当前位置:文档之家› 2015年电赛频率计设计报告

2015年电赛频率计设计报告

2015年电赛频率计设计报告
2015年电赛频率计设计报告

2015年全国大学生电子设计竞赛

数字频率计(F题)

2015年8月15日

摘要

数字频率计可以直接计数单位时间内被测信号的脉冲数,并以数字形式显示频率值。主要由四个部分构成:输入电路、时基(T)电路、计数显示电路以及控制电路。

首先通过OP37G把输入信号进行放大,由施密特触发器CD40106整形,由于其对正向和负向增长的信号有不同的阀值电压,使得高低电平具有迟滞性,得到更稳定的方波。接着通过74LS160对过高频率的信号进行分频;而后通过AT89S52控制闸门电路来控制计数器计数的标准时间,再由计数器对通过的高电平进行计数,用数码管显示计数后的高电平数,即得到被测信号的频率。

关键词:AT89S52、放大整形电路、施密特触发器、分频、时基电路、数码管

目录

1引言: (1)

2系统理论分析与设计 (1)

2.1放大电路的选择: (1)

2.2整形电路: (1)

2.3分频电路 (2)

2.4计数模块 (2)

2.5显示模块 (2)

3电路与程序设计 (2)

3.1电路的设计 (2)

3.1.1系统总体框图 (2)

3.1.2 电路原理图 (3)

3.1.3电源 (4)

3.2程序的设计 (4)

3.2.1程序功能描述与设计思路 (4)

3.2.2程序流程图 (4)

4测试方案与测试结果 (6)

4.1测试方案 (6)

4.2 测试条件与仪器 (7)

4.3 测试结果及分析 (7)

4.3.1测试结果(数据) (8)

4.3.2测试分析与结论 (8)

附录1:电路原理图 (9)

附录2:源程序 (10)

数字频率计(F题)

1引言:

数字计数式频率计能直接计数单位时间内被测信号的脉冲数,然后以数字形式显示频率值。数字计数器主要由四个部分构成:输入电路、时基(T)电路、计数显示电路以及控制电路。首先通过宽带前置放大电路把输入信号进行放大,由CD40106整形得到能被计数器识别的脉冲波;接着通过74LS160对过高频率的信号进行分频;而后通过AT89S52控制闸门电路来控制计数器计数的标准时间,再由计数器对通过的脉冲信号进行计数,用LCD1602显示计数后的脉冲数,即得到被测信号的频率。

本系统主要由放大整形模块、分频模块、计数模块、显示模块、电源模块构成,整体流程框图如下:

2系统理论分析与设计

2.1放大电路的选择:

因为输入的被测信号幅值不确定,在本设计中要求测量的幅值在50MV-1V之间,所以必须在对脉冲技术前必须对信号进行处理,使其转化为能被计数器识别的高电平。

方案一:三极管放大

优势:放大的可调性更高,

缺点:三极管的放大特性在高频时不稳定,只适用于中低频的放大。且单个三极管的放大倍数有限,对于幅值极低的信号无法满足。

方案二:运算放大器放大

优势:电路简单,集成度高,比较稳定

缺点:运算放大器就是由多个三极管集成,单其参数固定,放大倍数足够。且运算放大器的工作范围较大,对于较高频率的信号同样适用。

综合考虑本设计的需求,我们决定采用运算放大器进行信号的放大,因为本次设计的要求是达到10MHZ以上,采用三极管无法处理这么高的频率。因此采用运算放大器。

2.2整形电路:

由于输入的信号可以是正弦波,三角波。而后面的闸门或计数电路要求被测信号为矩形波,所以需要设计一个整形电路则在测量的时候,首先通过整形电路将正弦波或者三角波转化成矩形波。

