常用半导体器件教案
- 格式:doc
- 大小:138.50 KB
- 文档页数:10
§1-1 半导体的基本知识教学目. 1.知道半导体的导电特性2. 知道两种杂质半导体的形成、特点3. 提高学生学习本课程的兴趣。
4. 对学生进行养成教育;安全及就业观的引导。
教学重点半导体的导电特性、两种杂质半导体的形成、特点教学难点PN结的形成及其特性教学方法讲练法课题类型新授课课的结构组织教学→复习→导入新课→讲授新课→练习→小结→作业热敏性, 光敏性, 掺杂性2.半导体的导电特性有两种导电粒子: 自由电子和空穴有两种导电粒子:自由电子和空穴教学环节教学内容教学活动时间讲授新课练习讲授新课二、N型和P型半导体1.N型半导体的形成及特点1)形成: 在纯净的半导体中掺入五价元素磷2)特点: 自由电子多、空穴少2.P型半导体的形成及特点1)形成: 在纯净的半导体中掺入三价元素硼2)特点: 自由电子少、空穴多1.常用的半导体材料是()和()。
2.N型半导体的多数载流子是()、少数栽流子是()。
3.N型和P型半导体的电中性N型半导体的结构P型半导体的结构三、PN结及其单向导电性1.PN结的形成教师板书,学生听述并记录笔记学生自己完成学生听述并思考,总结PN结的形成及特点15分钟5分钟30分钟§1-2 二极管教学目的 1.认识二极管的结构和符号2.记忆二极管的伏安特性.3、注意养成教育, 安全、择业观的引导教学重点二极管的符号、伏安特性教学难点二极管的符号、伏安特性教学方法讲练法课题类型新授课课的结构组织教学→复习→导入新课→讲授新课→练习→小结→作业教学环节教学内容教学活动时间讲授新课练习2、类型点接触型: PN结面积小, 结电容小, 常用于高频、检波面接触型: PN结面积大, 结电容大, 常用于整流平面型:PN结面积较小时, 结电容小, 可用于脉冲数字电路、PN结面积较大时, 通过的电流较大, 可用于大功率整流。
3、型号教师板书,学生听述并记录笔记15分钟讲授新课1.说明下列型号的含义2AK56D 2CZ78F二、二极管的电压电流特性加到二极管两端的电压和流过二极管的电流两者之间的关系学生自己完成学生听述并思考5分钟30分钟教学环节教学内容教学活动时间讲授新课练习1.正向特性:死区: 硅的死区电压为0.5V;锗的死区电压为0.2V导通区: 硅的导通电压为0.7V;锗的导通电压为0.5V2.反向特性:反向截止区: 反向电流很小反向击穿区: 反向电流突然增大硅二极管的死区电压约为()V。
半导体的基础知识教案第一章:半导体概述1.1 半导体的定义与特性解释半导体的概念介绍半导体的物理特性讨论半导体的重要参数1.2 半导体的分类与制备说明半导体材料的分类探讨半导体材料的制备方法分析半导体器件的制备过程第二章:PN结与二极管2.1 PN结的形成与特性解释PN结的概念与形成过程探讨PN结的特性分析PN结的应用领域2.2 二极管的结构与工作原理介绍二极管的结构解释二极管的工作原理探讨二极管的主要参数与规格第三章:双极型晶体管(BJT)3.1 BJT的结构与分类解释BJT的概念介绍BJT的结构与分类分析BJT的运作原理3.2 BJT的特性与参数探讨BJT的输入输出特性讨论BJT的主要参数与规格分析BJT的应用领域第四章:场效应晶体管(FET)4.1 FET的结构与分类解释FET的概念介绍FET的结构与分类分析FET的运作原理4.2 FET的特性与参数探讨FET的输入输出特性讨论FET的主要参数与规格分析FET的应用领域第五章:半导体器件的应用5.1 半导体二极管的应用介绍半导体二极管的应用领域分析二极管在不同电路中的应用实例5.2 半导体晶体管的应用解释半导体晶体管在不同电路中的应用探讨晶体管在不同电子设备中的应用实例5.3 半导体集成电路的应用介绍半导体集成电路的概念分析集成电路在不同电子设备中的应用实例第六章:半导体存储器6.1 存储器概述解释存储器的作用与分类探讨半导体存储器的发展历程分析存储器的主要参数6.2 