现代谱估计法中几种不同模型参数估计法的比较
- 格式:pdf
- 大小:346.16 KB
- 文档页数:3
功率谱估计的古典算法与现代算法的比较——选取周期图法与Burg算法为例现代信号分析中, 对于常见的具有各态历经的平稳随机信号, 不可能用清楚的数学关系式来描述, 但可以利用给定的 N 个样本数据估计一个平稳随机信号的功率谱密度叫做功率谱估计(PSD)。
功率谱估计可以分为经典功率谱估计(非参数估计)和现代功率谱估计(参数估计)。
一、古典功率谱估计古典功率谱估计是将数据工作区外的未知数据假设为零, 相当于数据加窗经典功率谱估计方法分为: 相关函数法(BT 法)、周期图法以及两种改进的周期图估计法。
1、相关法相关法是以相关函数为媒介来计算功率谱的,所以又叫间接法,它的理论基础是维纳--辛钦定理。
先对数据工作区外的未知数据赋值为零,再由序列x(n)估计出自相关函数R(n),最后对R(n)进行傅立叶变换, 便得到 x(n)的功率谱估计。
2、周期图法周期图法是由获得的N点数据构成的有限长序列直接求fft得其频谱,取频谱幅度的平方再除以N,以此作为对x(n)真实功率谱的估计。
3、改进的周期图法改进的周期图法的主要途径是平滑和平均。
平滑是用一个适当的窗函数与算出的功率谱进行卷积,使谱线平滑,这种方法得出的谱估计是无偏的,方差也小,但分辨率下降;平均就是将截取的数据段再分成L个平均的小段,分别计算功率谱后取功率谱的平均,当L趋于无穷大的时候,L个平均的方差趋于零,可以达到一致谱估计的目的。
由于存在旁瓣,会产生两个后果:一是功率谱主瓣能量泄露到旁瓣使谱估计的方差增大,二是与旁瓣卷积后得到的功率谱完全属于干扰,严重情况下,强信号与旁瓣的卷积可能大于弱信号与主瓣的卷积,使弱信号淹没在强信号的干扰中无法检测出来。
这是古典法谱估计的主要缺点,即便是改进的周期图法也无法克服分辨率低的缺点。
我们从中选取周期图法作比较,其算法实现如下:Fs=600; %采样频率n=0:1/Fs:1;%产生含有噪声的序列xn=cos(2*pi*40*n)+cos(2*pi*90*n)+0.1*randn(size(n));n=1:length(xn);figure(1);subplot(2,1,1);plot(n,xn);window=boxcar(length(xn));%矩形窗nfft=1024;[Pxx,f]=periodogram(xn,window,nfft,Fs);subplot(2,1,2);plot(f,10*log10(Pxx));得到的图形为:二、现代谱估计参数模型法是现代谱估计中的主要内容,AR 模型参数的求解有三种方法:自相关法、Burg 递推算法和改进协方差法。
五种估计参数的方法在统计学和数据分析中,参数估计是一种用于估计总体的未知参数的方法。
参数估计的目标是通过样本数据来推断总体参数的值。
下面将介绍五种常用的参数估计方法。
一、点估计点估计是最常见的参数估计方法之一。
它通过使用样本数据计算出一个单一的数值作为总体参数的估计值。
点估计的核心思想是选择一个最佳的估计量,使得该估计量在某种准则下达到最优。
常见的点估计方法有最大似然估计和矩估计。
最大似然估计(Maximum Likelihood Estimation,简称MLE)是一种常用的点估计方法。
它的核心思想是选择使得样本观测值出现的概率最大的参数值作为估计值。
最大似然估计通常基于对总体分布的假设,通过最大化似然函数来寻找最优参数估计。
矩估计(Method of Moments,简称MoM)是另一种常用的点估计方法。
它的核心思想是使用样本矩和总体矩之间的差异来估计参数值。
矩估计首先计算样本矩,然后通过解方程组来求解参数的估计值。
二、区间估计点估计只给出了一个参数的估计值,而没有给出该估计值的不确定性范围。
为了更全面地描述参数的估计结果,我们需要使用区间估计。
区间估计是指在一定的置信水平下,给出一个区间范围,该范围内包含了真实参数值的可能取值。
常见的区间估计方法有置信区间和预测区间。
置信区间是对总体参数的一个区间估计,表示我们对该参数的估计值的置信程度。
置信区间的计算依赖于样本数据的统计量和分布假设。