方案1:使用电压比较器

优点:电路简单,使用方便,容易受到噪声干扰。

缺点:输出的方波不够平稳,在输入的波形不稳定的情况下,电压比较器不能在同

样的地方开启,使得输出的方波占空比不稳定。且当电流不够大时,波形边沿不够陡峭。

方案2:使用施密特触发器

优点:因为对正向和负向增长的输入信号具有不同的阀值电压,从而使传输特性具有迟滞特性。使得输出的波形保持在两种状态之间,较为稳定。可避免噪声误触发电路。

缺点:对于以0V及以上为低电平的信号,施密特触发器处理效果不好。

综合考虑这两种整形电路,因为本设计只需要多方波和正弦波进行处理,所以决定采用施密特触发器,因其处理的波形更稳定,且能有效避免杂波的干扰。

2.3分频电路

因为AT89S52单片机对于1MHZ以上的信号处理比较吃力,所以在对经过放大整形后的脉冲进行计数时,要先对高频的部分进行分频,使其降低到单片机可计数的频段,而后在显示时输出计数的数值乘以相应的分频倍数。可以选用74LS160计数器对其进行分频,74LS160可以实现任意倍数的分频,比较方便。

我们将输入信号的频率范围分为三个频段:1HZ到100kHZ为低频段,此频段可直接输入单片机进行计数;100kHZ到1MHZ为中频段,放大整形后进行10分频,输入单片机计数;而1MHZ到10MHZ为高频段,放大整形后进行100分频再输入单片机计数。最后的显示模块即由计数器得到的脉冲数再乘以相应的放大倍数输出显示,即为输入信号的频率。

2.4计数模块

计数模块由T89S52单片机进行计数

2.5显示模块

显示模块由AT89S52单片机进行控制,我们考虑到了数码管显示和LCD1602显示这两种显示方式。

方案一:数码管显示

优点:简单明了,数据一目了然

缺点:只能显示数字,不能显示其他的提示。

方案二:LCD1602显示

优点:可以显示其他提示,使得显示的内容更加全面

缺点:成本稍高。

3电路与程序设计

3.1电路的设计

3.1.1系统总体框图

系统总体框图如图1所示

\

图1 系统总体框图

3.1.2 电路原理图

1、宽带放大模块系统框图

图2 放大子系统框图

2、整形、分频子系统电路

图3 整形、放大子系统电路

3、显示电路

图4、显示电路

3.1.3电源

电源由变压部分、滤波部分、稳压部分组成。为整个系统提供5V电压,确保电路的正常稳定工作。这部分电路比较简单,都采用三端稳压管实现,故不作详述。3.2程序的设计

3.2.1程序功能描述与设计思路

1、程序功能描述

根据题目要求软件部分主要实现自动分档和显示。

1)键盘实现功能:设置频率值、频段、电压值以及设置输出信号类型。

2)显示部分:显示频率、周期、档位。

2、程序设计思路

3.2.2程序流程图

1、主程序流程图

2、显示模块子程序流程图

4测试方案与测试结果

4.1测试方案

1、放大整流模块电路测试:

图5 宽带放大电路

如图是对放大模块的测试,当输入信号频率在200KHZ以下,波形显示正常,函数信号发生器发出的信号源经过OP37放大过之后,通过示波器观察输出的是频率与信号源相同,幅值为4V到5V的脉冲信号。施密特触发器CD40106,得出的是频率与信号源相同,幅值为5V的方波,符合计数器的幅值要求。但输入频率超过200KHZ,OP37输出波形严重失真,并逐渐归零,无法计数。

2、软件仿真测试

采用Multisim仿真软件,用软件画好仿真电路,写入编号的程序,查看现象。

图6 输入信号波形

图7 输出信号波形

图8 软件仿真数码管示数

3、硬件软件联调

当输入信号频率在200KHZ以下,数码管显示正常与函数信号发生器输出波形的频率一致,误差极小。

当输入频率超过200KHZ,数码管显示数值不再与信号源一致,并逐渐归零。

4.2 测试条件与仪器

测试条件:检查多次,仿真电路和硬件电路必须与系统原理图完全相同,并且检查无误,硬件电路保证无虚焊。

测试仪器:函数信号发生器、模拟示波器、数字万用表、数字频率计、5V直流电源、Multisim仿真软件

4.3 测试结果及分析

Multisim软件仿真结果与实际电路测试结果不同,推测应该是OP37的最大工作频率在200KHZ以下,所以在高频阶段OP37无法正常,故频率计无法正常显示。

而在我们实验室现有的器材中,OP37可以达到的工作频率已经是最高,故受器材

限制,频率计无法更进一步,测量更高的信号频率。

4.3.1测试结果(数据)

