绞吸式开采系统提升泵固液两相流的数值分析
- 格式:pdf
- 大小:945.88 KB
- 文档页数:6
水煤浆离心泵内固液两相流场的数值模拟研究的开题报告一、选题的背景和意义水煤浆是一种含有一定浓度煤粉的水溶液,在燃烧过程中可以代替部分固体燃料,从而降低环保和成本压力。
水煤浆离心泵作为水煤浆输送系统的核心部件,在输送过程中扮演着至关重要的角色。
然而,由于水煤浆离心泵中存在固体颗粒,这些颗粒的存在对泵的性能造成了影响,影响包括流量、压力、泵头等方面,使得泵的使用寿命缩短,降低其传输效率以及其可靠性,制约了水煤浆输送技术进一步发展。
因此,开展水煤浆离心泵内固液两相流场的数值模拟研究,对于提高水煤浆水平传输的效率和可靠性,具有重要意义。
二、研究现状和进展目前针对水煤浆离心泵内固液两相流场的研究主要集中在两个方面:1、数值模拟方法的发展。
数值模拟方法包括基于欧拉数学模型的CFD方法和基于拉格朗日数学模型的DEM方法。
其中CFD方法主要研究流体相的运动规律,难以处理颗粒相的运动规律;DEM方法主要研究颗粒相的运动规律,但忽略了流体相的影响。
因此,目前常常采用耦合CFD-DEM方法对水煤浆离心泵内固液两相流场进行模拟。
2、模拟结果的验证与优化。
模拟结果的验证主要通过实验方法进行,主要包括高速摄影技术、激光多普勒测速技术以及压力测量技术等。
通过对模拟结果和实验结果进行对比分析,对水煤浆离心泵的结构参数和工作参数进行优化,提高其传输效率和可靠性。
三、研究内容与方法本文拟采用耦合CFD-DEM方法,数值模拟水煤浆离心泵内固液两相流场。
主要研究内容包括:1、水煤浆离心泵内部流动场的分析与优化。
分析水煤浆离心泵内部流动规律,通过调整叶轮和泵壳的结构参数以及水煤浆输送的工作参数,优化泵的结构和工作条件,提高其传输效率和可靠性。
2、颗粒相的运动规律和沉积规律的研究。
研究颗粒相的运动规律,探究颗粒相在离心泵内的沉积规律以及对流体相的影响。
3、实验与模拟结果的对比分析。
通过高速摄影技术、激光多普勒测速技术以及压力测量技术等,对模拟结果进行验证,并与实验结果进行对比分析,验证模拟方法的可靠性和优化效果。
多级矿用泵的固液两相流数值计算工作面尾缘处的流动分离有明显的抑制作用,一定程度上可以提高扬程。
两相流数值计算中,叶轮和导叶中的静压、相对速度、流线等物理量呈中心对称分布,与单相数值计算相比,粒子的存在没有从根本上改变物理量的分布规律。
一、引言矿用潜水电泵是将泵和电机连成一体,共同潜入水中工作的机组。
矿用潜水泵实际抽送的是固液混合的两相流介质[1-2],而传统矿用潜水泵的水力设计大多是建立在单相流理论上的经验设计。
由于实际应用中输送的介质为固液混合的二相流体,造成了单相流理论设计的矿用潜水泵存在运行效率低、寿命短等问题。
由于固液两相流泵抽送介质的千差万别,两相流流动的问题十分复杂。
奥布雷恩在1937年通过大量的实验研究,提出了砂水混合物在叶轮内运动的物理模型。
张维聚、马振宗、陈涟等分别通过理论分析和实验究探讨了固体颗粒的浓度、比重、粒径分布及粘性对清水泵性能的影响。
梁跃等[3]通过二相流理论进行矿用潜水泵的设计,一定程度解决了粒子对二相流湍流结构的影响问题。
在这些研究的基础上,本文采用ANSYS CFX软件,对多级矿用潜水泵在设计点工况下进行数值计算,探索不同的泵进口固体相浓度、不同固体相颗粒大小对泵性能的影响,分析其两相流场的分布规律。
二、几何模型本文选取BQS20-30×06-55型矿用泵作为研究对象。
对该泵进行三维建模,并对其在设计点工况下进行数值计算,探索不同的泵进口固体相浓度、不同固体相颗粒大小对泵性能的影响并与试验结果进行对比,分析其两相流场的分布规律及其对泵外特性能的影响。
三、数值计算方法3.1控制方程本文在模拟固液两相流动过程中认为液相是连续流体相,固相作为离散固体相,采用Particle离散模型,即欧拉——欧拉多流体模型来描述固液两相流之间的相互作用。
控制方程对液相的湍流模型采用Standard k-ε双方程模型,固相采用零方程模型,在计算域进口基本相为水,第二相为离散固体。
固液两相流离心泵内部流场的数值模拟研究的开题报告
一、课题背景
液固两相流离心泵是一种广泛应用于化工、轻工、环保等领域的设备,其主要功能是将高纯度、低浓度的悬浮固体物料输送至目标容器中。
离心泵作为一种传动压力更大,精度更高的设备,广泛应用于化工生产过程的悬浮液、乳化液、填料液、废水等的管道式输送。
而开展基于数值模拟技术的固液两相流动研究,对于提高离心泵的性能和对机理的深入认识具有重要的意义。
二、研究目的
本次研究旨在通过对离心泵内部流场进行数值模拟,分析悬浮物料在叶轮内的运动规律,探究流场特性对离心泵性能的影响因素及其内在机理,在提高悬浮物料输送效率和泵的稳定性等方面进行探究。
三、研究内容
1.建立固液两相流离心泵的数学模型,探究泵的叶轮、前后盖板、泵壳等部位的紊流特性以及固相颗粒在泵内水动力场中的运动轨迹和浓度分布规律;
2.采用计算流体力学(CFD)方法对离心泵内部流场进行数值模拟,分析和对比不同工况下流场的变化规律,揭示流场特性对泵的性能的影响因素及机理;
3.结合实验数据,对模拟结果进行验证,评估离心泵的性能,提出提高泵性能的方案和措施。
四、研究意义
1.深入了解离心泵内部流场特性和固相颗粒在流场中的运动规律,从理论上认识固液两相流动和输送机制,为优化设备的基础研发提供理论依据;
2.科学分析和评估离心泵性能的变化规律,为工程实际应用提供参考,优化设计和工艺参数;
3.扩展离心泵的应用领域,为提高化工、环保等领域固液分离和传输效率提供帮助。
固液两相流泵性能参数影响实验潘越;于明明【摘要】在工业生产领域中,固液两相流泵是运用普遍的流体机械。
