p D D p p p p ξξξξ=-=-∴-=---<,选A .3.【2017山东,理5】为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为24,据此估计其身高为 (A )160 (B )163 (C )166 (D )170【答案】C【解析】由已知22.5,160,160422.570,42470166x y a y ==∴=-⨯==⨯+= ,选C.4.【2017山东,理8】从分别标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是(A )518 (B )49 (C )59(D )79 【答案】C【解析】标有1, 2, ⋅⋅⋅, 9的9张卡片中,标奇数的有5张,标偶数的有4张,所以抽到的2张卡片上的数奇偶性不同的概率是115425989C C =⨯ ,选C. 5.【2017课标II ,理13】一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X = 。
A 级1.已知C 是正方形ABDE 内的一点,且满足AC ⊥BC ,AC =2BC ,在正方形ABDE 内投一个点,该点落在图中阴影部分内的概率是( )A.15 B .25C.35D .45解析: 建立如图所示的平面直角坐标系,不妨设正方形的边长为5,则C 点坐标为C (x ,y ),由题意可得: ⎩⎪⎨⎪⎧AC →·BC →=(x ,y )·(x -5,y )=0,x 2+y 2=2(x -5)2+y 2求解方程组可得C 点坐标为C ⎝⎛⎭⎫45,25,则S △ABC =12×5×25=1,S △AEC =12×5×45=2,结合几何概型公式可得,该点落在图中阴影部分内的概率是:p =1-1+2(5)2=25.答案: B2.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312解析: 3次投篮投中2次的概率为P (k =2)=C 23×0.62×(1-0.6),投中3次的概率为P (k =3)=0.63,所以通过测试的概率为P (k =2)+P (k =3)=C 23×0.62×(1-0.6)+0.63=0.648.答案: A3.(2017·武汉市武昌区调研考试)小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点不相同”,事件B =“小赵独自去一个景点”,则P (A |B )=( )A.29 B .13C.49D .59解析: 小赵独自去一个景点共有4×3×3×3=108种可能性,4个人去的景点不同的可能性有A 44=4×3×2×1=24种,∴P (A |B )=24108=29. 答案: A4.(2017·合肥市第一次教学质量检测)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 的方程为x 2-y =0)的点的个数的估计值为( )A .5 000B .6 667C .7 500D .7 854解析: S 阴影=S 正方形-⎠⎛01x 2d x =1-13=23,所以有23=S 阴影S 正方形=n10 000,解得n ≈6 667,故选B.答案: B5.甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束,设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响,则乙获胜的概率为( )A.12 B .13C.1327D .427解析: 设A k ,B k (k =1,2,3)分别表示甲、乙在第k 次投篮投中,则P (A k )=13,P (B k )=12(k =1,2,3).记“乙获胜”为事件C ,由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知P (C )=P (A 1B 1)+P (A1B1A 2B 2)+P (A1B1A2B2A 3B 3)=P (A 1)P (B 1)+P (A 1)P (B 1)P (A 2)P (B 2)+P (A 1)P (B 1)·P (A 2)P (B 2)P (A 3)P (B 3) =23×12+⎝⎛⎭⎫232⎝⎛⎭⎫122+⎝⎛⎭⎫233⎝⎛⎭⎫123=1327. 答案: C6.(2016·山东卷)在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________.解析: 由直线y =kx 与圆(x -5)2+y 2=9相交, 得|5k |k 2+1<3, 即16k 2<9,解得-34<k <34.由几何概型的概率计算公式可知P =34-⎝⎛⎭⎫-342=34.答案: 347.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知E (X )=3,则D (X )等于________.解析: 根据题目条件,每次摸到白球的概率都是p =33+m ,满足二项分布,则有E (X )=np =5×33+m=3,解得m =2,那么D (X )=np (1-p )=5×35×⎝⎛⎭⎫1-35=65. 答案: 658.(2017·福州市综合质量检测)从集合M ={(x ,y )|(|x |-1)2+(|y |-1)2<4,x ,y ∈Z }中随机取一个点P (x ,y ),若xy ≥k (k >0)的概率为625,则k 的最大值是________.解析: 因为M ={(x ,y )|(|x |-1)2+(|y |-1)2<4,x ,y ∈Z },所以M ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },所以集合M 中元素的个数为5×5=25.