6.3(2)运用完全平方公式因式分解[下学期]
- 格式:ppt
- 大小:381.00 KB
- 文档页数:18
因式分解的常用方法第一部分:方法介绍提取公因式法、运用公式法、分组分解法和十字相乘法. 一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.【知识要点】1.运用公式法:如果把科法公式反过来,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。
2.乘法公式逆变形(1)平方差公式:))((22b a b a b a -+=-(2)完全平方公式:222222)(2,)(2b a b ab a b a b ab a -=+-+=++ 3.把一个多项式分解因式,一般可按下列步骤进行: (1)如果多项式的各项有公因式,那么先提公因式;(2)如果多项式没有公因式,那么可以尝试运用公式来分解; (3)如果上述方法不能分解,那么可以尝试用。
思维导航:运用公式法是分解因式的常用方法,运用公式法分解因式的思路主要有以下几种情况: 一、直接用公式:当所给的多项式是平方差或完全平方式时,可以直接利用公式法分解因式。
例1、 分解因式:(1)x 2-9 (2)9x 2-6x+1二、提公因式后用公式:当所给的多项式中有公因式时,一般要先提公因式,然后再看是否能利用公式法。
例2、 分解因式:(1)x 5y 3-x 3y 5 (2)4x 3y+4x 2y 2+xy 3三、系数变换后用公式:当所给的多项式不能直接利用公式法分解因式,往往需要调整系数,转换为符合公式的形式,然后再利用公式法分解.例3、 分解因式:(1)4x 2-25y 2 (2)4x 2-12xy 2+9y 4四、指数变换后用公式:通过指数的变换将多项式转换为平方差或完全平方式的形式,然后利公式法分解因式,应注意分解到每个因式都不能再分解为止.例4、 分解因式:(1)x 4-81y 4 (2)16x 4-72x 2y 2+81y 4五、重新排列后用公式:当所给的多项式不能直接看出是否可用公式法分解时,可以将所给多项式交换位置,重新排列,然后再利用公式。
苏科版数学七年级下册《用完全平方公式因式分解》说课稿一. 教材分析《苏科版数学七年级下册》中的《用完全平方公式因式分解》一节,是在学生已经掌握了有理数的乘方、平方差公式和完全平方公式的知识基础上进行讲解的。
本节内容主要让学生掌握利用完全平方公式进行因式分解的方法,培养学生解决实际问题的能力。
教材通过例题和练习题的安排,使学生能够逐步理解和掌握完全平方公式因式分解的应用。
二. 学情分析面对七年级的学生,他们在数学学习方面已经有了一定的基础,对于平方差公式和完全平方公式已经有了一定的了解。
但是,学生在运用完全平方公式进行因式分解时,可能会出现对公式记忆不牢、理解不透彻、应用不熟练的问题。
因此,在教学过程中,我需要关注学生的学习需求,针对性地进行教学,帮助学生巩固知识,提高解题能力。
三. 说教学目标1.知识与技能目标:使学生掌握完全平方公式,并能运用完全平方公式进行因式分解。
2.过程与方法目标:通过合作交流、探索发现,培养学生运用完全平方公式解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 说教学重难点1.教学重点:完全平方公式的记忆和应用。
2.教学难点:如何引导学生发现完全平方公式的内涵,以及如何灵活运用完全平方公式解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作交流法、探究发现法等,引导学生主动参与学习,提高学生的学习效果。
2.教学手段:利用多媒体课件、黑板等教学工具,直观展示教学内容,帮助学生理解和记忆。
六. 说教学过程1.导入新课:通过复习平方差公式,引出完全平方公式,激发学生的学习兴趣。
2.讲解新课:讲解完全平方公式的推导过程,让学生理解并记忆完全平方公式。
3.例题讲解:通过典型例题,讲解如何利用完全平方公式进行因式分解,引导学生掌握解题方法。
4.练习巩固:安排练习题,让学生运用完全平方公式进行因式分解,巩固所学知识。
5.拓展提高:引导学生发现完全平方公式的内涵,探讨如何灵活运用完全平方公式解决实际问题。
14。
3.2 《用完全平方公式因式分解》教学设计【设计理念】因式分解是学生进一步学习数学不可或缺的基础知识和基本技能。
本节课以培养学生熟练运用完全平方公式因式分解,以反复练习促进此方法的熟练掌握,以老师讲解例题与方法,学生多多练习为具体的教学指导思想.一、教材分析本节的内容主要是用完全平方公式来因式分解.因式分解是整式的一种重要的恒等变形,它和整式的乘法,尤其是多项式的乘法关系十分密切。
因式分解的几种基本方法都是直接依据整式乘法的各个法则和乘法公式。
完全平方公式是一种重要的因式分解的方法,学好用完全平方公式因式分解,是学生进一步学习数学不可或缺的工具。
