第12章_2_参数模型功率谱估计
- 格式:pdf
- 大小:3.28 MB
- 文档页数:56
功率谱计算功率谱估计在现代信号处理中是一个很重要的课题,涉及的问题很多。
在这里,结合matlab,我做一个粗略介绍。
功率谱估计可以分为经典谱估计方法与现代谱估计方法。
经典谱估计中最简单的就是周期图法,又分为直接法与间接法。
直接法先取N点数据的傅里叶变换(即频谱),然后取频谱与其共轭的乘积,就得到功率谱的估计;间接法先计算N点样本数据的自相关函数,然后取自相关函数的傅里叶变换,即得到功率谱的估计.都可以编程实现,很简单。
在matlab中,周期图法可以用函数periodogram实现。
但是周期图法估计出的功率谱不够精细,分辨率比较低。
因此需要对周期图法进行修正,可以将信号序列x(n)分为n个不相重叠的小段,分别用周期图法进行谱估计,然后将这n段数据估计的结果的平均值作为整段数据功率谱估计的结果。
还可以将信号序列x(n)重叠分段,分别计算功率谱,再计算平均值作为整段数据的功率谱估计。
这2种称为分段平均周期图法,一般后者比前者效果好。
加窗平均周期图法是对分段平均周期图法的改进,即在数据分段后,对每段数据加一个非矩形窗进行预处理,然后在按分段平均周期图法估计功率谱。
相对于分段平均周期图法,加窗平均周期图法可以减小频率泄漏,增加频峰的宽度。
welch法就是利用改进的平均周期图法估计估计随机信号的功率谱,它采用信号分段重叠,加窗,FFT等技术来计算功率谱。
与周期图法比较,welch法可以改善估计谱曲线的光滑性,大大提高谱估计的分辨率。
matlab中,welch法用函数psd实现。
调用格式如下:[Pxx,F] = PSD(X,NFFT,Fs,WINDOW,NOVERLAP)X:输入样本数据NFFT:FFT点数Fs:采样率WINDOW:窗类型NOVERLAP,重叠长度现代谱估计主要针对经典谱估计分辨率低和方差性不好提出的,可以极大的提高估计的分辨率和平滑性。
可以分为参数模型谱估计和非参数模型谱估计。
参数模型谱估计有AR模型,MA模型,ARMA模型等;非参数模型谱估计有最小方差法和MUSIC法等。
《现代信号处理》教学大纲适用专业:信息与通信工程、物联课程性质:学位课网工程、电子与通信学时数:32 学分数: 2课程号:M081001 开课学期:秋季第(1)学期大纲执笔人:何继爱大纲审核人:陈海燕一、课程的地位和教学目标现代信号处理作为信息类专业研究生的一门专业基础课,是在传统数字信号处理基础上,基于概率统计的思想,用数理统计、优化估计、线性代数和矩阵计算等工具,研究有限数据量的随机信号的分析与处理,且系统可能是时变、非线性的,它是近代才发展起来的前沿学科。
主要讨论基于信号模型分析和滤波的基本理论和基本方法;以现代谱估计和自适应滤波为核心内容,并介绍现代信号处理的新技术。
该课程为众多信号处理的应用领域打下基础,包括通信、声学、图像、雷达、声纳、生物医学等领域的信号处理。
本课程的知识目标是使学生牢固掌握现代信号处理一些最基本的理论、方法和应用,并能跟踪和学习新的理论、方法和技术;内容涉及随机信号统计分析、现代谱估计、自适应滤波器、时频分析与二次型时频分布、信号多速率变换、盲信分离和阵列信号处理方法等;建立现代信号处理的知识体系,对课程内容总体把握;具有一定的实验和模拟仿真的基本知识。
了解现代信号处理重要新技术的发展趋势,为从事信息与通信工程及相关电子系统的工程设计打下坚实的基础。
本课程的能力目标是通过课程的学习提高学生的分析计算方法、演绎推理方法和归纳法等基本数学处理方法;运用数学、物理及工程概念及方法发现问题、分析问题和解决问题的能力,以及理论与实际相结合的能力;能够触类旁通,提高学生的科学学习方法;掌握通信学科的信号分析与处理基本理论和技能,思路开阔,具有运用所学知识的能力、搜集和提炼信息的能力、团队合作能力、表达能力和创新能力等。
本课程的专业素质目标通过本课程的课堂学习、单元知识及章节总结、习题及专题研讨培养学生培养良好严谨的科学研究态度和正确的思维方法,使学生敢于提出问题、善于分析问题和解决问题的能力及具有团队合作精神。
功率谱估计引言:对信号和系统进行的分析研究、处理有两类方法:一类是在时域内进行,维纳滤波、卡尔曼滤波以及自适应滤波等都属于时域处理方法;另一类方法是频域研究方法。
对于确定性信号,傅里叶变换是在频率分析研究的理论基础,但是在实际生活中大多数信号是随机信号,而随机信号的傅里叶变换是不存在的,在实际应用中,通常通过采集和观测平稳随机过程的一个抽样序列的一段(有限个)数据,根据这有限个已知的数据来估计随机过程的功率谱问题来对随机信号进行分析,这即是频率谱估计。