泵的性能参数影响泵的效率与使用寿命,基于此,研究固液两相流的介质特性和泵结构参数对泵性能参数的影响,对测试系统中的硬件、软件系统、试验管路、关键仪器仪表的选择进行了设计搭建。
利用由LabVIEW与PLC组成的固液两相流泵性能参数的测试系统,完成固液两相流泵性能参数影响因素的判定。
%In the field of industrial production, solid liquid two phase flow pump is the most commonly used fluid machinery. Pump performance parameters affect the efficiency and service life of the pump. Based on the influence of dielectric properties of solid liquid two phase flow and pump structure parameters on pump performance parameters,the thesis designs the test system of hardware and software, test line, the key instrument of choice. Using the test system of solid liquid two phase flow pump performance parameters composed of LabVIEW and PLC,that complete determination to solid-liquid two-phase pump performance parameters influencing factors.【期刊名称】《机电工程技术》【年(卷),期】2014(000)011【总页数】4页(P45-47,85)【关键词】固液两相流泵;测试实验系统;LabVIEW;监控系统;泵性能参数【作者】潘越;于明明【作者单位】河北工程大学机电工程学院,河北邯郸 056038;河北工程大学机电工程学院,河北邯郸 056038【正文语种】中文【中图分类】TH137.51固液两相流泵是普遍用于工业生产部门的流体机械,在水利、煤炭、矿山、化工、电力、建材、土建、冶金等行业都发挥着重要作用。
泵在气液两相工况下性能分析电站的安全问题是一个不容忽视的问题,尤其在事故工况下,电站的运行状况成为电站安全方面研究的重点。
当管路发生泄漏故障但泵依然正常运转时,管路内流体内的气体比例会随时间的延长逐渐增多,泵的性能会随着气体比例增大而逐渐下降,从上一个层级来看,管路内的流体会因为管路泄漏而逐渐减少,冷却水量逐步降低,但不是骤然下降,此时泵的性能下降趋势直接关系到管路内冷却水量下降的速度,因此在管路内气体增多的工况下,研究泵的性能尤为重要,分析泵在气液两相下的性能,进而得出性能曲线,据此进行系统故障下的应急时间余量计算及备用方案启动时间计算。
由于泵内充满气体的试验在实验室里通过观测和测量比较困难,而且在三维流动环境下很难估算泵内的实际情况,分析难度很大,在国外的文献中,Kastner和Seeberger,Narabayashi,Chen等人进行了关于泵在输送气液两相流方面的实验性研究,但均是针对通过比例缩放的模型进行分析,并且所用的工质是普通的水和普通的空气,无法准确模拟高温及汽化水情况下水泵的性能发挥情况。
本文的水泵工况是在泵内温度、气体含量、流量发生变化时,分析在该工况下泵的性能,据此判断整个系统冷却水量的变化情况。
1 数学模型建立1.1 气液两相双流体模型基本方程1.2 基本假设(1)循环泵在循環管路中已经出现两相流状态下运行,液体为不可压缩液体,气体为不可压缩水蒸气。
(2)假设气泡直径较小,可以忽略气泡对流场的影响,气泡间不发生破碎。
(3)气液两相相间无热量交换发生,系统内无化学反应。
(4)进口处气体在液相中分布均匀,进口气液两相具有相同的运动速度。
2 循环泵模型及边界条件给定分别对温度T=280 ℃、300 ℃、320 ℃,进口含气率vf=4%、6%、8%、10%、15%、20%时,水泵通过数值仿真计算得到的性能计算结果。
进口给定速度进口,出口为压力出口,根据不同温度分别给定为11.1 MPa、8.58 MPa、6.4 MPa。
搅拌槽内固液两相流的数值模拟及功率计算“搅拌槽内固液两相流的数值模拟及功率计算”是指对搅拌槽内固液两相流进行数值模拟,并使用建立的数学模型来计算该两相流系统所消耗的功率。
搅拌槽内固液两相流是指在一定的范围内,搅拌槽内同时具有液体和固体两种形态的物料。
搅拌槽内的液体物料流动的速度可以改变,而固体物料则不会流动,只能受到液体的拖拽而进行悬浮运动。
这种情况下,搅拌槽内的水流会被悬浮物扰乱,使得一般情况下搅拌槽内的流动形式非常复杂。
因此,要对搅拌槽内固液两相流进行数值模拟,首先要建立一个准确的数学模型,这一模型必须描述搅拌槽内的液体流动、固体悬浮运动以及固液间的相互作用。
具体来说,可以使用 Navier-Stokes 方程来描述液体的流动,而使用 Kynch 方程或者修正的 Kynch 方程来描述固体悬浮的动力学。
在建立好数学模型之后,就可以开始进行数值模拟。
可以利用计算机进行数值模拟,采用控制方程来求解建立的数学模型,以计算搅拌槽内的流动状态。
在进行数值模拟之前,需要根据实际情况进行一些网格划分,以便将复杂的流动过程分解成一系列相互独立的子问题,最终得到搅拌槽内流动的数值解。
最后,可以利用建立的数学模型来计算搅拌槽内的功率消耗。
功率消耗可以分为两部分:涡流功率和摩擦功率,前者是指液体流动对管道壁的拉力,而后者则是指液体流动与固体悬浮物之间的摩擦力。
可以利用建立的数学模型,计算出涡流功率和摩擦功率,最终得出搅拌槽内固液两相流的总功率消耗情况。