一般来说,置信区间的宽度与样本大小和置信水平有关,较大的样本和较高的置信水平可以得到更准确的估计。
预测区间是对未来观测值的一个区间估计,表示我们对未来观测值的可能取值范围的估计。
预测区间的计算依赖于样本数据的统计量、分布假设和预测误差的方差。
与置信区间类似,预测区间的宽度也与样本大小和置信水平有关。
三、贝叶斯估计贝叶斯估计是一种基于贝叶斯理论的参数估计方法。
它将参数看作是一个随机变量,并给出参数的后验分布。
贝叶斯估计的核心思想是根据样本数据和先验知识来更新参数的分布,从而得到参数的后验分布。
现代谱估计方法分析刘传辉(绵阳职业技术学院 信息工程系,四川 绵阳 621000)摘要:谱分析是信号分析的一种工具。
功率谱估计就是基于有限的数据寻找信号、随机过程或系统的频率成分。
它表示随机信号频域的统计特征,有着明显的物理意义,是信号处理的重要研究内容。
研究随机信号在频域的功率分布情况,即功率谱密度或功率谱,功率谱估计有着广泛的应用。
关键词:功率谱;信号分析;信号处理;Matlab ;Simulink中图分类号: 文献标识码:Modern Spectral Estimation MethodsLiu Chuan Hui(Dept. of Information Engineering, Mian yang vocational and technical college , Mang Yang 621000,China)Abstract : Sp ectral analysis is a tool for signal analysis. Power spect rum est imat ion is based on limit ed dat a looking for signals, the frequency of random process or system components. It said random signal frequency-domain stat istical characterist ics, t here is a clear physical meaning, is an important signal processing research content. Of random signals in the frequency domain, power distribution, that is t he power spectral density or power spect rum. Power spectrum estimation has been widely used.Keywords: Power spectrum; Signal Analysis ; Signal Processing; Matlab ;Simulink0、引言随机信号一般不能用明确的数学关系式来描述,也无法预测其未来瞬间的精确值,对于这些随机性质的数据只能用概率和统计平均的方法来描述,比如均值、均方差、相关函数以及功率谱密度函数等,一个平稳随机信号的功率谱密度叫做谱估计。
AR 模型的功率谱估计BURG 算法的分析与仿真钱平(信号与信息处理 S101904010)一.引言现代谱估计法主要以随机过程的参数模型为基础,也可以称其为参数模型方法或简称模型方法。
现代谱估计技术的研究和应用主要起始于20世纪60年代,在分辨率的可靠性和滤波性能方面有较大进步。
目前,现代谱估计研究侧重于一维谱分析,其他如多维谱估计、多通道谱估计、高阶谱估计等的研究正在兴起,特别是双谱和三谱估计的研究受到重视,人们希望这些新方法能在提取信息、估计相位和描述非线性等方面获得更多的应用。
现代谱估计从方法上大致可分为参数模型谱估计和非参数模型谱估计两种。
基于参数建摸的功率谱估计是现代功率谱估计的重要内容,其目的就是为了改善功率谱估计的频率分辨率,它主要包括AR 模型、MA 模型、ARMA 模型,其中基于AR 模型的功率谱估计是现代功率谱估计中最常用的一种方法,这是因为AR 模型参数的精确估计可以通过解一组线性方程求得,而对于MA 和ARMA 模型功率谱估计来说,其参数的精确估计需要解一组高阶的非线性方程。