4.3.2测试分析与结论

根据上述测试结果,当输入信号超过200KHZ时,频率计的误差就开始增大,当频率越来越大时,频率计示数越来越不稳定,当信号到达3MHZ是示数完全归零由此可以得出以下结论:

1、当输入信号在200 KHZ以下时,数字频率计的示数很精确,误差极小,可以正常使用。

2、当输入信号超过200KHZ,数字频率计的示数开始不稳定,一直到2MHZ左右,越来越不稳定,当输入信号超过3MHZ,频率计示数完全归零。

3、频率计只可以在低于200KHZ的频率时能够实现信号频率的精准测量,即只能测量中低频的信号。

综上所述,本设计未达到设计要求。

附录1:电路原理图

附录2:源程序

#include

#define value P0

#define place P1

unsigned char d[4];

unsigned char Num[10]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f}; sbit clear=P2^3;

sbit ledG=P2^4;

sbit ledY=P2^5;

sbit ledR=P2^6;

unsigned char count=0;

unsigned char gears;

unsigned int tN;

unsigned int fCnta;

unsigned long regCnta;

unsigned int fCntb;

unsigned long regCntb;

unsigned long pCnt;

void Delay(unsigned int DelayTime)

{

while(DelayTime--);

}

void display()

{

if(gears==1)

{

d[3]=0;

d[2]=pCnt/100;

d[1]=(pCnt%100)/10;

d[0]=pCnt%10;

place=0x01;value=Num[d[3]];Delay(200);

place=0x02;value=Num[d[2]];Delay(200);

place=0x04;value=Num[d[1]];Delay(200);

place=0x08;value=Num[d[0]];Delay(200);

ledG=1;

ledY=1;

ledR=0;

}

if(gears==2)

{

d[3]=pCnt/1000;

d[2]=(pCnt%1000)/100;

d[1]=(pCnt%100)/10;

d[0]=pCnt%10;

place=0x01;value=Num[d[3]];Delay(300);

place=0x02;value=Num[d[2]];Delay(300);

place=0x04;value=Num[d[1]]+0x80;Delay(300);

place=0x08;value=Num[d[0]];Delay(300);

ledG=1;

ledY=0;

ledR=1;

}

if(gears==3)

{

d[3]=pCnt/1000;

d[2]=(pCnt%1000)/100;

d[1]=(pCnt%100)/10;

d[0]=pCnt%10;

place=0x01;value=Num[d[3]]+0x80;Delay(50);

place=0x02;value=Num[d[2]];Delay(50);

place=0x04;value=Num[d[1]];Delay(50);

place=0x08;value=Num[d[0]];Delay(50);

ledG=0;

ledY=1;

ledR=1;

}

if(gears==4)

{

d[3]=0;

d[2]=0;

d[1]=0;

d[0]=0;

place=0x01;value=Num[d[3]];Delay(100);

place=0x02;value=Num[d[2]];Delay(100);

place=0x04;value=Num[d[1]];Delay(100);

place=0x08;value=Num[d[0]];Delay(100);

ledG=0;

ledY=0;

ledR=0;

}

}

void intialize()

{

clear=1;

ledG=1;

ledY=1;

ledR=0;

TMOD=0x66;

gears=1;

RCAP2H=(65536-62500)/256;

RCAP2L=(65536-62500)%256;

TH2=RCAP2H;

TL2=RCAP2L;

tN=16;

ET2=1;

TR2=1;

ET0=1;

TR0=1;

ET1=1;

TR1=1;

TH0=0;

TL0=0;

TH1=0;

TL1=0;

EA=1;

}

void main()

{

intialize();

while(1)

{

display();

}

}

void timer2() interrupt 5

{

count++;

TF2=0;

if(count==tN)

{

EA=0;

regCnta=(long)fCnta*256+TL1;

regCntb=(long)fCntb*256+TL0;

TL1=0;

TH1=0;