总之,“搅拌槽内固液两相流的数值模拟及功率计算”是指对搅拌槽内固液两相流进行数值模拟,并使用建立的数学模型来计算该两相流系统所消耗的功率。
这一过程中需要建立准确的数学模型,将复杂的流动过程分解成一系列相互独立的子问题,最终计算出搅拌槽内涡流功率和摩擦功率,以得出总功率消耗情况。
固液两相流的研究现状及进展摘要:本文主要写了固液两相流泵在国内的研究现状以及分别从内特性、外特性两方面对国内固液两相流泵的研究进展进行分析。
文中还给出了对固液两相流动中的最佳流动模式进行了探讨及固液两相流泵常用研究方法的分析。
关键词:固液两相流泵数学模型流动模式牛顿流体1.固液两相流泵在国内的研究背景我国对液固两相流泵的研究则始于20世纪70年代末80年代初,直到80年代中期以后按两相流理论设计的泵才逐步得到应用。
经过几十年的努力,我国两相流泵技术也得到了长足的发展, 国内许多学者应用两相流理论对固液泵进行了水力设计和试验研究, 积累了许多很有价值的经验和数据, 为我国对液固两相流泵的研究开辟了广阔的道路。
2.国内固液两相流泵的研究现状固液两相流泵的基本概念通常分为两类①杂质泵,包括泥浆泵、砂泵、挖泥泵等,主要用于冶金、矿山开采、电力、煤炭、水泥等行业抽送尾矿、精矿、灰渣、煤泥、水泥等,也可用于江、河、湖、海的挖泥和疏浚。
离心式泵约占杂质泵总量的70% 左右,这类泵主要应考虑磨损问题。
市场调查发现: 上海主流泵生产企业生产的离心式的固液两相流泵主要是渣浆泵。
②无堵塞泵,包括旋流泵、单流道泵、多流道泵、螺旋离心泵和开式或半开式离心泵等,主要用于抽送污水、纸浆、纤维等,这类泵主要考虑的是堵塞问题。
由于固液两相流动的复杂性和特殊性,所以固液两相流泵在性能、噪声、寿命等方面存在着较大的缺陷。
为了克服上述缺点,国内外学者先后通过理论分析,实验研究和数值模拟等方法深入研究固液两相流泵的流动机理,优化泵的设计来提高其效率和寿命,降低噪音。
3.固液两相流泵的研究理论3.1外特性研究20 世纪30 ~ 60 年代,国外学者研究固液相的性质与外特性关系得出的主要结论是: ①泵的扬程随着浓度的增加而下降; ②泵的功率随着浓度的增大而增大; ③泵的效率随着浓度的增加而下降;④泵的最高效率点向着小流量区偏移。
固液混合物的性质( 浓度、比重、粒径) 对离心泵性能方面的影响。
固液两相流泵的研究现状及展望张敬斋;汪军;杨骏【摘要】重点阐述了固液两相流泵的研究现状及其进展.在内部流动特性方面介绍了固体颗粒在叶轮内部的流动规律,研究了泵内部过流部件的磨损规律及抗磨措施;外部特性主要介绍了泵的几何参数对泵性能的影响.介绍了四种固液两相流泵的水力设计方法,并进行了分析,指出了四种设计方法对固液两相流理论发展的影响.从理论、试验研究和实际应用等方面分析了固液两相流泵性能优化的方向,并对固液相流泵的设计和应用作出了展望.【期刊名称】《能源研究与信息》【年(卷),期】2014(030)001【总页数】7页(P1-6,17)【关键词】固液两相流泵;数值模拟;设计方法【作者】张敬斋;汪军;杨骏【作者单位】上海理工大学能源与动力工程学院,上海200093;上海理工大学能源与动力工程学院,上海200093;上海理工大学能源与动力工程学院,上海200093【正文语种】中文【中图分类】TH311固液两相流泵广泛应用于疏浚、煤炭、矿山开矿、化工、电力、土建、冶金和环保等行业,它输送的对象多为水与固体颗粒混合形成的混合物[1-2].因其工作条件的特殊性,使得过流部件磨损严重,泵的整体寿命大大缩短,运行效率低,造成能源和设备大量浪费.这一问题引起了国内外学者的高度重视,相关理论和试验研究也取得了一定的成果.70年代末国内研究人员开始了固液两相流泵设计理论和设计方法的研究,起步相对较晚[3].此后,基于两相流理论设计的泵开始逐步得到应用.许多学者运用了多种新方法和新技术对固液两相流泵进行试验研究,积累了大量经验和数据,为我国固液两相流泵的研究奠定了基础.1 固液两相流泵的研究现状1.1 固体颗粒对固液两相流泵运行的影响离心泵在输送固液两相流时与输送单相流时相比,其运行性能发生了很大的改变.当所输送固体的质量浓度较大时,相同流量下,泵效率降低,扬程降低,功率增大,内部磨损更严重.固液两相流对泵运行性能的影响主要有两方面:一方面,由于固体颗粒的存在使泵磨损严重,尤其是过流部件;另一方面,固液两相流泵内部流体的流态十分复杂,不同时刻颗粒的运动状态和受力状态变化因素增加,泵内部能量转换的有效性降低.1.2 固体颗粒在叶轮内的运动规律固体颗粒的运动特性和泵的运行性能密切相关.通过了解固液两相流泵内部颗粒的运动轨迹和颗粒碰撞机理,可为提高固液两相流泵的性能和使用寿命开辟新的道路. 国外学者相对较早开始此项研究.20世纪60年代开始采用高速摄影和图像处理技术研究固体颗粒的运动规律,并取得了一系列具有代表性的研究成果.Itaya等利用高速摄像机对固体颗粒在泵内的运动轨迹拍照,固体颗粒为玻璃球,粒径分别为5.19、8.82、12.75 mm,叶片出口安装角分别为15°、25°、35°、45°.将理论计算值和实测值进行对比,结果基本一致,发现粒径大小对固体颗粒的运动轨迹几乎没有影响[4].苏波隆利用高速摄像机拍摄了砂砾在叶轮内的运动规律,结果表明:小颗粒(1~2mm)沿着叶片工作面以10°左右的出口角离开叶轮;而大颗粒(8~10 mm)由于离心力作用背离叶片工作面以30°~35°的出口角离开叶轮[5].Zaya利用高速摄影技术得到直径d分别为7.4 mm的钢球和7.5 mm的铝球在泵内运动的速度实测值,研究结果表明:颗粒质量越小越朝背离叶片工作面方向运动;颗粒质量越大则沿着叶片工作面运动[6].