二、学情分析在知识上:学生在学习用完全平方公式因式分解之前,已经学习了用平方差公式因式分解.这两种方法都是整式乘法的逆运用,所以应先复习整式乘法内容,再学习用公式法分解因式,可以加强学生对公式的熟练使用。
在思想上:学生个体有所差异,所以应准备一些难度大的题目,以便一些做得快的学生做。
另外,平方差公式与完全平方公式都有平方项,容易混淆,讲解时应加以区分。
三、教学目标1、知识目标:要求学生掌握完全平方公式,并能熟练运用完全平方公式分解因式,并能区分完全平方公式以及平方差公式。
2、能力目标:要求学生通过综合运用提公因式法、完全平方公式分解因式,进一步培养学生的观察和联想能力.通过对完全平方公式的逆向变形及将一个整式看做“元”进行分解,发展学生的观察、类比、归纳、预见等能力,进一步体会换元思想,提高处理数学问题的技能.3、情感目标:让学生品尝成功的喜悦,从而激发其求知的热情.四、教学重难点1、重点:用完全平方公式因式分解。
2、难点:例4的分解和化简过程较为复杂,要求用换元的思想;能否很好区分平方差公式和完全平方公式。
五、教学方法教法:讲授法学法:探究学习法六、教学过程(1)复习提问:我们已经学了哪些因式分解的方法?练一练:因式分解1。
a3b-ab32. m2(16x—y)+n2(y—16x)3。
运用公式法—完全平方公式(2)教学目标1.会把多项式经过适当变形,成为完全平方式的形式,能较熟练地运用完全平方公式把多项式分解因式;2.通过综合运用提取公因式法、平方差公式和完全平方公式把多项式因式分解,进一步提高学生综合运用知识解决问题的能力.教学重点和难点重点:把多项式通过适当的代换、变形转化为完全平方式,运用完全平方公式分解因式.难点:综合运用多种方法把多项式因式分解.教学过程设计一、导入新课问:什么叫完全平方式?试举例加以说明.答:形如a2±2ab+b2的式子叫做完全平方式,例如多项式9x2-12xy+4y2就是一个完全平方式.问:多项式-x2-4y2+4xy是否符合完全平方式的结构特点?这样的多项式能否进行因式分解?这节课我们就要解决这个问题.二、新课例1 把-x2-4y2+4xy分解因式.分析:这个多项式的两个平方项的符号均为负,因此不符合完全平方式的形式,不能直接运用完全平方公式把它因式分解,如果把它的各项均提出一个负号,那么括号内的多项式就符合完全平方式的结构特点,从而可以运用完全平方公式分解因式.解-x2+4y2+4xy=(x2-4xy+4y2)=-[x2-2·2x·y+(2y) 2]=-(x-2y) 2.指出:1.在一个多项式中,两个平方项的符号必须相同,才有可能成为完全平方式.2.在对类似例1的多项式因式分解时,一般都是先把完全平方项的符号变为正的,也就是先把负号提到括号外面,然后再把括号内的多项式运用完全平方公式因式分解.例2 把(x+y) 2-6(x+y)+9分解因式.分析:多项式中的两个平方项分别是(x+y)2和32,另一项6(x+y)=2·(x+y)·3,符合完全平方式的形式,这里“x+y”相当于完全平方式中的a,“3”相当于相当于公式中的b,设a=x+y,我们可以把原式变为(x+y) 2-6(x+y)+9=a2-6a+9,因而能运用完全平方公式,得到(a-3) 2.在解题过程中,可以把代换这一步骤省略.解 (x+y) 2-6(x+y)+9=(x+y) 2-2(x+y)·3+32=(x+y-3) 2.指出:把较复杂的多项式(x+y) 2-6(x+y)2+9,通过代换a=x+y,使原多项式转化为关于字母a的二次三项式a2-6a+9,从而可以用完全平方公式分解因式,这种通过代换解决问题的方法是数学中经常用到的一种重要的思想方法.例3 把m2+10m(a+b)+25(a+b) 2分解因式.问:观察和分析这个多项式,是否符合完全平方式形式?为什么?答:可以把m2+10m(a+b)+25(a+b)2写成m2+2m·5(a+b)+[5(a+b)]2.这里m相当于完全平方式里的a,5(a+b)相当于完全平方式里的b.原式是完全平方式,可以运用完全平方公式因式分解.解 m2+10m(a+b)+25(a+b) 2=m2+2m·5(a+b)+[5(a+b)] 2=[m+5(a+b)] 2=(m+5a+5b) 2.指出:通过以上各例题可以看到,在给出的多项式中,两个平方项可以是单项式包( 数),也可以是多项式.例4 把下列各式分解因式:(1)3ax2+6axy+3ay2;(2)81m4-72m2n2+16n4.对于(1),请同学观察和分析,这个多项式的结构有什么特点?怎样分解因式?答:这个多项式的各项都有公因式3a,可以先提出,即3ax2+6axy+3ay2=3a(x2+2xy+y2).括号内的多项式是一个完全平方式,可以用完全平方公式因式分解.对于(2),结合这个多项式的结构特点,怎样分解因式?答:所给的多项式是三项式,其中第一、三项可以变形为平方项,即81m4=(9m2) 2,16n4=(4n2) 2,中间项72m2n2=2·9m2·4n2,所以这个多项式符合完全平方式形式,因此可以运用完全平方公式因式分解.