RAM与ROM介绍RAM(随机存取存储器)的原理与应用解释ROM(只读存储器)的原理与应用分析RAM与ROM的区别与联系6.3 闪存与固态硬盘探讨闪存(NAND/NOR)的原理与应用介绍固态硬盘(SSD)的结构与工作原理分析固态硬盘的优势与挑战第七章:太阳能电池与光电子器件7.1 太阳能电池解释太阳能电池的原理与分类探讨太阳能电池的优缺点分析太阳能电池的应用领域7.2 光电子器件解释光电子器件的分类与应用探讨光电子器件的发展趋势第八章:半导体传感器8.1 传感器的基本概念解释传感器的作用与分类探讨传感器的基本原理分析传感器的主要参数8.2 常见半导体传感器介绍常见的半导体传感器类型解释半导体传感器的原理与应用分析半导体传感器的优势与挑战8.3 传感器在物联网中的应用探讨物联网与传感器的关系介绍传感器在物联网应用中的实例分析物联网传感器的发展趋势第九章:半导体激光器与光通信9.1 半导体激光器解释半导体激光器的工作原理探讨半导体激光器的特性与参数分析半导体激光器的应用领域9.2 光通信原理解释光纤通信与无线光通信的区别探讨光通信系统的组成与工作原理9.3 光通信器件与技术介绍光通信器件的类型与功能解释光通信技术的分类与发展趋势分析光通信在现代通信系统中的应用第十章:半导体技术与未来趋势10.1 摩尔定律与半导体技术发展解释摩尔定律的概念与意义探讨摩尔定律对半导体技术发展的影响分析半导体技术的未来发展趋势10.2 纳米技术与半导体器件介绍纳米技术在半导体器件中的应用解释纳米半导体器件的特性与优势探讨纳米半导体器件的未来发展趋势10.3 新兴半导体技术与应用分析新兴半导体技术的种类与应用领域探讨量子计算、生物半导体等未来技术的发展前景预测半导体技术与产业的未来发展趋势重点和难点解析重点环节一:半导体的定义与特性重点环节二:半导体的分类与制备重点环节三:PN结与二极管重点环节四:双极型晶体管(BJT)重点环节五:场效应晶体管(FET)重点环节六:半导体存储器重点环节七:太阳能电池与光电子器件重点环节八:半导体传感器重点环节九:半导体激光器与光通信重点环节十:半导体技术与未来趋势全文总结和概括:本文主要对半导体的基础知识进行了深入的解析,包括半导体材料的分类与特性、半导体的制备方法、PN结与二极管、双极型晶体管(BJT)、场效应晶体管(FET)、半导体存储器、太阳能电池与光电子器件、半导体传感器、半导体激光器与光通信以及半导体技术与未来趋势等内容进行了详细的阐述。
半导体器件物理教案课件PPT第一章:半导体物理基础知识1.1 半导体的基本概念介绍半导体的定义、特点和分类解释n型和p型半导体的概念1.2 能带理论介绍能带的概念和能带结构解释导带和价带的概念讲解半导体的导电机制第二章:半导体材料与制备2.1 半导体材料介绍常见的半导体材料,如硅、锗、砷化镓等解释半导体材料的制备方法,如拉晶、外延等2.2 半导体器件的制备工艺介绍半导体器件的制备工艺,如掺杂、氧化、光刻等解释各种制备工艺的作用和重要性第三章:半导体器件的基本原理3.1 晶体管的基本原理介绍晶体管的结构和工作原理解释n型和p型晶体管的概念讲解晶体管的导电特性3.2 半导体二极管的基本原理介绍半导体二极管的结构和工作原理解释PN结的概念和特性讲解二极管的导电特性第四章:半导体器件的特性与测量4.1 晶体管的特性介绍晶体管的主要参数,如电流放大倍数、截止电流等解释晶体管的转移特性、输出特性和开关特性4.2 半导体二极管的特性介绍半导体二极管的主要参数,如正向压降、反向漏电流等解释二极管的伏安特性、温度特性和频率特性第五章:半导体器件的应用5.1 晶体管的应用介绍晶体管在放大电路、开关电路和模拟电路中的应用解释晶体管在不同应用电路中的作用和性能要求5.2 半导体二极管的应用介绍半导体二极管在整流电路、滤波电路和稳压电路中的应用解释二极管在不同应用电路中的作用和性能要求第六章:场效应晶体管(FET)6.1 FET的基本结构和工作原理介绍FET的结构类型,包括MOSFET、JFET等解释FET的工作原理和导电机制讲解FET的输入阻抗和输出阻抗6.2 