功率谱估计是数字信号处理的主要内容之一,主要研究信号在频域中的各种特征,目的是根据有限数据在频域内通过用某种有效的方法来估计出其功率谱密度,从而得出信号、噪声及干扰的一些性质来,提取被淹没在噪声中的有用信号。
功率谱估计就是通过信号的相关性估计出接受到信号的功率随频率的变化关系,实际用途有滤波,信号识别(分析出信号的频率),信号分离,系统辨识等。
谱估计技术是现代信号处理的一个重要部分,还包括空间谱估计,高阶谱估计等。
按照Weiner —Khintchine 定理,随机信号的功率谱和其自相关函数服从傅里叶变换关系,可以得出功率谱的一个定义,如公式(1)所示:()jwm m xx jw xx e m re P -∞-∞=∑=)( 公式(1)对于平稳随机信号,服从各态历经性,集合平均可以用时间平均来代替,可以推出功率谱的另一定义。
如公式(2)所示:()])(121[2lim ∑-=-∞→+=N N n jwn N jw xx e n x N E e P 公式(2)频率谱估计主要分为经典谱估计和现代谱估计,经典谱估计是将数据工作区外的未知数据假设为零,相当于数据加窗,主要方法有相关法和周期图法;现代谱估计是通过观测数据估计参数模型再按照求参数模型输出功率的方法估计信号功率谱,主要是针对经典谱估计的分辨率低和方差性能不好等问题提出的,应用最广的是AR 参数模型。
功率谱估计功率谱估计就是通过信号的相关性估计出接受到信号的功率随频率的变化关系,实际用途有滤波,信号识别(分析出信号的频率),信号分离,系统辨识等。
谱估计技术是现代信号处理的一个重要部分,还包括空间谱估计,高阶谱估计等。
维纳滤波、卡尔曼滤波,可用于自适应滤波,信号波形预测等(火控系统中的飞机航迹预判)。
如果我在噪声中加入一个信号波形。
要完全滤波出我加入的信号波形,能够做到吗?如果知道一些信息,利用一个参考信号波形,可利用自适应滤波做到(信号的初始部分稍有失真)。
功率谱估计是数字信号处理的主要内容之一,主要研究信号在频域中的各种特征,目的是根据有限数据在频域内提取被淹没在噪声中的有用信号。
下面对谱估计的发展过程做简要回顾:英国科学家牛顿最早给出了“谱”的概念。
后来,1822年,法国工程师傅立叶提出了著名的傅立叶谐波分析理论。
该理论至今依然是进行信号分析和信号处理的理论基础。
傅立叶级数提出后,首先在人们观测自然界中的周期现象时得到应用。
19世纪末,Schuster提出用傅立叶级数的幅度平方作为函数中功率的度量,并将其命名为“周期图”(periodogram)。
这是经典谱估计的最早提法,这种提法至今仍然被沿用,只不过现在是用快速傅立叶变换(FFT)来计算离散傅立叶变换(DFT),用DFT的幅度平方作为信号中功率的度量。
周期图较差的方差性能促使人们研究另外的分析方法。
1927年,Yule提出用线性回归方程来模拟一个时间序列。
Yule的工作实际上成了现代谱估计中最重要的方法——参数模型法谱估计的基础。
Walker利用Yule的分析方法研究了衰减正弦时间序列,得出Yule-Walker方程,可以说,Yule和Walker都是开拓自回归模型的先锋。
1930年,著名控制理论专家Wiener在他的著作中首次精确定义了一个随机过程的自相关函数及功率谱密度,并把谱分析建立在随机过程统计特征的基础上,即,“功率谱密度是随机过程二阶统计量自相关函数的傅立叶变换”,这就是Wiener—Khintchine定理。
参数法功率谱估计一、信号的产生(一)信号组成在本实验中,需要事先产生待估计的信号,为了使实验结果较为明显,我产生了由两个不同频率的正弦信号(频率差相对较大)和加性高斯白噪声组成的信号。
(二)程序N=1024;n=0:N-1;xn=2*cos(2*pi*0.2*n)+ cos(2*pi*0.213*n)+randn(1,1024);这样就产生了加有白噪声的两个正弦信号其波形如下0100200300400500600-8-6-4-2246810(a) 两个正弦信号与白噪声叠加的时域波形二、参数模型法功率谱估计(一)算法原理简介1.参数模型法是现代谱估计的主要内容,思路如下:① 假定所研究的过程)(n x 是由一个白噪声序列)(n 激励一个因果稳定的可逆线性系统)(z H 的输出;② 由已知的)(n x ,或其自相关函数)(m r x 估计)(z H 的参数;③ 由)(z H 的参数来估计)(n x 的功率谱。