TL0=0;

TH0=0;

fCnta=0;

fCntb=0;

count=0;

clear=0;

clear=1;

if(gears==1)

{

if(regCnta<1000)

{

pCnt=regCnta;

}

else

{

gears=2;

}

}

else if(gears==2)

{

regCntb=regCntb*10/100;

if(regCntb>=10&®Cntb<10000)

{

pCnt=regCntb;

}

else if(regCntb>=10000)

{

gears=3;

}

}

else if(gears==3)

{

regCntb=regCntb*10/1000;

if(regCntb<10000)

{

pCnt=regCntb;

}

else if (regCntb>=10000)

{

gears=4;

}

}

else if(gears==4)

{

if(regCntb<2500)

gears=1;

}

EA=1;

}

}

void tally1() interrupt 3

{

fCnta++;

}

void tally0() interrupt 1

{

fCntb++;

}

基于单片机的智能电饭煲的控制毕业设计

华北水利水电学院 North China Institute of Water Conservancy and Hydroelectric Power 毕业设计 题目:基于单片机的电饭煲智能控制系统的设计

华北水利水电学院 毕业设计任务书 题目:基于单片机的电饭煲智能控制系统的设计 专业:电子信息工程 班级学号:200915512 姓名: 李玉平 指导教师:郑辉 设计期限:2011 年2 月21日开始 2011年5 月27日结束 院、系:信息工程学院 2011年2月21 日

一、毕业设计的目的 通过本次设计掌握产品设计的流程,能熟练的使用AT89C51单片机,并根据设计要求选择合适的元器件,充分理解相关软件,对整个产品设计时的调试等必要的环节有更深刻的体会。 本设计通过选认元件、连线焊接、调试检测等过程,培养了搜集资料和调查研究的能力,方案论证选择的能力,理论分析与设计运算的能力,巩固了计算机软硬件和应用系统设计方面的能力。 二、主要设计内容及基本要求 1.本设计包含以下部分:按键电路、上电复位电路、晶振电路、电源电路、显示电路、MCU系统部分、机械控制电路等部分。 2.基本要求: (1)要求定时工作时间和实时时间对比达到长时间精确地定时功能。 (2)要求定时时间和实时时间相同时通过51单片机控制光耦驱动电路来控制电饭煲的工作。 三、重点研究问题 1.单片机的内部结构,显示电路的调试。 2.部分功能电路的软件设计:键盘显示电路、报警电路、工作指示电路。 四、主要技术指标或主要设计参数 根据模块电路,设计出完整的电路原理图,焊接出实物,并对产品进行调试。电源部分为单片机系统提供的电压为5V,为光耦提供的电压为12V。 五、设计成果 拟做出一个基于AT89C51单片机对电饭煲的智能控制系统的设计,设计出整体原理图,并做出实物,同时做出一份符合要求的毕业论文。

单片机课程设计报告——智能数字频率计汇总

单片机原理课程设计报告题目:智能数字频率计设计 专业:信息工程 班级:信息111 学号:*** 姓名:*** 指导教师:*** 北京工商大学计算机与信息工程学院

1、设计目的 (1)了解和掌握一个完整的电子线路设计方法和概念; (2)通过电子线路设计、仿真、安装和调试,了解和掌握电子系统研发产品的一个基本流程。 (3)了解和掌握一些常见的单元电路设计方法和在电子系统中的应用: 包括放大器、滤波器、比较器、计数和显示电路等。 (4)通过编写设计文档与报告,进一步提高学生撰写科技文档的能力。 2、设计要求 (1)基本要求 设计指标: 1.频率测量:0~250KHz; 2.周期测量:4mS~10S; 3.闸门时间:0.1S,1S; 4.测量分辨率:5位/0.1S,6位/1S; 5.用图形液晶显示状态、单位等。 充分利用单片机软、硬件资源,在其控制和管理下,完成数据的采集、处理和显示等工作,实现频率、周期的等精度测量方案。在方案设计中,要充分估计各种误差的影响,以获得较高的测量精度。 (2)扩展要求 用语音装置来实现频率、周期报数。 (3)误差测试 调试无误后,可用数字示波器与其进行比对,记录测量结果,进行误差分析。 (4)实际完成的要求及效果 1.测量范围:0.1Hz~4MHz,周期、频率测量可调; 2.闸门时间:0.05s~10s可调; 3.测量分辨率:5位/0.01S,6位/0.1S; 4.用图形液晶显示状态、单位(Hz/KHz/MHz)等。 3、硬件电路设计 (1)总体设计思路