FET的特性介绍FET的主要参数,如饱和电流、跨导、漏极电流等解释FET的转移特性、输出特性和开关特性分析FET的静态和动态特性第七章:双极型晶体管(BJT)7.1 BJT的基本结构和工作原理介绍BJT的结构类型,包括NPN型和PNP型解释BJT的工作原理和导电机制讲解BJT的输入阻抗和输出阻抗7.2 BJT的特性介绍BJT的主要参数,如放大倍数、截止电流、饱和电流等解释BJT的转移特性、输出特性和开关特性分析BJT的静态和动态特性第八章:半导体存储器8.1 动态随机存储器(DRAM)介绍DRAM的基本结构和工作原理解释DRAM的存储原理和读写过程分析DRAM的性能特点和应用领域8.2 静态随机存储器(SRAM)介绍SRAM的基本结构和工作原理解释SRAM的存储原理和读写过程分析SRAM的性能特点和应用领域第九章:半导体集成电路9.1 集成电路的基本概念介绍集成电路的定义、分类和特点解释集成电路的制造工艺和封装方式9.2 集成电路的设计与应用介绍集成电路的设计方法和流程分析集成电路在电子设备中的应用和性能要求第十章:半导体器件的测试与故障诊断10.1 半导体器件的测试方法介绍半导体器件测试的基本原理和方法解释半导体器件测试仪器和测试电路10.2 半导体器件的故障诊断介绍半导体器件故障的类型和原因讲解半导体器件故障诊断的方法和步骤第十一章:功率半导体器件11.1 功率二极管和晶闸管介绍功率二极管和晶闸管的结构、原理和特性分析功率二极管和晶闸管在电力电子设备中的应用11.2 功率MOSFET和IGBT介绍功率MOSFET和IGBT的结构、原理和特性分析功率MOSFET和IGBT在电力电子设备中的应用第十二章:光电器件12.1 光电二极管和太阳能电池介绍光电二极管和太阳能电池的结构、原理和特性分析光电二极管和太阳能电池在光电子设备中的应用12.2 光电晶体管和光开关介绍光电晶体管和光开关的结构、原理和特性分析光电晶体管和光开关在光电子设备中的应用第十三章:半导体传感器13.1 温度传感器和压力传感器介绍温度传感器和压力传感器的结构、原理和特性分析温度传感器和压力传感器在电子测量中的应用13.2 光传感器和磁传感器介绍光传感器和磁传感器的结构、原理和特性分析光传感器和磁传感器在电子测量中的应用第十四章:半导体器件的可靠性14.1 半导体器件的可靠性基本概念介绍半导体器件可靠性的定义、指标和分类解释半导体器件可靠性的重要性14.2 半导体器件可靠性的影响因素分析半导体器件可靠性受材料、工艺、封装等因素的影响14.3 提高半导体器件可靠性的方法介绍提高半导体器件可靠性的设计和工艺措施第十五章:半导体器件的发展趋势15.1 纳米晶体管和新型存储器介绍纳米晶体管和新型存储器的研究进展和应用前景15.2 新型半导体材料和器件介绍石墨烯、碳纳米管等新型半导体材料和器件的研究进展和应用前景15.3 半导体器件技术的未来发展趋势分析半导体器件技术的未来发展趋势和挑战重点和难点解析重点:1. 半导体的基本概念、分类和特点。
半导体器件基础教案课程目标:通过本课程的学习,学生将能够掌握半导体器件的基本原理和应用,了解其在电子设备中的重要性,培养学生的分析和解决问题的能力。
教学内容:第一节:半导体材料1.硅和锗的基本性质2.p型和n型半导体的特点3.禁带宽度和载流子浓度的关系第二节:pn结和二极管1. pn结的形成与特点2. pn结的正向和反向偏置3.二极管的工作原理和特性曲线4.常见二极管应用:整流、电压稳定器等第三节:晶体管和放大器1.晶体管的结构和工作原理2. npn型和pnp型晶体管的区别3.放大器的基本原理4.常见晶体管放大器电路的设计和应用第四节:场效应管和操作放大器1.MOSFET的特点和工作原理2.MOSFET与JFET的区别3.操作放大器的组成和特性4.操作放大器的基本应用电路:反相放大器、非反相放大器等第五节:光电子器件1.光电二极管和光敏电阻的工作原理和特性2.发光二极管和激光二极管的工作原理和应用3.光电晶体管和光耦合器件的工作原理和应用教学方法:1.演讲教学:介绍半导体器件的基本原理和概念,引导学生理解。