国内方面,赵敬亭等通过理论计算并经实验检验发现:当颗粒密度大于某个临界值时,颗粒自进入叶轮流道到离开叶轮流道的过程中向叶片工作面靠近;当密度小于该临界值时,颗粒则向叶片背面靠近,并随着密度和粒径的减小这种趋势越明显[7].许洪元等利用高速摄像机拍照并进行数值计算,颗粒分别为豆类(d=4、6、8 mm)、玻璃球(d=4、6、8 mm)、钢球(d=6、12 mm)、石子(d=1~2 mm、5~6 mm),且在不同叶轮转速和不同叶片形状下进行实验,得到叶轮中固体颗粒运动轨迹.结果表明:质量大的粗颗粒与叶片头部相撞获得能量而偏离工作面运动;质量小的细颗粒不会集中撞击叶片头部而是沿着叶片工作面运动,但会在工作面出口处聚集,从而磨损叶片,造成叶片尾部快速磨损[8-9].戴江利用高速摄影和图像处理技术对固液两相流在离心泵内的流动规律进行了研究,得到叶轮内d=1~2 mm砂粒的浓度分布规律[10].吴玉林等对渣浆泵内固体颗粒的运动规律作了实验研究,同时对渣浆泵叶轮内的二维湍流流动进行了计算,并与实验作了对比[11-13].综上所述,针对泵内固体颗粒的运动规律研究人员有三种不同的观点:① 颗粒质量越大,其运动轨迹越靠近叶片工作面;② 颗粒质量越大,其运动轨迹越偏离叶片工作面;③ 一定范围内颗粒质量对其运动轨迹影响不明显.三种结论完全不同,得出的观点甚至完全相反.国内大多数学者都赞同第一种观点,在此基础上形成了固液两相流泵理论,并在固液两相流泵的设计方面取得了一定的成果.由于实验模拟中,为便于高速摄影,固体颗粒粒径大且质量浓度低,因此这些研究尚无法从根本上反映运行泵内固体颗粒的实际运动轨迹,还需进行系统的研究.1.3 固液两相流泵磨损研究由于固液两相流泵输送的介质含固体颗粒,这使得磨损成为固液两相流泵的主要问题之一,且磨损问题严重与否直接关系到泵的使用寿命.造成壁面磨损的原因一般分为三种:① 流体中所含颗粒冲击造成的损伤;② 汽蚀损伤;③ 颗粒冲击和汽蚀共同作用造成的损伤.由于颗粒冲击损伤和汽蚀破坏之间互相影响,使过流部件磨损更加严重.因此,系统地掌握磨蚀规律能够更好地指导泵内部部件参数化优化设计,提高其工作效率和寿命.Warman国际公司对一种高效率的几何泵(HE)进行了磨损规律研究,主要考察了泵转速和浆料浓度对磨损的影响.试验中浆料保持实际工作状况下的质量浓度基本不变,泵体和叶轮材料采用易磨损的铸铁以提高磨损率,颗粒直径d≤700 μm.试验表明泵入口侧壁的内衬板的磨损破坏程度高于叶轮和壳衬.同时在不同的流量下对三种不同几何设计的侧衬进行冲蚀磨损研究,流量控制在0.6 Qbep~1.0 Qbep(Qbep 为最高效率点对应的流量),结果表明:侧衬在大颗粒(1 000 μm)的冲蚀作用下磨损率变化不大;小颗粒时侧衬的冲蚀磨损率随流量的增加而下降[14].2007年,Khalid等对离心式渣浆泵叶轮进行了磨损失效分析,提出了降低渣浆泵磨损的措施[15].何希杰等对渣浆泵进行了快速磨损试验研究,试验中叶轮和泵体均采用铸铝材料,以比较坚硬的石英砂为磨粒,固液混合物中固体的质量浓度控制在30%~40%.为了测得各个阶段的磨损情况,每运转6 h(共运转42 h)拆检一次并更换磨粒,同时对泵体和叶轮的磨损情况进行观测.试验结果表明:① 磨损从叶轮进口向出口逐渐增强,磨损最严重的地方是叶片工作面出口部分及其出口处,同时混合物中大颗粒越多,进口处磨损越快;② 叶端总的磨损量与固液混合物液流径向分速度有关;③ 叶轮和泵体的磨损量在总磨损时间的3/7时,磨损量分别为总磨损量(磨损前的泵体和叶轮看作为总磨损量)的53.5%和62.2%,此时扬程下降近1/3,而在磨损结束时扬程下降近1/2;④ 叶轮和泵体的磨损率在总磨损时间的1/7~3/7时为最高,磨损最快;⑤ 颗粒以很高的径向速度撞击泵体圆周壁面,并在此壁面上形成滑动床,所以泵体圆周壁面磨损严重.何希杰等还采用数理统计和回归方法对渣浆泵现场使用寿命的试验资料进行了分析研究,得出了预测渣浆泵使用寿命的经验公式,为渣浆泵设计研究、选型和现场运行提供了有利的工具,并提出了防磨措施[16-17].李双寿等[18]采用正交试验方法对ADI(奥贝球体)渣浆泵叶片的磨损机理进行了研究,探讨了叶片材料、叶片参数和热处理工艺以及叶片力学性能、磨料等对叶片磨损的综合影响.研究表明,材料的特性对叶片磨损的影响比叶片参数和磨料种类的影响大.观察磨损的叶片发现,因受到流体作用不同,叶片不同部位的磨损程度也存在差异.ADI叶片头部以冲击磨损为主,磨损较严重;中部和尾部压力面受切削和碾压作用;中部和尾部吸力面以汽蚀为主,磨损最为严重.叶片磨损示意图如图1所示.该研究对叶轮叶片磨损失效机理进行了分析,并首次结合了材料的抗磨性分析,使两个不同领域有了有效的结合[18].由于过流部件磨损严重,材料价格昂贵,很多学者提出了耐磨陶瓷内衬、高耐磨橡胶以及Sialon-SiC耐磨陶瓷等三种渣浆泵的制备方法[19-21],以减少磨损.图1 叶片磨损示意图Fig.1 Schematic diagram of blade wear1.4 外部特性研究20世纪30年代起,国内外很多研究人员开始研究浆体质量浓度和泵本身参数对泵性能的影响.对于不同质量浓度的浆体,泵的性能变化不同.质量浓度一定时,泵输送细颗粒浆体时的效率有时会高于泵输送清水时的效率;而输送粗颗粒浆体时的效率一般低于清水泵的效率.对于不同种类的泵,在输送固液两相流时都有一个最佳的输送质量浓度.由此可知,泵过流部件的几何参数对泵的性能有一定的影响.叶轮出口角对泵的性能也有重要影响,在流量和转速一定时,离心泵应存在一个叶片出口角可使泵的效率达到最高[22].刘栋等应用计算流体力学FLUENT软件对3台叶片出口安装角不同的离心泵进行了数值模拟,分析了叶片出口安装角对泵内部固液两相流场的影响.研究表明:颗粒更容易在出口安装角大的叶片压力面聚集,且颗粒体积分数最大的区域偏向叶片压力面出口,使得更多的颗粒与叶片尾部压力面相撞,加速叶片磨蚀,故减小叶片出口角可减小颗粒聚集,从而提高叶轮寿命[23].