在利用AR 模型进行功率谱估计时,必须计算出AR 模型的参数和激励白噪声序列的方差。
这些参数的提取算法主要包括自相关法、Burg 算法、协方差法、 改进的协方差法,以及最大似然估计法。
本章主要针对采用AR 模型的两种方法:Levinson-Durbin 递推算法、Burg 递推算法。
实际中,数字信号的功率谱只能用所得的有限次记录的有限长数据来予以估计,这就产生了功率谱估计这一研究领域。
功率谱的估计大致可分为经典功率谱估计和现代功率谱估计,针对经典谱估计的分辨率低和方差性能不好等问题提出了现代谱估计,AR 模型谱估计就是现代谱估计常用的方法之一。
信号的频谱分析是研究信号特性的重要手段之一,通常是求其功率谱来进行频谱分析。
功率谱反映了随机信号各频率成份功率能量的分布情况,可以揭示信号中隐含的周期性及靠得很近的谱峰等有用信息,在许多领域都发挥了重要作用。
参数估计的类型和优缺点
参数估计是一种统计学方法,用于估计未知参数的值。
根据所使用的数据类型和模型假设,参数估计可以分为不同的类型,每种类型都有其优缺点。
以下是一些常见的参数估计类型及其优缺点:
1.点估计:点估计是最简单的参数估计形式,它使用单一的观测值或样本统计量来估计未
知参数的值。
优点是简单直观,计算方便;缺点是精度较低,且无法给出估计的不确定性或误差范围。
2.区间估计:区间估计使用样本统计量和某些统计方法来估计未知参数的可能取值范围。
优点是能够给出估计的不确定性或误差范围,从而更好地了解参数的精度;缺点是计算较为复杂,需要更多的数据和计算资源。
3.贝叶斯估计:贝叶斯估计基于贝叶斯定理,使用先验信息、样本信息和似然函数来估计
未知参数的后验分布。
优点是能够结合先验信息和样本信息,更好地了解参数的不确定性;缺点是需要主观设定先验分布,可能会受到主观因素的影响。
4.极大似然估计:极大似然估计通过最大化似然函数来估计未知参数的值。
优点是方法简
单、计算方便,且在某些情况下具有一致性和渐近正态性等优良性质;缺点是对某些复杂的模型或数据分布可能不适用。
5.最小二乘估计:最小二乘估计通过最小化误差的平方和来估计未知参数的值。
优点是计
算简便,适用于多种线性回归模型;缺点是对模型的假设要求较高,且容易受到异常值的影响。
参数估计的三种方法参数估计是统计学中的一项重要任务,其目的是通过已知的样本数据来推断未知的总体参数。
常用的参数估计方法包括点估计、区间估计和最大似然估计。
点估计是一种常见的参数估计方法,其目标是通过样本数据估计出总体参数的一个“最佳”的值。
其中最简单的点估计方法是样本均值估计。
假设我们有一个总体,其均值为μ,我们从总体中随机抽取一个样本,并计算出样本的平均值x。
根据大数定律,当样本容量足够大时,样本均值会无偏地估计总体均值,即E(x) = μ。
因此,我们可以用样本的平均值作为总体均值的点估计。
另一个常用的点估计方法是极大似然估计。
极大似然估计的思想是寻找参数值,使得给定观测数据出现的概率最大。
具体来说,我们定义一个参数θ的似然函数L(θ|x),其中θ是参数,x是观测数据。
极大似然估计即求解使得似然函数取得最大值的θ值。
举个例子,假设我们有一个二项分布的总体,其中参数p表示成功的概率,我们从总体中抽取一个样本,得到x个成功的观测值。
那么,样本观测出现的概率可以表示为二项分布的概率质量函数,即L(p|x) = C(nx, x) * p^x * (1-p)^(n-x),其中C(nx, x)是组合数。
我们通过求解使得似然函数取得最大值的p值,来估计总体成功的概率。
与点估计相比,区间估计提供了一个更加全面的参数估计结果。
区间估计指的是通过样本数据推断总体参数的一个区间范围。
常用的区间估计方法包括置信区间和预测区间。
置信区间是指通过已知样本数据得到的一个参数估计区间,使得这个估计区间能以一个预先定义的置信水平包含总体参数的真值。
置信水平通常由置信系数(1-α)来表示,其中α为显著性水平。
置信区间的计算方法根据不同的总体分布和参数类型而异。
举个例子,当总体为正态分布且总体方差已知时,可以利用正态分布的性质计算得到一个置信区间。