2.实验演示:展示实验装置,演示相关实验操作及结果分析,加深学生对器件原理的理解。
3.小组讨论:组织学生就特定话题进行讨论,激发学生思维,培养学生分析和解决问题的能力。
4.案例分析:引用实际案例,分析器件在电子设备中的应用,并结合实际问题进行讨论,加深学生对理论的理解和应用能力。
教学辅助:1.教材:选用适合初学者的半导体器件基础教材,遵循课程目标和内容。
2.实验设备:提供基本的半导体器件实验设备,如二极管、晶体管等,以进行相关实验演示。
3.多媒体教学:准备课件,包括图表、实验操作演示视频等,用于清晰展示器件的结构和原理。
评估方式:1.课堂互动:结合课堂准备情况、提问回答情况等,评估学生的知识掌握程度和思维能力。
2.实验报告:要求学生根据实验内容和结果撰写实验报告,评估学生对实验原理的理解和实验操作能力。
《电子技术基础》1-1半导体的基本知识教学设计1教学重点1.半导体的导电特性;2.两种杂质半导体的形成、特点。
教学难点 1. PN结的形成及其特点。
教学资源及手段多媒体课件;智慧树平台;YN智慧校园;钉钉;智慧黑板以及彩色粉笔。
教学方法讲授法;提问法;练习法;演示法;讨论法;自主学习法。
教学环节教学内容及过程课前教学内容教师活动学生活动设计意图1.通过智慧树平台,让学生利用微课视频提前预习教学内容;2.通过钉钉线上布置任务,让学生明确学习任务;3.通过钉钉线上提交课前预习情况及时调整课堂教学内容;4.准备电子课件、电子教案;课前,教师通过钉钉平台家校本功能发布预习任务;根据学生提交的课前学习任务完成情况,适时调整教学内容。
查看钉钉课前预习任务并按时提交,“智慧树”平台观看电子技术概述微课视频。
提升学生学习电子技术这门技术的兴趣,把握学生预习情况。
中复习旧知(2min) 准备上课:用YN智慧校园点名功能,进行签到;上次课内容的回顾本节课是电子技术基础的第一节课,可以直接新课导入,通过多媒体播放图片、实物展示等让学生在直观上感知电子技术的魅力,激发学生学习的好奇心。
把全班学生进行分组,对每个小组课前预习情况及完成率进行总结,并计入课堂考核。
教师提问,电子技术这门课的初步印象。
(提问法)分小组回答老师提出的问题,并互相评价每个小组回答的是否准确。
(讨论法)让学生对本门课程产生兴趣和认知2新课导入(5min)多媒体播放图片、微视频演示、实物观察让学生在直观上感知学习任务,激发学生学习的好奇心和求知欲。
YN智慧校园点名;视频演示、电路板实物演示。
(演示法)学生在YN智慧校园APP完成本节课考勤;观看视频、观察电路板的组成。
提高学生课堂注意力,激发学生学习兴趣。
新课讲解(32min)一、概述(5min)1.半导体(semiconductor)指常温下导电性能介于导体与绝缘体之间的材料。
常见的半导体材料有硅、锗、砷化镓等,硅是各种半导体材料应用中最具有影响力的一种。
半导体物理与器件教案一、课程简介本课程旨在介绍半导体物理与器件的基本概念、理论与应用。
通过学习本课程,学生将了解半导体物理的基本原理,掌握常见的半导体器件的工作原理和特性,为深入研究和应用领域奠定基础。
二、教学目标1.掌握半导体物理的基本概念与原理;2.了解常见的半导体器件的结构、工作原理和特性;3.熟悉半导体器件的制备工艺和性能测试方法;4.能够分析和解决半导体器件相关问题;5.培养学生的动手实践能力和团队合作意识。
三、教学内容1. 半导体物理基础•半导体的基本概念与性质;•半导体材料的禁带宽度与导电性;•共价键与导电机理。
2. PN结与二极管•PN结的形成与特性;•二极管的工作原理;•二极管的电流-电压特性。
3. 势垒与电容•势垒高度与势垒宽度的关系;•势垒电容与反向偏置;•PN结的充放电过程。
4. 功率器件•理想二极管的特性与应用;•肖特基二极管的特性与应用;•功率二极管的特性与应用。