因为xy =1的情况有2种,xy =2的情况有4种,xy =4的情况有2种,所以要使xy ≥k (k >0)的概率为625,需1<k ≤2,所以k 的最大值为2.答案: 29.(2017·新疆第二次适应性检测)2016年9月20日在乌鲁木齐隆重开幕的第五届中国亚欧博览会,其展览规模为历届之最.按照日程安排,22日到25日为公众开放日.某农产品经销商决定在公众开放日开始每天以每件50元购进农产品若干件,以80元一件销售;若供大于求,剩余的农产品当天以40元一件全部退回;若供不应求,则立即从其它地方以60元一件调剂.(1)若农产品经销商一天购进农产品5件,求当天的利润y (单位:元)关于当天需求量n (单位:件,n ∈N *)的函数解析式;(2)农产品经销商记录了30天上述农产品的日需求量n (单位:件),整理得表:X 表示当天的利润(单位:元),求X 的分布列与数学期望.解析: (1)当1≤n ≤5时,y =30n +(5-n )×(-10)=40n -50, 当n >5时,y =30×5+(n -5)×20=50+20n ,所以y =⎩⎪⎨⎪⎧40n -50,1≤n ≤5,n ∈N *,50+20n ,n >5,n ∈N *. (2)由(1)得:日需求量为3时,频数为2,利润为70, 日需求量为4时,频数为3,利润为110, 日需求量为5时,频数为15,利润为150, 日需求量为6时,频数为6,利润为170, 日需求量为7时,频数为4,利润为190, 所以X 的取值为70,110,150,170,190,P (X =70)=115,P (X =110)=110,P (X =150)=12,P (X =170)=15,P (X =190)=215,所以X 的分布列为所以E (X )=70×115+110×110+150×12+170×15+190×215=150(元).10.(2017·陕西省高三教学质量检测试题(一))私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查结果进行整理后制成下表:有2人不赞成的概率;(2)在(1)的条件下,令选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望.解析: (1)由表知,年龄在[15,25)内的有5人,不赞成的有1人,年龄在[25,35)内的有10人,不赞成的有4人,恰有2人不赞成的概率为P =C 14C 25·C 14·C 16C 210+C 24C 25·C 24C 210=410×2445+610×645=2275.(2)ξ的所有可能取值为0,1,2,3.P (ξ=0)=C 24C 25·C 26C 210=610×1545=1575,P (ξ=1)=C 14C 25·C 26C 210+C 24C 25·C 14·C 16C 210=410×1545+610×2445=3475,P (ξ=2)=2275,P (ξ=3)=C 14C 25·C 24C 210=410×645=475,∴ξ的分布列是∴ξ的数学期望E (ξ)=0×1575+1×3475+2×2275+3×475=65.B 级1.(2017·浙江卷)已知随机变量ξi 满足P (ξi =1)=p i ,P (ξi =0)=1-p i ,i =1,2.若0<p 1<p 2<12,则( )A .E (ξ1)<E (ξ2),D (ξ1)<D (ξ2)B .E (ξ1)<E (ξ2),D (ξ1)>D (ξ2)C .E (ξ1)>E (ξ2),D (ξ1)<D (ξ2) D .E (ξ1)>E (ξ2),D (ξ1)>D (ξ2)解析: 由题意可知ξi (i =1,2)服从两点分布, ∴E (ξ1)=p 1,E (ξ2)=p 2,D (ξ1)=p 1(1-p 1), D (ξ2)=p 2(1-p 2).又∵0<p 1<p 2<12,∴E (ξ1)<E (ξ2).把方差看作函数y =x (1-x ), 根据0<ξ1<ξ2<12知,D (ξ1)<D (ξ2).故选A. 答案: A2.(2016·全国卷甲)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4n m B .2n mC.4m nD .2m n解析: 设由⎩⎪⎨⎪⎧0≤x n ≤10≤y n ≤1构成的正方形的面积为S ,x 2n +y 2n <1构成的图形的面积为S ′,所以S ′S =14π1=m n ,所以π=4m n.答案: C3.在体育课上,甲、乙、丙三位同学进行篮球投篮练习,甲、乙、丙投中的概率分别为p 1,p 2,25,且p 1+p 2=1,现各自投篮一次,三人投篮相互独立.(1)求三人都没有投进的概率的最大值,并求此时甲、乙投篮命中的概率; (2)在(1)的条件下,求三人投中次数之和X 的分布列和数学期望. 解析: (1)记甲、乙、丙投篮一次命中分别为事件A ,B ,C , 则P (A )=p 1,P (B )=p 2,P (C )=25.各自投篮一次都没有投进为事件D ,则D =A B C , 则P (D )=P (A B C )=P (A )P (B )P (C ) =[1-P (A )][1-P (B )][1-P (C )]=35(1-p 1)(1-p 2)≤35⎝⎛⎭⎫1-p 1+1-p 222=320, 当且仅当p 1=p 2=12时等号成立.即各自投篮一次三人都没有投进的概率的最大值是320,此时甲、乙投篮命中的概率都是12. (2)X =0,1,2,3.根据(1)知P (X =0)=320;P (X =1)=P (A B C +A B C +A B C ) =12×12×35+12×12×35+12×12×25 =25; P (X =2)=P (AB C +A B C +A BC ) =12×12×35+12×12×25+12×12×25 =720; P (X =3)=P (ABC )=12×12×25=110.