杨华等对不同叶片包角的离心泵作了试验与数值模拟计算.结果表明,在叶轮外尺寸相同的情况下对叶片造型的设计存在最佳的叶片包角,包角取值不宜过大也不宜过小,同时得出单圆弧叶型不是最佳叶型[24].2 固液两相流泵的水力设计从20世纪60年代起,国内外学者开始关注固液两相流泵的水力设计,通过改变泵内部结构提高泵的效率.由于固液两相流泵设计技术不成熟,只能借鉴水泵的设计方法.由于输送介质的特殊性,因此无法从根本上解决磨损快和泵效率低的问题.近年来,国内外固液两相流泵水力设计方法有以下几种,其中前三种最常用.2.1 经验统计速度系数法经验统计速度系数法是以清水泵的公式为基础,结合国内外泵设计资料和试验数据推导出两相流泵的设计公式.公式中引入了可反映输送介质影响的系数.80年代初,刘湘文提出了离心式泥浆泵的设计方法[25],其设计要点包括:叶轮外径、叶片宽度、叶片入口角的计算公式,叶片出口角的选取,叶片型线采用双圆弧曲线或对数曲线,采用螺旋形护套,压出室水力设计和隔舌位置的确定等.由于该方法的建立是基于相似理论,没有从根本上脱离清水泵的设计方法,且和泵内部的两相流动相差太大,因此所设计的固液两相流泵的效率较低.虽然我国专家提出了几种经验公式,取得了一些成功案例[26-27],但这些公式不能普遍应用于固液两相流泵的设计,而且经验公式的总结需要大量的数据,这样就导致了这些经验公式的局限性.2.2 畸变速度设计法20世纪80年代初,蔡保元教授提出了两相流畸变速度设计法[28].其理论依据是:流体机械只能转换液体的能量而不能转换固体的能量,固体的能量是通过液体间接转换的,这是由于固体颗粒是在水流“裹协”下运动,可把固体颗粒作为水流运动的不连续边界条件.由于固体颗粒的影响造成液体的速度场和过流通道产生了畸变,使固体获得一定的能量,从而产生运动.在泵的入口,固体颗粒的速度小于液体速度,固体颗粒对水流的过流通道产生阻塞作用,使水流的过流通道变窄,水流畸变速度升高.反之,在泵的出口处,固体颗粒的速度大于液体速度时,固体颗粒相则产生抽吸作用,使水流的过流通道扩大,水流畸变速度降低.根据两相流的畸变速度场和两相流理论设计出泵的叶型和流道.水利电力部电力建设研究所使用畸变速度设计法先后研制了六种不同类型的杂质泵.这些杂质泵水力效率较高,泵的最高效率ηmax=70%~80%,汽蚀性能良好,泵的最高扬程Hmax=6~8 m水柱.从上可知,采用该方法研制的各种杂质泵水力效率高,使用寿命长,并可进行高位布置.这是由于该方法将两相流动理论应用于固液两相流泵的设计中,考虑了固体颗粒在流动中的影响,因此使其设计更为准确可靠.该方法进一步结合了泵内的两相流动规律,对固液两相流泵理论和设计方法的深入研究有极大的推动作用.虽然该方法首次把两相流设计理论运用到固液两相流泵的设计中,但是该理论还存在一定的争议,并且该方法设计的固液两相流泵的效率取决于泵内固体和液体的运动速度,通过计算得出的运输方程与实际有一定的差异,因此采用此理论设计的固液两相流泵必须要经过统计分析,并结合实践经验和一般水泵设计方法,才能完成设计任务.2.3 两相流速度比设计法按固液两相速度比进行固液两相流泵水力设计的方法称为两相流速度比设计法.该方法80年代末由许洪元提出[29],其设计理论(简称X理论)基本要点是:对固液两相流泵中的固液两相流动应用分离流动模型,在流道不同部位固体颗粒受力不同,固液两相之间的速度比发生变化,使两相流体的质量浓度比也随之变化.将得到的速度比方程应用于离心泵的设计中,推导出固液两相流泵的设计计算式.该设计方法考虑了泵中固液两相速度比的变化规律,使泵内过流部件能有效地转换能量,减少了泵的局部高速磨蚀,因此提高了泵的效率和寿命.实践证明,采用该方法设计的固液两相流泵有很大的优越性.许洪元设计了300GY-M型固液两相流泵,并在云南锡业公司所属新冠选矿厂进行了工业性能测试,结果表明,其效率比12PN-7型泵高14.3%,且耐磨性强,寿命长,振动和噪声明显减小[29];采用该方法设计的100XG-D1型固液泵优于国外同规格固液泵(如表1所示),最高效率达74.6%,抽送固液两相流时最高效率高于抽送清水的最高效率,高效区宽,适应性强,使用寿命长[30].在X型固液两相流泵的推广过程中发现,同一种口径的固液两相流泵因为工况不同,泵的运行参数相差较大,所以在选型时需考虑选用不同的设计参数.表1 不同泵的性能对比Tab.1 Performance comparison of different pumps型号最优流量下的性能指标(清水测试值)流量Q/(m3·h-1)扬程H/m水柱转速nmax/(r·min-1)最高效率η/%比转速ns100XG-D1固液泵26043145074.684.76/4E-AH沃曼泵256431 45059.584.06/4LXL-36两相流泵252391 45066.689.7100NG-40两相流泵210381 47063.084.74PN泥浆泵200371 47061.084.32.4 两相流流场分析设计法两相流流场分析设计法是基于固液两相流边界层理论提出的.该理论在设计中的利用主要有两个方面:其一是对过流表面的水力效率分析;其二是确定泵的叶片型线.从泵的流体动力学性能方面看,叶轮的叶片优劣并不在于叶片型线是“双圆弧”还是“变角螺旋线”,而主要取决于固液两相流在叶片表面沿出口方向(沿程方向)是否产生较大程度的边界层分离.边界层的分离可由边界层理论确定,而泵的理论扬程以欧拉方程为其表现形式.将固液两相流的边界层理论和欧拉方程相结合提出了固液两相流泵设计方法,通过流动简化,提出了叶片型线方程[31].这是一个较为新颖和全面的方法.随着计算机技术的迅速发展,许多大型的流场计算及性能预测软件随之出现,例如CFD、CFX、FLUENT、STAR-CD等软件.