本次设计的智能数字频率计可测量矩形波、锯齿波、三角波、方波等信号的频率。系统共设计包括五大模块: 主芯片控制模块、整形模块、分频模块、档位选择模块、和显示模块。设计的总的思想是以AT89S52单片机为核心,将被测信号送到以LM324N为核心的过零比较器,被测信号转化为方波信号,然后方波经过由74LS161构成的分频模块进行分频,再由74LS153构成的四选一选择电路控制档位,各部分的控制信号以及频率的测量主要由单片机计数及控制,最终将测得的信号频率经LCD1602显示。 各模块作用如下: 1.主芯片控制模块: 单片机AT89S52 内部具有2个16位定时/计数器T0、T1,定时/计数器的工作可以由编程来实现定时、计数和产生计数溢出时中断要求的功能。利用单片机的计数器和定时器的功能对被测信号进行计数。以AT89S52 单片机为控制核心,来完成对各种被测信号的精确计数、显示以及对分频比的控制。利用其内部的定时/计数器完成待测信号周期/频率的测量。 2.整形模块:整形电路是将一些不是方波的待测信号转化成方波信号,便于测量。本设计使用运放器LM324连接成过零比较器作为整形电路。 3.分频模块: 考虑单片机利用晶振计数,使用11.0592MHz 时钟时,最大计数速率将近500 kHz,因此需要外部分频。分频电路用于扩展单片机频率测量范围,并实现单片机频率测量使用统一信号,可使单片机测频更易于实现,而且也降低了系统的测频误差。本设计使用的分频芯片是74LS161实现4分频及16分频。 4.档位选择模块:控制74LS161不分频、4分频或者 16分频,控制芯片是74LS153。 5.显示模块:编写相应的程序可以使单片机自动调节测量的量程,并把测出的频率数据送到显示电路显示,本设计选用LCD1602。 (2)测频基本设计原理 所谓“频率”,就是周期性信号在单位时间(1s)内变化 的次数。若在一定时间间隔T内测得这个周期性信号的重复变 化次数N,则其频率可表示为f=N/T(右图3-1所示)。其中脉 冲形成电路的作用是将被测信号变成脉冲信号,其重复频率等 。利用单片机的定时/计数T0、T1的定时、计数 于被测频率f x 功能产生周期为1s的时间脉冲信号,则门控电路的输出信号持图3-1

数字频率计的设计

长安大学 电子技术课程设计 数字频率计的设计 专业: 班级: 姓名 指导教师: 日期:

目录 引言 第一章系统概述 一、设计方案的选择 1、计数法 2、计时法 二、整体框图及原理 第二章单元电路设计 一、放大电路设计 二、闸门电路设计 三、时基电路设计 四、控制电路设计 五、报警电路设计 六、整体电路图 七、整机元件清单 第三章设计小结 一、设计任务完成情况 二、问题及改进 三、心得体会 鸣谢 附录

引言 题目:数字频率计的设计 初始条件: 本设计可以使用在数模电理论课上学过或没学过的集成器件和必要的门电路构建简易频率计,用数码管显示频率计数值。 要求完成的主要任务: ①设计一个频率计。要求用4位7段数码管显示待测频率,并用发光二极管表示单位。 ②测量频率的范围:100hz—100khz。 ③测量信号类型:正弦波和方波。 ④具有超量程报警功能。 摘要: 本次课程设是基于TTL系列芯片的简易数字频率计,数字频率计应用所学的数字电路和模拟电路的知识进行设计。在设计过程中,所有电路仿真均基于Multisim仿真软件。本课程设计介绍了简易频率计的设计方案及其基本原理,并着重介绍了频率计各单元电路的设计思路,原理及仿真,整体电路的的工作原理,控制器件的工作情况。设计共有三大组成部分:一是原理电路的设计,本部分详细讲解了电路的理论实现,是关键部分;二是性能测试,这部分用于测试设计是否符合任务要求。三是是对本次课程设计的总结。 关键字:频率计、TTL芯片、时基电路、逻辑控制、分频、计数、报警