5. 晶体管•双极型晶体管的工作原理与特性;•型号代号与参数标识;•三极型晶体管的工作与特性。
6. 场效应晶体管•MOS结构与工作原理;•MOSFET的特性与应用;•IGBT的特性与应用。
7. 光电器件•光电二极管的工作原理与特性;•光敏电阻的工作原理与特性;•光电导的工作原理与特性。
四、教学方法1.理论讲解:通过教师授课的形式讲解半导体物理与器件的基本概念与原理;2.实验实践:设计实验让学生操作和观察实际的半导体器件,巩固理论知识;3.讨论与交流:鼓励学生积极参与讨论,提问与回答问题,促进彼此交流与学习;4.团队合作:通过小组讨论、任务分工等方式培养学生的团队合作意识和解决问题的能力;5.多媒体辅助:运用多媒体展示课件、实验视频等辅助材料,提升教学效果。
五、教学评价1.平时成绩:包括作业完成情况、实验报告、参与度等;2.期中考试:测试学生掌握的基础知识和理解能力;3.期末考试:测试学生对全课程内容的整体掌握和应用能力;4.课堂表现:学生的发言和表达能力、提问质量等;六、参考教材1.高等学校电子类教材编写组. 半导体物理与器件[M].高等教育出版社, 2008.2.张勃. 半导体物理学[M]. 科学出版社, 2012.3.曹健. 半导体物理导论[M]. 电子工业出版社, 2015.七、教学时长•总学时:36学时•理论学时:24学时•实验学时:12学时以上就是《半导体物理与器件》教案的大致内容,希望能够帮助您进行教学设计和准备教学材料。
半导体器件物理一、引言1. 了解半导体的基本概念和性质2. 了解半导体器件在电子技术中的应用3. 掌握半导体器件的工作原理和性能二、半导体物理基础1. 半导体的晶体结构和能带结构2. 载流子(电子、空穴)的产生和复合3. 载流子的迁移率和浓度三、二极管1. 二极管的结构和工作原理2. 二极管的伏安特性曲线3. 二极管的主要参数(正向压降、反向击穿电压、最大整流电流等)4. 二极管的应用(整流、滤波、稳压等)四、晶体管1. 晶体管的结构和工作原理2. 晶体管的放大特性3. 晶体管的驱动和饱和特性4. 晶体管的主要参数(电流放大倍数、截止电流、饱和电流等)5. 晶体管的应用(放大、开关、稳压等)五、场效应晶体管1. 场效应晶体管的结构和工作原理2. 场效应晶体管的特性曲线3. 场效应晶体管的主要参数(漏极电流、栅极电压等)4. 场效应晶体管的应用(放大、开关、稳压等)六、晶闸管1. 晶闸管的结构和工作原理2. 晶闸管的伏安特性曲线3. 晶闸管的主要参数(正向阻断电压、反向阻断电压、正向电流等)4. 晶闸管的应用(可控整流、交流调压、开关等)七、GTO和GRT1. GTO(晶闸管可控硅)的结构和工作原理2. GRT(晶闸管可控栅极晶体管)的结构和工作原理3. GTO和GRT的主要参数和特性4. GTO和GRT的应用(大功率开关、电力系统控制等)八、IGBT1. IGBT(绝缘栅双极型晶体管)的结构和工作原理2. IGBT的伏安特性曲线和开关特性3. IGBT的主要参数(集电极电流、阻断电压等)4. IGBT的应用(电力电子设备、变频调速等)九、功率集成电路1. 功率集成电路的概念和发展历程2. 功率集成电路的分类和结构3. 功率集成电路的主要参数和性能4. 功率集成电路的应用(电源管理、无线通信等)十、半导体器件的发展趋势1. 新型半导体材料的研究和应用2. 纳米尺度半导体器件的研究和开发3. 半导体器件的集成度和性能提升4. 半导体器件在新能源、物联网等领域的应用前景重点和难点解析一、半导体物理基础难点解析:能带结构的直观理解,载流子产生和复合的机制,迁移率的计算和应用。
《半导体器件应用》教案一、课程概述本教案旨在介绍半导体器件应用的基本概念、原理和实际应用。
通过本课程的研究,学生将了解不同类型的半导体器件、其工作原理及在各个领域的应用。
二、教学目标1. 理解半导体器件的基本概念和分类;2. 掌握常见半导体器件的工作原理;3. 研究半导体器件在电子、通信、能源等领域的实际应用;4. 培养学生的分析和解决问题的能力;5. 培养学生的实验操作和实践应用能力。