解(1)3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y) 2.指出:如果多项式的各项有公因式,应该先提出这个公因式,再进一步分解因式.(2)81m4-72m2n2+16n4=(9m2) 2-2·9m2·4n2+(4n2) 2=(9m2-4n2) 2.问:做到这一步还能不能继续再分解?答:括号内的多项式是平方差形式,可以运用平方差公式分解因式.原式=(9m2-4n2) 2=[(3m) 2-(2n) 2] 2=[(3m+2n)(3m-2n)] 2=(3m+2n) 2 (3m-2n) 2.指出:在把多项式因式分解时,应把多项式分解到不能再分解为止.三、课堂练习把下列各式分解因式:(1)(x+y) 2-10(x+y)+25;(2)-2xy-x2-y2;(3)ax2+2a2x+a3;(4)-a2c2-c4+2ac3;(5)(a+b) 2-16(a+b)+64;(6)(x2+2x) 2+2(x2+2x)+1;(7)(m2-6) 2 (m2-6)+9;(8)a4-8a2b2+16b4.答案:(1)(x+y-5) 2;(2)-(x+y) 2;(3)a(x+a) 2;(4)-c2 (a-c) 2; (5)(a+b-8) 2; (6)(x+1)4;(7)(m+3) 2 (m-3) 2;(8)(a+2b) 2 (a-2b) 2.四、小结1.当给出的多项式的结构比较复杂时,不能直接看出是否为完全平方式的形式,可以通过代换的方法或经过适当的变形(如添括号),把原多项式化为完全平方式.2.把一个多项式因式分解,首先观察这个多项式的特点,选用适当的方法因式分解.当所给的多项式的各项有公因式时,应先提公因式;当一个多项式的两个平方项都含有负号时,先提出负号,使括号内的多项式的平方项变为正号;当多项式是一个关于某个因式的四次三项式,可以通过代换,把这个多项式转化为二次三项式.通过这些变换,把多项式变为完全平方式,再进行因式分解.五、作业把下列各式分解因式:(1)(x+y) 2+6(x+y)+9;(2)a2-2a(b+c) 2+(b+c) 4;(3)4-12(x-y)+9(x-y) 2;(4)(m+n) 2+4m(m+n)+4m2;(5)2xy-x2-y2;(6)4xy2-4x2y-y3;(7)3-6x+3x2; (8)-a+2a2-a3;(9)-4m2 (a+b) 2-12mn(a+b)-9n2; (10)(x+y) 2-4(x+y)(p-q)+4(p-q) 2.答案:(1)(x+y+3) 2;(2)(a-b-c) 2;(3)(2-3x+3y) 2;(4)(3m+n) 2; (5)-(x-y) 2;(6)-y(2x-y) 2;(7)3(1-x) 2; (8)-a(1-a) 2;(9)-(2ma+2mb+3n) 2;(10)(x+y-2p+2q) 2.课堂教学设计说明1.通过设辅助元进行代换的方法,把例2中的多项式化归为一个完全平方式,从而运用完全平方公式把原多项式因式分解,从中向学生渗透化归的思想方法,即把一个未知的、复杂的、繁难的问题,归结到已知的、简单的、容易解决的问题中去,最终求得问题的解决. 这也是数学中解决问题的一种思路,从而可以培养学生在解决数学问题时的思维的目的性、方向性和主法的模式化.2.学生掌握了运用完全平方公式、平方差公式和提取公因式法把多项式因式分解,就有条件进行综合应用训练.在教学设计中通过例4和课堂练习,引导学生根据所给的多项式的结构特点,选取不同的方法把多项式因式分解,既巩固了所学的基础知识(如三种因式分解的基本方法和添括号法则等),又培养了学生综合运用多种方法解决问题的能力.。
因式分解——完全平方公式
完全平方公式(Quadratic Formula),是一类中学数学问题,它用来求解格式为ax2+bx+c=0,a≠0 的二次方程的根(即x)的一种方法。
它的公式是:
x1 = [-b+√(b2-4ac)]/2a;
x2 = [-b-√(b2-4ac)]/2a。
二、完全平方分解
完全平方分解是一种方法对一个数进行因式分解,以求得它最原始的因式。
它让我们将一个数分解到最简单的形式,比如n²或者n²+2n+1、常见的完全平方分解公式如下:
a² +2ab +b² = (a+b)²;
a² -2ab +b² = (a-b)²;
a² +2ma + m²= (a+m)²。
它可以用于分解多项式,因为它可以有效地将多个项分解成一个项并求得它们的乘积;如果需要相减,完全平方分解也可以将一个含有两个负号的多项式分解成两部分,使其易于求和。
完全平方分解的步骤如下:
步骤一:将原式拆分成平方项的和;
步骤二:比较、选择两个数,使其和等于未被拆分的系数;
步骤三:选出两个数的积,使其和等于已被拆分的平方项;
步骤四:将拆分的平方项的和写成完全平方式;
步骤五:最后,将原式分解为完全平方式形式。
示例:
令x²-4x+4=0。
步骤一:将原式拆分成平方项的和,即x²=4x-4;
步骤二:比较、选择两个数,使其和等于未被拆分的系数;x可以选择2,4;。