利用这些软件对泵进行流动规律分析和性能预测,并对最初的设计进行修改,直至达到最佳的效果[32],使得产品研发时的准确性大大提高,周期更短,成本更低.但采用该方法设计的泵没有互换性,使用范围比较窄,很多方面需要运用传统方法加以修正,但在固液两相流泵的设计中已成为主要方法之一.3 固液两相流泵的性能优化固液两相流泵的效率主要受限于过流部件,而过流部件由于受到固体颗粒的冲击磨损效率普遍较低.所以对固液两相流泵效率的研究主要是针对叶轮的研究.因此人们对此进行了广泛的研究,并建立了众多的模型和计算方法.Herbich等通过试验研究了几何参数不同的叶片对泵性能的影响,叶片线型分别取单圆弧、双圆弧、渐开线和对数螺线等四种叶型,进口安装角为45°,出口安装角分别为35°、28.75°和22.5°.结果显示,当出口安装角为22.5°时叶片效率最高,叶片量磨损最小.渐开线和对数螺线叶型的叶片效率无差别,比单圆弧叶片高6%左右[33].王幼民等提出了以叶轮叶片出口宽度、出口角、直径、叶片数、进口直径、进口角、进口宽度为设计变量,以泵的能量损失最小为目标函数的泵叶轮的优化设计模型及优化计算方法[34].除了对过流部件的优化,很多学者在泵的其它方面也做了很多的研究,以提高泵的整体效率.在泵内固液两相流中,由于固体的质量浓度不同,存在着牛顿流体和宾汉流体两种不同的流态[35].在宾汉渣浆流体中存在着一种柱状流动现象,由于柱状流动中层流薄层内的水成为柱体与管壁之间的润滑剂,因此泵内中柱状流动的摩擦损失要比清水时小,使泵的效率和输送效率都比较高.当流动为紊流状态下的牛顿流体流动时,可在流体中加入添加剂实现降阻,提高泵的工作效率.在实际工程中应针对相应的情况选择不同的添加剂提高效率,优化泵的性能.另外,应根据实际情况选用相应的固液两相流泵,使泵的效率最大化,同时也可根据泵的工作状态进行相应设计.虽然此方案在具体应用中有一定的困难,但随着经验的丰富仍可实现批量生产,从而减少成本,提高固液两相流泵效率.目前,我国在固液两相流泵的性能优化方面做得还不够好.在设计方面,已完成的固液两相流泵的优化计算还存在很多的问题,优化对象有很大的局限性,同时单目标的优化并不能从整体上彻底提高泵的效率,优化结果很不理想.但是随着计算机技术的发展和两相流理论的逐渐成熟,固液两相流泵的性能将得到较大的提高.4 结论由于固液两相流泵内流动的复杂性,以致很多问题还有待解决.因此,在今后的研究中,应注意以下几个问题:(1) 利用数值模拟对泵内的流动规律和颗粒分布特征进行更深入的研究,具体分析泵的磨损特性,积累数据,建立一套全面、完备的资料数据库,为固液两相流泵的抗磨损设计提供依据.(2) 加强固液两相流泵水力设计的CAD、CFD软件的开发,把最新的计算机技术应用于固液两相流泵的优化设计中.(3) 固液两相流泵的水力设计还没有统一的理论设计方法,可根据最新的两相流理论和经验进行研究,建立完善的设计方法.(4) 对现有固液两相流泵的数据进行归类,针对不同环境应用不同种类的泵或者进行相应的设计,以提高固液两相流泵的工作效率.参考文献:[1] 丁厚福,卢书媛,崔方明,等.冶金矿山湿式磨机衬板钢冲击腐蚀磨损行为的研究[J].兵器材料科学与工程,2003,26(6):31-35.[2] 姚丽琴,张红兵.大中型水泵空蚀与泥沙磨损预防及修复技术[J].科技情报开发与经济,2005,15(6):265-268.[3] 陈次昌,刘正英,刘天宝,等.两相流泵的理论与设计[M].北京:兵器工业出版社,1994.[4] ITAYA T,NISHIKAWA T.Study on sand pumps[J].Trans of the JSMEB,1963,29(207):1786-1794.[5] 苏波隆 B K.混合液在泥浆泵流道中的流动特性的研究[J].杂质泵技术,1986(12):36-54.[6] ZAYA A N.The effect of the solid phase of a slurry on the head developed by a centrifugal pump[J].Fluid Mechanics-Soviet Research,1975,4(4):144-154.[7] 赵敬亭,赵振海.离心泵流道中固体颗粒的运动[J].水泵技术,1990,26(1):1-6.[8] 刘娟,许洪元,唐澎,等.离心泵内固体颗粒运动规律的实验研究[J].水力发电学报,2008,27(6):167-172.[9] 许洪元,吴玉林,高志强.稀相固粒在离心泵轮中的运动实验研究和数值分析[J].水利学报,1997,28(9):12-17[10] 戴江.离心泵叶轮内固液两相紊流流动规律的研究[D].北京:清华大学,1994.[11] 吴玉林,许洪元,高志强.杂质泵叶轮中固体颗粒运动规律的实验[J].清华大学学报(自然科学版),1992,32(5):52-59.[12] WU Y putation on turbulent dilute liquid-particle flows througha centrifugal impeller[J].Multiphase Flow,1994,32(8):118-125.[13] 吴玉林,曹树良,葛亮,等.渣浆泵叶轮中固液两相湍流的计算和实验[J].清华大学学报(自然科学版),1998,38(1):71-74.[14] WALKER C I,BODKIN G C.Empirical wear relationships for centrifugal slurry pumps:Part 1:side-liners[J].Wear,2000,242(1/2):140-146.