第一章系统概述 一、设计方案的选择 信号的频率就是信号在单位时间内所产生的脉冲个数,其表达式为f=N/T,其中f为被测信号的频率,N为计数器所累计的脉冲个数,T为产生N个脉冲所需的时间。计数器所记录的结果,就是被测信号的频率。如在1s内记录1000个脉冲,则被测信号的频率为1000HZ。测量频率的基本方法有两种:计数法和计时法,或称测频法和测周期法。 1、计数法 计数法是将被测信号通过一个定时闸门加到计数器进行计数的方法,如果闸门打开的时间为T,计数器得到的计数值为N1,则被测频率为f=N1/T。改变时间T,则可改变测量频率范围。如图(1-1-1) 计数值N1 被测信号 标准闸门 T 图 1-1-1 测频法测量原理 设在T期间,计数器的精确计数值应为N,根据计数器的计数特性可知,N1的绝对误差是N1=N+1,N1的相对误差为δN1=(N1-N)/N=1/N。由N1的相对误差可知,N的数值愈大,相对误差愈小,成反比关系。因此,在f以确定的条件下,为减少N的相对误差,可通过增大T的方法来降低测量误差。当T为某确定值时(通常取1s),则有f1=N1,而f=N,故有f1的相对误差:δf1=(f1-f)/f=1/f 从上式可知f1的相对误差与f成反比关系,即信号频率越高,误差越小;而信号频率越低,则测量误差越大。因此测频法适合用于对高频信号的测量,频率越高,测量精度也越高。

电子设计大赛报告.doc

自动搬运机器人 王泽栋1 曹嘉隆1 高召晗1 杨超2 (1.电子信息工程系学生,2.电子信息工程系教师) 【摘要】 本设计与实作是利用反射式红外线传感器所检测到我们所要跑的路线,我们以前后车头共4颗红外感应传感器TCRT5000来检测黑色路线,并利用Atmel 公司生产的8位单片机AT89S52单片机做决策分析。,将控制结果输出至直流电机让车体自行按预先设计好的路线行走。以AT89S52晶片控制自动搬运机器人的行径,藉由自动搬运的制作过程学习如何透过程式化控制流程、方法与策略、利用汇编语言控制电机停止及正反转,使自动搬运机器人能够沿轨道自行前进、后退以及转弯。目的是在于让车子达到最佳效能之后,参加比赛为最终目的。自动搬运机器人运行过程中会遇到直线、弯道、停止。该设计集检测,微控等技术为一体,运用了数电、模电和小系统设计技术。该设计具有一定的可移植性,能应用于一些高难度作业环境中。 【关键词】自动搬运;黑线检测;时间显示。 1.系统方案选择和论证 1.1 系统基本方案 根据要求,此设计主要分为控制部分和检测部分,还添加了一些电路作为系统的扩展功能,有电动车每一次往返的时间(记录显示装置需安装在机器人上)和总的行驶时间的显示。系统中控制部分包括控制器模块、显示模块及电动机驱动模块。信号检测部分包括黑线检测模块。系统方框图如图1.1.1 图1.1 系统方框图 1.2各模块方案的比较与论证 (1)控制器模块 根据设计要求,控制器主要用于信号的接收和辨认控制电机的正反转、小车的到达直角转弯处的转向、时间显示。 方案一:采用MCS-51系列单片机价格低、体积小、控制能力强。 方案二:采用与51系列单片机兼容的Atmel公司的AT89S52作为控制器件