2.自回归模型,简称AR 模型,它是一个全极点的模型。
“自回归”的含义是:该模型现在的输出是现在的输入和过去p 个输出的加权和。
此模型可以表现为以下三式:① ∑=+--=p k k n u k n x a n x 1)()()(;② ∑=-+==p k kk z a z A z H 111)(1)(;③ 2121)(∑=-+=p k jwkk jw x e a e P σ。
3.AR 模型的正则方程建立了参数k a 和)(n x 的自相关函数的关系,公式如下:=)(m r x ∑=--p k x k k m r a 1)( 1≥m 时,=)(m r x 21)(σ+-∑=k r a pk x k 0=m 时。
(二)两种AR 模型阶次的算法1.Yule-Walker 算法(自相关法)(1)算法主要思想Yule-Walker 算法通过解Yule-Walker 方程获得AR 模型参数。
从低阶开始递推,直到阶次p ,给出了在每一个阶次时的所有参数。
功率谱估计浅谈摘要:介绍了几种常用的经典功率谱估计与现代功率谱估计的方法原理,并利用Matlab对随机信号进行功率谱估计,对两种方法做出比较,分别给出其优缺点。
关键词:功率谱;功率谱估计;经典功率谱估计;现代功率谱估计前言功率谱估计是从频率分析随机信号的一种方法,一般分成两大类:一类是经典谱估计;另一类是现代谱估计。
由于经典谱估计中将数据工作区以外的未知数据假设为零,这相当于数据加窗,导致分辨率降低和谱估计不稳定。
现代谱估计则不再简单地将观察区外的未知数据假设为零,而是先将信号的观测数据估计模型参数,按照求模型输出功率的方法估计信号功率谱,回避了数据观测区以外的数据假设问题。
周期图、自相关法及其改进方法(Welch)为经典(非参数)谱估计方法, 其以相关和傅里叶变换为基础,对于长数据记录较适用,但无法根本解决频率分辨率低和谱估计稳定性的问题,特别是在数据记录很短的情况下,这一问题尤其突出。
以随机过程的参数模型为基础的现代参数法功率谱估计具有更高的频率分辨率和更好的适应性,可实现信号检测或信噪分离,对语音、声纳雷达、电磁波及地震波等信号处理具有重要意义,并广泛应用于通信、自动控制、地球物理等领域。
在现代参数法功率谱估计方法中,比较有效且实用的是AR模型法,Burg谱估计法,现代谱估计避免了计算相关,对短数据具有更强的适应性,从而弥补了经典谱估计法的不足,但其也有一些自身的缺陷。
下面就给出这两类谱估计的简单原理介绍与方法实现。
经典谱估计法经典法是基于传统的傅里叶变换。
本文主要介绍一种方法:周期图法。
周期图法由于对信号做功率谱估计,需要用计算机实现,如果是连续信号,则需要变换为离散信号。
下面讨论离散随机信号序列的功率谱问题。
连续时间随机信号的功率谱密度与自相关函数是一对傅里叶变换对,即:()()j x x S R e d +∞-Ω-∞Ω=⎰τττ若()x R m 是()x R Ω的抽样序列,由序列的傅里叶变化的关系,可得()()j j n x x m S e R m e ωω∞-=-∞=∑即()j x S e ω与()x R m 也是一对傅里叶变换对。
功率谱估计概念
功率谱估计是对信号的功率谱密度进行估计的过程,是信号处理中的基本问题之一。
功率谱密度描述了信号中不同频率分量的功率分布,对于分析信号的频域特性、噪声抑制、信号识别等领域具有重要意义。
在许多实际应用中,我们常常需要从采集到的信号数据中估计其功率谱。
这是因为功率谱是描述信号本质特征的重要手段,能帮助我们了解信号中各个频率分量的强度和分布情况。
比如在通信、雷达、音乐、语音处理、生物医学工程等领域,都需要对信号的功率谱进行估计和分析。
传统的功率谱估计方法包括周期图法、自相关法、Burg法等。
但这些方法通常需要较长的数据样本,并且对数据的预处理和窗函数选择敏感,计算复杂度也较高。
随着现代信号处理技术的发展,新的功率谱估计方法不断涌现,如基于小波变换的方法、基于神经网络的方法等。
这些新方法能够更准确地估计信号的功率谱,并且对噪声和干扰具有较强的鲁棒性。
在估计信号的功率谱时,我们需要关注估计的精度、稳定性、计算复杂度等问题。
不同的应用场景对功率谱估计的要求也不同,需要根据实际情况选择合适的方法。
同时,功率谱估计也是信号处理领域中一个富有挑战性的研究方向,仍有许多问题需要进一步研究和探索。
总的来说,功率谱估计是信号处理中的一项重要技术,广泛应用于各个领域。
随着科技的不断发展和进步,相信未来会有更多高效、准确的功率谱估计方法出现,推动相关领域的技术进步和应用创新。