[15] KHALID Y A,SAPUAN S M.Wear analysis of centrifugal slurry pump impellers[J].Industrial Lubrication and Tribology,2007,59(1):18-28.[16] 何希杰,张勇,李金生,等.渣浆泵现场寿命的预测方法[J].流体机械,2001,29(1):21-23.[17] 何希杰,李淑红,寇玉芬.渣浆泵快速磨损试验研究[J].水泵技术,2004,40(5):25-27.[18] 李双寿,卢达溶,洪亮,等.ADI渣浆泵叶片磨损机理的研究[J].流体机械,2000,28(6):5-8.[19] 杨昌桂,杨政,刘星陵,等.耐磨陶瓷内衬渣浆泵:中国,CN201083212[P].2008-07-09.[20] 赵敏.一种渣浆泵用高耐磨橡胶及其制备方法[J].橡胶工业,2009,56(12):738.[21] 刘宝林,高德利,杨景周,等.Sialon-SiC耐磨陶瓷的制备及液固冲蚀磨损性能研究[J].金属矿山,2009,39(6):132-135.[22] 谈明高,刘厚林,袁寿其,等.离心泵出口角对能量性能影响的CFD研究[J].中国农村水利水电,2008(11):104-106.[23] 刘栋,杨敏官,董祥.出口角对离心泵内固液两相流动影响[J].排灌机械,2009,27(1):1-5.[24] 杨华,刘超,汤方平,等.不同叶片包角的离心泵试验与数值模拟[J].机械工程学报,2007,43(10):166-169.[25] 刘湘文.离心式泥泵系数设计法[J].水泵技术,1982,18(2):47-49.[26] 郭晓民,许锡夺,颜春万.经验法设计渣浆泵小结[J].水泵技术,1996,32(1):16-20.[27] 赵振海.渣浆泵的抗磨设计[J].水泵技术,1993,29(3):11-15.[28] 蔡葆元.离心泵的“二相流”理论及其设计原理[J].科学通报,1983(8):498-502.[29] 许洪元.渣浆泵的固液流设计原理[J].工程热物理学报,1992,13(4):389-393.。
流固两相流中固相参数测量方法研究的开题报告标题:流固两相流中固相参数测量方法研究研究背景:流固两相流是指液体中含有固体颗粒物质的流体状态,如沙水混合流、煤泥水混合流等。
流固两相流在工业生产中广泛存在,具有重要的工程应用。
在流固两相流传热、传质、传动过程中,固相参数(如颗粒浓度、粒径分布等)的测量对于流固两相流的研究和工程应用有着重要的作用。
当前常用的固相参数测量方法有离线样品分析法、激光光散射法和微波共振法等,这些方法虽然已经很成熟,但存在着不同程度的缺陷。
因此,需要探索更加有效和准确的固相参数测量方法。
研究内容:本文旨在探究流固两相流中固相参数的测量方法。
具体研究内容包括:1. 基于离线样品分析法、激光光散射法和微波共振法的相关理论和应用研究,分析各方法的优缺点和适用范围。
2. 针对目前常用方法存在的问题和局限性,探索设计一种新型的固相参数测量方法,比较其与常用方法的差异。
3. 利用实验室建立的流固两相流实验系统进行实验研究,通过对比不同方法得到固相参数测量结果的偏差和误差。
4. 对比不同方法的各自优劣,分析新型测量方法的实际应用价值和前景。
研究意义:本文研究的流固两相流中固相参数测量方法,对于加深对流固两相流在传热、传质、传动等方面的理解,优化工业生产过程,提高工业生产效率和品质,有着重要的实际应用价值和科学研究意义。
研究方法:1. 文献综述法:对现有固相参数测量方法的文献资料进行综述,分析各方法的优劣。
2. 系统设计法:根据文献资料,设计一种新型的固相参数测量方法。
3. 数值计算法:利用数学模型对流固两相流的特性进行描述和计算。
4. 实验研究法:利用实验室建立的流固两相流实验系统进行实验研究,比较不同方法下的固相参数测量结果。
预期成果:1. 对现有流固两相流中固相参数测量方法进行了系统的综述和分析,找到方法存在的问题和改进措施,为后续研究提供了理论支撑和参考。
2. 设计一种新型的固相参数测量方法,在实验验证中取得更加准确的固相参数数据,解决了常用方法存在的问题,提高了固相参数数据的可靠性和精度。
固液两相流的研究现状及进展摘要:本文主要写了固液两相流泵在国内的研究现状以及分别从内特性、外特性两方面对国内固液两相流泵的研究进展进行分析。
文中还给出了对固液两相流动中的最佳流动模式进行了探讨及固液两相流泵常用研究方法的分析。
关键词:固液两相流泵数学模型流动模式牛顿流体1.固液两相流泵在国内的研究背景我国对液固两相流泵的研究则始于20世纪70年代末80年代初,直到80年代中期以后按两相流理论设计的泵才逐步得到应用。
经过几十年的努力,我国两相流泵技术也得到了长足的发展, 国内许多学者应用两相流理论对固液泵进行了水力设计和试验研究, 积累了许多很有价值的经验和数据, 为我国对液固两相流泵的研究开辟了广阔的道路。
2.国内固液两相流泵的研究现状固液两相流泵的基本概念通常分为两类①杂质泵,包括泥浆泵、砂泵、挖泥泵等,主要用于冶金、矿山开采、电力、煤炭、水泥等行业抽送尾矿、精矿、灰渣、煤泥、水泥等,也可用于江、河、湖、海的挖泥和疏浚。
离心式泵约占杂质泵总量的70% 左右,这类泵主要应考虑磨损问题。
市场调查发现: 上海主流泵生产企业生产的离心式的固液两相流泵主要是渣浆泵。
②无堵塞泵,包括旋流泵、单流道泵、多流道泵、螺旋离心泵和开式或半开式离心泵等,主要用于抽送污水、纸浆、纤维等,这类泵主要考虑的是堵塞问题。
由于固液两相流动的复杂性和特殊性,所以固液两相流泵在性能、噪声、寿命等方面存在着较大的缺陷。
为了克服上述缺点,国内外学者先后通过理论分析,实验研究和数值模拟等方法深入研究固液两相流泵的流动机理,优化泵的设计来提高其效率和寿命,降低噪音。