三、教学内容和进度安排第一讲:半导体器件概述- 半导体材料特性和基本概念- 半导体器件分类和特点第二讲:二极管和三极管- 二极管的结构、性质和应用- 三极管的基本结构和工作原理第三讲:场效应晶体管- MOSFET和JFET的原理和特点- 场效应晶体管的应用领域第四讲:光电器件- 光电二极管和光敏电阻的工作原理- 光电器件在光通信和能源领域的应用第五讲:功率器件- 功率二极管和功率晶体管的特点和应用- 功率MOSFET的结构和工作原理第六讲:半导体集成电路- 集成电路的基本概念和分类- 逻辑门电路和模拟电路的设计和实现四、教学方法1. 授课讲解:通过系统的讲解,向学生介绍半导体器件的基本原理和应用。
2. 实验操作:组织学生参与实验,锻炼他们的动手操作能力,并加深对理论知识的理解。
3. 讨论与互动:组织课堂讨论和小组活动,促进学生之间的互动和合作。
五、教学评估1. 平时表现:参与课堂讨论、完成实验报告等。
2. 期末考试:针对课程的理论知识和应用能力进行考核。
六、参考资料1. 《半导体物理与器件》(材料学科基础教材)2. 《半导体器件及其应用》(电子信息领域专业教材)3. 《集成电路设计与应用》(电子工程与自动化专业教材)。
第一章 常用半导体器件1.1 半导体基础知识1.1.1 本征半导体一、半导体1. 概念:导电能力介于导体和绝缘体之间。
2. 本征半导体:纯净的具有晶体结构的半导体。
二、本征半导体的晶体结构(图1.1.1)1. 晶格:晶体中的原子在空间形成排列整齐的点阵。
2. 共价键三、本征半导体中的两种载流子(图1.1.2)1. 本征激发:在热激发下产生自由电子和空穴对的现象。
2. 空穴:讲解其导电方式;3. 自由电子4. 复合:自由电子与空穴相遇,相互消失。
5. 载流子:运载电荷的粒子。
四、本征半导体中载流子的浓度1. 动态平衡:载流子浓度在一定温度下,保持一定。
2. 载流子浓度公式:)2/(2/31kT E i i GO e T K p n -==自由电子、空穴浓度(cm-3),T 为热力学温度,k 为波耳兹曼常数(K eV /1063.85-⨯),E GO 为热力学零度时破坏共价键所需的能量(eV ),又称禁带宽度,K 1是与半导体材料载流子有效质量、有效能级密度有关的常量。
1.1.2 杂质半导体一、概念:通过扩散工艺,掺入了少量合适的杂质元素的半导体。
二、N 型半导体(图1.1.3)1. 形成:掺入少量的磷。
2. 多数载流子:自由电子3. 少数载流子:空穴4. 施主原子:提供电子的杂质原子。
三、P 型半导体(图1.1.4)1. 形成:掺入少量的硼。
2. 多数载流子:空穴3. 少数载流子:自由电子4. 受主原子:杂质原子中的空穴吸收电子。
5. 浓度:多子浓度近似等于所掺杂原子的浓度,而少子的浓度低,由本征激发形成,对温度敏感,影响半导体的性能。
1.1.3 PN 结一、PN 结的形成(图1.1.5)1. 扩散运动:多子从浓度高的地方向浓度低的地方运动。
2. 空间电荷区、耗尽层(忽视其中载流子的存在)3. 漂移运动:少子在电场力的作用下的运动。
在一定条件下,其与扩散运动动态平衡。
4. 对称结、不对称结:外部特性相同。
二、PN 结的单向导电性1. PN 结外加正向电压:导通状态(图1.1.6)正向接法、正向偏置,电阻R 的作用。
(解释为什么Uho 与PN 结导通时所表现的外部电压相反:PN 结的外部电压为U 即平时的0.7V ,而内电场的电压并不对PN 结的外部电压产生影响。
)2. PN 结外加反向电压:截止状态(图1.1.7)反向电压、反向偏置、反向接法。
形成漂移电流。
三、PN 结的电流方程1. 方程(表明PN 结所加端电压u 与流过它的电流i 的关系):)1(-=T U uS e I i qkT U T = q 为电子的电量。