电饭锅产品设计分析

产品设计分析报告 姓名 班级学号 报告日期 艺术与设计学院

一、产品名称 半球电饭锅二、外形图

三、结构分析 1、爆炸图

2、产品工作原理 电饭锅的工作原理如图所示。将盛好食物的内锅放到发热板上,使其底部与发热板中心的限温中感温软磁铁贴合。按下琴键开关,软磁铁下方的永久磁铁即上升至与软磁铁接触;此时锅尚未升温,软磁铁处于居里温度以下,呈良好铁磁性,能被永久磁铁磁化并将其吸持在高点位置。处于高点位置的软磁铁带动内部杠杆动作,将电路上、下触点接通,电热元件通电发热,锅内食物被加热升温。当内锅底温度达到103±2℃(此为软磁铁的居里温度)时,软磁铁立即感知而失去磁性,在重力及内部弹簧的共同作用下从高点位置落下,并由此带动杠杆机构,使电路上、下触点脱离,电路断开,热元件不再发热,达到限温目的。但此时发热板仍处于高热状态,其热容量较大,可对锅内食物继续加热一段时间,直至食物熟透。为了使食物维持在适宜温度,有的电饭锅还设有小功率加热线路,用一个双金属片恒温器控制其工作温度。 发热板是将环形金属管状电热元件铸造在铝合金体中,再经加工而成,它具有较好的热传导性能和较大的机械强度,板面形状要求与锅底相吻合,在其中心处装有磁性温度控制元件,如图2所 示。 温度控制装置电饭锅所以能够自动断电和保温,是因为它内部装有磁钢限温器和热双金属片恒温器两个自动装置。

磁钢限温器的动作原理,见图3。它是利用感温磁钢(软磁体)的磁性随温度的高低而变化的特性来设计的。当低温时,感温磁钢是顺磁性物质,具有磁性;当温度升到某一界限时,感温磁钢变成逆磁性物质,因而失去磁性。这个温度界限,叫做居里点。通常,居里点的温度略高于103℃。在饭煮熟前,锅内有水,所以电饭锅的内胆温度不会超过100℃,感温磁钢仍然具有磁性。当饭熟后,内胆没有水,温度便会上升超过100℃。此时,紧贴于内胆底面的感温磁钢温度,也随之上升到居里点而失去磁性。这样,永磁体在重力或弹簧弹力的作用下,使感温磁钢不能继续吸住它而跌落。下跌时,永磁体通过连杆作用把触点分离,于是电饭锅断电,表明米饭已经煮熟。

基于单片机的简单频率计课程设计报告

《单片机原理与接口技术》课程设计报 告 频率计

1功能分析与设计目标 0 2频率计的硬件电路设计 (3) 2.1 控制、计数电路 (3) 2.2 译码显示电路 (5) 3频率计的软件设计与调试 (6) 3.1软件设计介绍 (6) 3.2程序框图 (8) 3.3功能实现具体过程 (8) 3.4测试数据处理,图表及现象描述 (10) 4讨论 (11) 5心得与建议 (12) 6附录(程序及注释) (13)

1 功能分析与设计目标 背景:在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。为了实现智能化的计数测频,实现一个宽领域、高精度的频率计,一种有效的方法是将单片机用于频率计的设计当中。用单片机来做控制电路的数字频率计测量频率精度高,测量频率的范围得到很大的提高。 题目要求: 用两种方法检测(△m ,△ T )要求显示单位时间的脉冲数或一个脉冲的周期。 设计分析: 电子计数式的测频方法主要有以下几种:脉冲数定时测频法(M 法),脉冲周期测频法(T 法),脉冲数倍频测频法(AM 法),脉冲数分频测频法(AT 法),脉冲平均周期测频法(M/T 法),多周期同步测频法。下面是几种方案的具体方法介绍。 脉冲数定时测频法(M 法):此法是记录在确定时间Tc 内待测信号的脉冲个数Mx ,则待测频率为: Fx=Mx/ Tc 脉冲周期测频法(T 法):此法是在待测信号的一个周期Tx 内,记录标准频率信号变化次数Mo。这种方法测出的频率是: Fx=Mo/Tx 脉冲数倍频测频法(AM 法):此法是为克服M 法在低频测量时精度不高的缺陷发展起来的。通过A 倍频,把待测信号频率放大A 倍,以提高测量精度。其待测频率为: Fx=Mx/ATo 脉冲数分频测频法(AT 法):此法是为了提高T 法高频测量时的精度形成的。由于T 法测量时要求待测信号的周期不能太短,所以可通过A 分频使待测信号 的周期扩大A倍,所测频率为: Fx=AMo/Tx 脉冲平均周期测频法(M/T法):此法是在闸门时间Tc内,同时用两个计数器分别记录