3.固液两相流泵的研究理论3.1外特性研究20 世纪30 ~ 60 年代,国外学者研究固液相的性质与外特性关系得出的主要结论是: ①泵的扬程随着浓度的增加而下降; ②泵的功率随着浓度的增大而增大; ③泵的效率随着浓度的增加而下降;④泵的最高效率点向着小流量区偏移。
固液混合物的性质( 浓度、比重、粒径) 对离心泵性能方面的影响。
72固液两相流离心泵内部流动分析模型郭枭驰 中国石油集团公司长庆油田分公司采气五厂【摘 要】基于欧拉透平理论的离心泵“理想叶轮”的基本假设,采用两相流理论中的两流体模型,由连续定理和动量矩定理推导了离心式渣浆泵的基本方程式,该式也就是离心式渣浆泵理论扬程的计算公式。
根据旋转坐标系下的Rothalpy方程,分析了沿着垂直于流线方向的相对速度变化规律。
【关键词】固液两相流离心泵;离心式渣浆泵;流动差异分析【DOI】10.12316/j.issn.1674-0831.2021.09.036一、离心式渣浆泵的基本方程式基于离心泵“理想叶轮”的假设,即(a)叶轮具有无限多叶片,叶片厚度无限薄,流体在叶片间流道中相对运动流线与叶片形状一致,且流体与叶片进口、出口无冲击。
(b)流体是不可压缩的理想流体。
(c)流体通过叶轮的流动是恒定的。
由欧拉运动方程可推导出清水离心泵的基本方程式为:2211u u T u v u v H g−=,式中:H T —理想叶轮的扬程/m;g—重力加速度,g=9.81m·s -2;u—流体圆周速度/m·s -1;v—流体绝对速度/m·s -1;v u —流体绝对速度圆周分量/m·s -1;下标1,2 —表示叶轮进口和出口。
HT是离心泵理论扬程,它只与液体流动状态有关,而与液体的性质无关。
同一台离心泵抽送不同性质单相流体,在相同转速和流量下,其理论扬程值是一样的。
但下式仅适用于介质是“单相流体”的情况。
当泵抽送固液两相流体时,由于固液两相各自的物理化学特性不同,在叶轮中的速度场亦不同,因而渣浆泵的扬程不同于抽送单相流体时的扬程。
为了得到离心式渣浆泵的基本方程式,采用两相流理论中的两流体模型,即把固相作为“拟流体”来处理,它和液相同时充满整个流场。
由连续定理和动量矩定理可得出作用于两相流体的外力矩为:2211()m m u m u m T Q v r v r ρ−,式中:T—作用于两相流提上的外力矩/N·m;Q m —进入叶轮内的两相流体体积流量/m 3·s -1;r 1,r 2—叶轮进出口的圆周半径/m;v u1m r 1,v u2m r 2—两相流体在进出口处的平均速度矩/m 2·s -1。
射流式采沙系统中液固两相流的数值模拟
张悦;宋锦春;野琦勉;李庆根
【期刊名称】《机械设计与制造》
【年(卷),期】2016(000)005
【摘要】疏浚设备泥沙吸取过程属于稠密固液,为了研究两相流动中液固两相的流动特性,对一种射流式泥沙采集器内的两相流流动进行了数值模拟.基于欧拉双流体模型,研究了不同射流速度,不同的吸引流流量对采集器出口的泥沙浓度的影响.结果表明采用欧拉双流体模型的仿真结果可以较好的吻合实验数据,当射流速度增大时,出口处的泥沙浓度也随之增大,当射流速度一定时,出口处的泥沙浓度一开始随着吸引流流量增大而增大,之后随其增大而降低.
【总页数】4页(P20-23)
【作者】张悦;宋锦春;野琦勉;李庆根
【作者单位】东北大学机械工程与自动化学院,辽宁沈阳110819;东北大学机械工程与自动化学院,辽宁沈阳110819;东北大学机械工程与自动化学院,辽宁沈阳110819;东北大学机械工程与自动化学院,辽宁沈阳110819;清津矿山金属大学,清津朝鲜999091
【正文语种】中文
【中图分类】TH16
【相关文献】
1.射水减弱混流式水轮机尾水管内压力脉动的数值模拟 [J], 李章超;常近时;辛喆
2.页岩气压裂弯管中液固两相流冲蚀磨损的数值模拟 [J], 成芳; 易先中; 彭灼; 周元华; 宋顺平; 盛治新; 殷光品
3.坨30断块沙二8-11砂组精细油藏数值模拟及注采调整方案研究 [J], 侯玉培; 侯欣欣
4.辐流式沉淀池液固两相流力学特性三维数值模拟 [J], 刘玉玲;张沛;魏文礼;郑艳
5.三通管中液固两相流冲蚀磨损的数值模拟 [J], 陈宇;马贵阳;WU JiMei
因版权原因,仅展示原文概要,查看原文内容请购买。
提升管道系统固液两相流工程应用研究
大洋多金属结核是一种蕴藏量很丰富的深海矿物资源,开采价值很大,对国防工业具有重要的作用。
为了开发这种矿物资源,国内外已经开发出多种采矿系统,矿浆泵水力管道提升采矿系统具有提升能力大、工艺简单、工作可靠、高效率、可实现连续生产和污染小的优点,被认为是最有使用价值的将矿物从海底提升到洋面采矿船上的技术,该提升技术的核心其实就是粗颗粒固液两相流在管道系统中的工程应用。
本文采用理论分析计算和试验研究相结合的方法对粗颗粒在管道系统中的水力特性进行了研究,主要内容包括粗颗粒在两相流动过程中受力分析,并在此基础上,推导出颗粒在竖直固液两相上升管流中运动方程。
建立了垂直管道系统粗颗粒固液两相稳定流模型,提出了管道系统压力损失的计算方法。
理论推导了倾斜管道中固体颗粒的运动方程,并推导了该方程的解析解和倾斜管道的压力损失的计算公式,并用相关试验结果验证斜管压力损失。
通过颗粒滑移速度,推导了管道内就地浓度的计算方程式,提出了浆体位能的计算公式。
针对海洋采矿管道水力提升系统不可避免地处于纵向升沉和横向摆动
的复杂运动状态,而导致管道内固液两相流的运动状态改变,建立了专门的模拟管道作复杂运动的试验系统,分别进行了管道静止、横向摆动和纵向升沉的提升试验,获得了管道系统作复杂运动的情况下,管道压力损失的试验结果。
根据本论文获得的研究结果,对我国5000米中期海上试采管道系统的各参数之间的关系,进行了全面的综合分析与计算并对管路系统的运行参数进行了优化。