预测区间是指通过对总体参数的一个估计,再结合对新样本观测的不确定性,得到一个对新样本值的一个区间估计。
线性预测分析L P C语音信号的线性预测分析概述参数模型法是现代谱估计的主要内容,经常采用的模型有3个1.自回归模型是一个全极点模型AR2.移动平均模型是一个全零点模型MA3.自回归-移动平均模型是一个既有零点,又有极点的模型。
ARMAAR模型反应频谱中的峰值,MA模型反应频谱中的谷值,ARMA模型反映两者。
AR模型可以与基于级联无损声管的语音产生模型相联系,因此在语音处理中他是被广泛采用的模型;而与其相关的线性预测分析也是语音信号中普遍采用的核心技术之一。
对语音信号进行线性预测分析的基本思想是:一个语音的采样能够用过去若干个语音采样的线性组合来逼近。
通过使线性预测到的采样在最小均方误差意义上逼近实际语音采样,可以求取一组唯一的预测系数。
这里的预测系数就是线性组合中所用的加权系数。
这种线性预测分析技术最早用于语音编码中,因此也常被简称为LPC。
线性预测的基本原理根据参数模型功率谱估计的思想,语音信号可以看做使用一个输入序列激励一个全极点的系统模型而产生的输出。
最小均方误差准则线性预测系数或LPC系数预测残差能量浊音情况下,激励可以看做是准周期的脉冲串;在清音情况下,可以看做是高斯白噪声。
考虑模型阶数的选择,通过预加重对高频部分的提升。
由于声门脉冲形状和口唇辐射的影响,语音信号的频谱在总趋势上会有高频衰落的现象,大约每倍程下降6DB。
抵消这一影响,通常在做LPC分析之前采用一个非常简单的一阶FIR滤波器进行预加重,进行高频提升。
线性预测分析是在短时平稳这一现实的假定基础上进行的,即一段语音信号是各态历经的平稳随机过程。
线性预测分析被普遍应用到语音处理的各个方面。
大量的实践证明:LPC 参数是反映语音信号特征的良好参数。
线性预测方程组的解法线性预测系数为变量的线性方程组。
有两种经典的解法:自相关法和协方差法,还可以避开自相关和协方差计算,直接由样本递推的线性预测解法:格型法。
自相关法:定义n的求和范围的一种较直接的方法是,认为语音段外的数据全为零,只计算范围n以内的语音数据。
模型参数辨识方法1.最小二乘法(Least Squares Method)最小二乘法是一种常用的参数辨识方法,它通过最小化观测数据与模型预测值之间的平方误差来确定模型的参数值。
最小二乘法可以用于线性和非线性模型。
对于线性模型,最小二乘法可以直接求解闭式解;对于非线性模型,可以使用数值优化算法进行迭代计算。
2.极大似然估计(Maximum Likelihood Estimation)极大似然估计是一种常用的统计推断方法,也可以用于模型参数辨识。
该方法假设观测数据满足一些统计分布,通过最大化观测数据出现的概率来估计参数值。
具体方法是构造似然函数,即给定观测数据下的参数条件下的概率密度函数,并最大化该函数。
3.贝叶斯推断(Bayesian Inference)贝叶斯推断是一种基于贝叶斯定理的统计推断方法,它通过先验分布和观测数据的条件概率来更新参数的后验分布。
贝叶斯推断可以通过采样方法如马尔科夫链蒙特卡洛(MCMC)来计算参数的后验分布,进而得到参数的估计值和置信区间。
4.参数辨识的频域方法频域方法在信号处理和系统辨识中应用广泛。
它基于信号的频谱特性和一些假设,通过谱估计方法如传递函数辨识和系统辨识,来推断模型的参数。
典型的频域方法有最小相位辨识、系统辨识的频域特性估计等。
5.信息矩阵(Information matrix)和似然比检验(Likelihoodratio test)信息矩阵和似然比检验是统计推断中的基本工具,也可以用于模型参数辨识。
信息矩阵衡量了参数估计的方差和协方差,可以通过信息矩阵来进行参数辨识的有效性检验。
似然比检验则是比较两个模型的似然函数值,用于判断哪个模型更好地解释观测数据。
总之,模型参数辨识是通过观测数据,推断出模型的参数值。
常用的方法包括最小二乘法、极大似然估计、贝叶斯推断、频域方法和信息矩阵等。
在实际应用中,选择合适的参数辨识方法需要考虑模型的特点、数据的性质以及求解的复杂度等因素。