所以X 的分布列为X 的数学期望E (X )=0×320+1×25+2×720+3×110=75.4.(2017·广西三市第一次联考)某公司为招聘新员工设计了一个面试方案:应聘者从6道备选题中一次性随机抽取3道题,按照题目要求独立完成.规定:至少正确完成其中2道题的便可通过.已知6道备选题中应聘者甲有4道题能正确完成,2道题不能完成;应聘者乙每题正确完成的概率都是23,且每题正确完成与否互不影响.(1)分别求甲、乙两人正确完成面试题数的分布列及数学期望; (2)请分析比较甲、乙两人谁面试通过的可能性大?解析: (1)设甲正确完成面试的题数为ξ,则ξ的可能取值为1,2,3.P (ξ=1)=C 14C 22C 36=15;P (ξ=2)=C 24C 12C 36=35;P (ξ=3)=C 34C 02C 36=15.应聘者甲正确完成题数ξ的分布列为E (ξ)=1×15+2×35+3×15=2.设乙正确完成面试的题数为η,则η的可能取值为0,1,2,3.P (η=0)=C 03⎝⎛⎭⎫133=127; P (η=1)=C 13⎝⎛⎭⎫231⎝⎛⎭⎫132=627; P (η=2)=C 23⎝⎛⎭⎫232⎝⎛⎭⎫13=1227; P (η=3)=C 33⎝⎛⎭⎫233=827.应聘者乙正确完成题数η的分布列为E (η)=0×127+1×627+2×1227+3×827=2.⎭⎫⎝⎛或因为η~B ⎝⎛⎭⎫3,23,所以E (η)=3×23=2(2)因为D (ξ)=(1-2)2×15+(2-2)2×35+(3-2)2×15=25,D (η)=3×23×13=23.所以D (ξ)<D (η).综上所述,从做对题数的数学期望考查,两人水平相当; 从做对题数的方差考查,甲较稳定;从至少完成2道题的概率考查,甲面试通过的可能性大.。
A 级
1.设M ,N 是两个非空集合,定义M ⊗N ={(a ,b)|a ∈M ,b ∈N},若P ={0,1,2,3},Q ={1,2,3,4,5},则P ⊗Q 中元素的个数是( )
A .4
B .9
C .20
D .24
解析: 依题意,a 有4种取法,b 有5种取法,由分步乘法计数原理得,有4×5=20种不同取法,共有20个不同元素,故选C.
答案: C
2.若二项式(x +1)n (n ∈N *)的展开式按照x 的升幂排列的第三项的系数为15,则n 的值为( )
A .7
B .6
C .5
D .4
解析: ∵二项展开式的通项T r +1=C r n
x n -r ,由题意知,展开式按照x 的升幂排列的第三项是C n -2n x 2,则C n -2n =15,解得n =6,故选B.
答案: B
3.满足m ,n ∈{-1,0,1,2,3},且关于x 的方程mx 2+2x +n =0有实数解的有序数对(m ,n)的个数为( )
A .17
B .14
C .13
D .12
解析: 当m =0时,2x +n =0⇒x =-n
2
,有序数对(0,n)有5个;当m ≠0
时,Δ=4-4mn≥0⇒mn≤1,有序数对(-1,n)有5个,(1,n)有3个,(2,n)有2个,(3,n)有2个.综上,共有5+5+3+2+2=17(个),故选A.
答案: A
4.已知(x+2)15=a0+a1(1-x)+a2(1-x)2+…+a15(1-x)15,则a13的值为( )
A.945 B.-945
C.1 024 D.-1 024
解析:由(x+2)15=[3-(1-x)]15=a0+a1(1-x)+a2(1-x)2+…+a15(1-x)15,得a13=C1315×32×(-1)13=-945.
答案: B
5.从6名男医生、5名女医生中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )
A.60种B.70种
C.75种D.150种
解析:从6名男医生中选出2名有C26=15种不同的选法,从5名女医生中选出1名有C15=5种不同的选法,根据分步乘法计数原理可得,组成的医疗小组共有15×5=75种不同的选法.
答案: C
6.某校为了提倡素质教育,丰富学生们的课外生活,分别成立绘画、象棋和篮球兴趣小组,现有甲、乙、丙、丁四名学生报名参加,每人仅参加一个兴趣小组,每个兴趣小组至少有一人报名,则不同报名方法有( )
A.12种B.24种
C .36种
D .72种
解析: 由题意可知,从4人中任选2人作为一个整体,共有C 24
=6(种),再把这个整体与其他2人进行全排列,对应3个活动小组,有A 33=6(种)情况,所以共有6×6=36(种)不同的报名方法.
答案: C 7.在⎝
⎛
⎭
⎪⎪⎫x +13x 30
的展开式中,x 的幂指数是整数的项共有( ) A .4项 B .5项 C .6项
D .7项
解析: 由于T r +1=C r 30x15-5
6r(0≤r ≤30,r ∈N),若展开式中x 的幂指数
为整数,由通项公式可知r 为6的倍数,易知r =0,6,12,18,24,30均符合条件.
答案: C
8.在二项式⎝ ⎛⎭⎪⎪
⎫x -1x n 的展开式中恰好第5项的二项式系数最大,则展开式中
含x 2项的系数是( )
A .-56
B .-35
C .35
D .56
解析: 因为展开式中恰好第5项的二项式系数最大,所以展开式共有9
项,所以n =8,所以二项展开式的通项公式为T r +1=C r 8x 8-r (-x -1)r =(-1)r C r 8x 8-2r ,令
8-2r =2得r =3,所以展开式中含x 2项的系数是(-1)3C 38=-56.
答案: A
9.(2017·全国卷Ⅲ)(x +y)(2x -y)5的展开式中x 3y 3的系数为( )。