2. 平衡状态下载流子浓度与内电场场强的关系:3. PN 结电流方程分析中的条件:4. 外加电压时PN 结电流与电压的关系:四、PN 结的伏安特性(图1.1.10)1. 正向特性、反向特性2. 反向击穿:齐纳击穿(高掺杂、耗尽层薄、形成很强电场、直接破坏共价键)、雪崩击穿(低掺杂、耗尽层较宽、少子加速漂移、碰撞)。
五、PN 结的电容效应1. 势垒电容:(图1.1.11)耗尽层宽窄变化所等效的电容,C b (电荷量随外加电压而增多或减少,这种现象与电容器的充放电过程相同)。
与结面积、耗尽层宽度、半导体介电常数及外加电压有关。
2. 扩散电容:(图1.1.12)(1) 平衡少子:PN 结处于平衡状态时的少子。
(2) 非平衡少子:PN 结处于正向偏置时,从P 区扩散到N 区的空穴和从N 区扩散到P 区的自由电子。
(3) 浓度梯度形成扩散电流,外加正向电压增大,浓度梯度增大,正向电流增大。
(4) 扩散电容:扩散区内,电荷的积累和释放过程与电容器充放电过程相同。
i越大、τ越大、U T 越小,Cd 就越大。
(5) 结电容d b j C C C += pF 级,对于低频忽略不计。
1.2 半导体二极管(几种外形)(图1.2.1)1.2.1 半导体二极管的几种常见结构(图1.2.2)一、点接触型:电流小、结电容小、工作频率高。
二、面接触型:合金工艺,结电容大、电流大、工作频率低,整流管。
三、平面型:扩散工艺,结面积可大可小。
四、符号1.2.2 二极管的伏安特性一、二极管的伏安特性1.二极管和PN结伏安特性的区别:存在体电阻及引线电阻,相同端电压下,电流小;存在表面漏电流,反向电流大。
2.伏安特性:开启电压(使二极管开始导通的临界电压)(图1.2.3)二、温度对二极管方案特性的影响1.温度升高时,正向特性曲线向左移,反向特性曲线向下移。
2.室温时,每升高1度,正向压降减小2~2.5mV;每升高10度,反向电流增大一倍。
1.2.3 二极管的主要参数一、最大整流电流I F:长期运行时,允许通过的最大正向平均电流。
二、最高反向工作电压U R:工作时,所允许外加的最大反向电压,通常为击穿电压的一半。
三、反向电流I R:未击穿时的反向电流。
越小,单向导电性越好;此值对温度敏感。
四、最高工作频率f M:上限频率,超过此值,结电容不能忽略。
1.2.4 二极管的等效电路一、二极管的等效电路:在一定条件下,能够模拟二极管特性的由线性元件所构成的电路。
一种建立在器件物理原理的基础上(复杂、适用范围宽),另一种根据器件外特性而构造(简单、用于近似分析)。
二、由伏安特性折线化得到的等效电路:(图1.2.4)1.理想二极管:注意符号2.正向导通时端电压为常量3.正向导通时端电压与电流成线性关系4.例1(图1.2.5)三种不同等效分析:(1)V远远大于U D,(2)U D变化范围很小,(3)接近实际情况。
5.例2(图1.2.6)三、二极管的微变等效电路(图1.2.7)(图1.2.8)(图1.2.9)动态电阻的公式推倒:1.2.5 稳压二极管一、概念:一种由硅材料制成的面接触型晶体二极管,其可以工作在反向击穿状态,在一定电流范围内,端电压几乎不变。
二、稳压管的伏安特性:(图1.2.10)三、稳压管的主要参数1.稳定电压U Z:反向击穿电压,具有分散性。
2.稳定电流I Z:稳压工作的最小电流。
3.额定功耗P ZM:稳定电压与最大稳定电流的乘积。
4.动态电阻r Z:稳压区的动态等效电阻。
5.温度系数α:温度每变化1度,稳压值的变化量。
小于4V为齐纳击穿,负温度系数;大于7V为雪崩击穿,正温度系数。
四、例(图1.2.11)1.2.6 其他类型二极管一、发光二极管(图1.2.12)可见光、不可见光、激光;红、绿、黄、橙等;开启电压大。
二、光电二极管(图1.2.13)远红外接受管,伏安特性(图1.2.14)光电流(光电二极管在反压下,受到光照而产生的电流)与光照度成线性关系。
三、例(图1.2.15)1.3 双极型晶体管双极型晶体管(BJT: Bipolar Junction Transistor ) 几种晶体管的常见外形(图1.3.1)1.3.1 晶体管的结构及类型(图1.3.2)一、构成方式:同一个硅片上制造出三个掺杂区域,并形成两个PN 结。
二、结构:1. 三个区域:基区(薄且掺杂浓度很低)、发射区(掺杂浓度很高)、集电区(结面积大);2. 三个电极:基极、发射极、集电极;3. 两个PN 结:集电结、发射结。
三、分类及符号:PNP 、NPN1.3.2 晶体管的电流放大作用一、放大:把微弱信号进行能量的放大,晶体管是放大电路的核心元件,控制能量的转换,将输入的微小变化不失真地放大输出,放大的对象是变化量。
二、基本共射放大电路(图1.3.3)1. 输入回路:输入信号所接入的基极-发射极回路;2. 输出回路:放大后的输出信号所在的集电极-发射极回路;3. 共射放大电路:发射极是两个回路的公共端;4. 放大条件:发射结正偏且集电结反偏;5. 放大作用:小的基极电流控制大的集电极电流。
三、晶体管内部载流子的运动(图1.3.4)分析条件0=∆I u1. 发射结加正向电压,扩散运动形成发射极电流I E ,空穴电流I EP 由于基区掺杂浓度很低,可以忽略不计;EP EN E I I I +=2. 扩散到基区的自由电子与空穴的复合运动形成电流I BN ;3. 集电结加反向电压,漂移运动形成集电极电流I C ,其中非平衡少子的漂移形成I CN ,平衡少子形成I CBO 。
4. 晶体管的电流分配关系:CBO CN C I I I +=, CBO BCBO EP BN B I I I I I I -'=-+=,C B E I I I +=四、晶体管的共射电流放大系数1. 共射直流电流放大系数:CBOB CBOC B CN I I I I I I +-='=β 2. 穿透电流I CEO :CEO B CBO B C I I I I I +=++=βββ)1( 基极开路时,集电极与发射极之间的电流;3. 集电结反向饱和电流I CBO :发射极开路时的I B 电流;4. 近似公式:B C I I β≈,B E I I )1(β+≈5. 共射交流电流放大系数:当有输入动态信号时,Bc i i ∆∆=β 6. 交直流放大系数之间的近似:若在动态信号作用时,交流放大系数基本不变,则有CEO B B B CEO B C C C I i I i I I i I i +∆+=∆++=∆+=)(βββ因为直流放大系数在线性区几乎不变,可以把动态部分看成是直流大小的变化,忽略穿透电流,有:ββ≈,放大系数一般取几十至一百多倍的管子,太小放大能力不强,太大性能不稳定;7. 共基直流电流放大系数:E CN I I =α, ααβ-=1, ββα+=1 8. 共基交流电流放大系数:E C i i ∆∆=α,αα≈1.3.3 晶体管的共射特性曲线一、输入特性曲线(图1.3.5)常数==CE uBE B u f i )(,解释曲线右移原因,与集电区收集电子的能力有关。
二、输出特性曲线(图1.3.6)常数==B I CE C u f i )((解释放大区曲线几乎平行于横轴的原因)1. 截止区:发射结电压小于开启电压,集电结反偏,穿透电流硅1uA ,锗几十uA ;2. 放大区:发射结正偏,集电结反偏,i B 和i C 成比例;3. 饱和区:双结正偏,i B 和i C 不成比例,临界饱和或临界放大状态(0=CB u )。
1.3.4 晶体管的主要参数一、直流参数1. 共射直流电流系数β2. 共基直流电流放大系数α3. 极间反向电流CBO I二、交流参数1. 共射交流电流放大系数β2. 共基交流电流放大系数α3. 特征频率T f :使β下降到1的信号频率。
三、极限参数(图1.3.7)1. 最大集电极耗散功率CM P ;2. 最大集电极电流CM I :使β明显减小的集电极电流值;3. 极间反向击穿电压:晶体管的某一电极开路时,另外两个电极间所允许加的最高反向电压,U CBO 几十伏到上千伏、 U CEO 、 U EBO 几伏以下。