电子技术课程设计(数字频率计的设计)

一课程设计题目:数字频率计的设计 二、功能要求 (1)主要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。 (2)率范围:分四1Hz~999Hz、01kHz~9.99kHz、1kHz~99.9kHz、10~999KHZ (3)周期范围:1ms~1s。 (4)用3个发光二极管表示单位,分别对应3个高档位。 三频率计设计原理框图 正弦波 数字频率计原理框图 1

测试电路原理:在测试电路中设置一个闸门产生电路,用于产生脉冲宽度为1s 的闸门信号。改闸门信号控制闸门电路的导通与开断。让被测信号送入闸门电路,当1s闸门脉冲到来时闸门导通,被测信号通过闸门并到达后面的计数电路(计数电路用以计算被测输入信号的周期数),当1s闸门结束时,闸门再次关闭,此时计数器记录的周期个数为1s内被测信号的周期个数,即为被测信号的频率。测量频率的误差与闸门信号的精度直接相关。 被测信号 频率测量算法对应的方框图 四、各部分电路及仿真 1 整形电路部分 整形电路的目的是将三角波、正弦波变成方便计数的脉冲信号。整形电路可以直接用555定时器构成施密特触发。 本次设计采用555定时器,适当连接若干个电阻就可以构成触发器 图1-1 整形电路 将555定时器的THR和TR1两个输入端连在一起作为信号输入端,则可得到 显示电路 闸门产生 输入电路闸门计数电路

施密特触发器,为了提高其稳定性通常要在要在CON端口接入一个0.01uf左右的滤波电容。但使用555定时器的时候输入的电压应该要大于5V,本次设计直接用信号源来做输入信号,并且信号源的振幅为10V,没有用放大电路将信号放大。 2 时基电路 时基电路时用来控制闸门信号选通的时间,由于本次设计的频率计测试范围是0到999KHz,故时基信号要有1ms 10ms 100ms 1s,基于上述,还需要一个分频器分出不同的频率。设计过程如下:可用一个多谐振电路产生频率为1KHz的脉冲信号(即T=1ms),然后使用分频器产生10ms 100ms 1s。 多谐振电路可以采用555定时器或者晶体振荡器来完成。本次设计采用555定时器实现,本次设计的精确度要求比较低,而且555定时器组成的多谐振荡起的最高振荡频率只能最多1MHz,而我们将用555定时器产生1Kz的频率,满足在该范围之内。分频器采用10分频,可用74LS90或者74LS160。 图2-1555定时器构成的多谐振振荡器 555多谐振振荡器设计参数:设计一个震荡周期为1ms,输出的占空比 2 3 q

全国大学生电子设计竞赛设计报告

全国大学生电子设计竞 赛设计报告精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

2017年全国大学生电子设计竞赛简易水情检测系统(P题) 2017年8月12日

摘要 本设计的是简易水情检测系统以STC89C52芯片为核心,辅以相关的外围电路,设计了以单片机为核心的水情检测系统。系统主要由5V电源供电。在硬件电路上在,用总线连接PH值传感器和水位传感器,通过传感器收集到的水情数据发送到单片机,单片机存储实时数据,并显示在12864LCD液晶屏上。在软件方面,采用C语言编程。通过对单片机程序设计实现对水情检测系统的水情数据的采集、显示和检测。 关键词:单片机最小系统;PH值传感器;水位传感器;AD模块 Abstract The design is a simple water regime detection system to STC89C52 chip as the core, supplemented by the relevant external circuit, designed to single-chip as the core of the water regime detection system. The system is powered by 5V power supply. In the hardware circuit, with the bus connection PH sensor and water level sensor, through the sensor to collect the water data sent to the microcontroller, single-chip storage of real-time data, and displayed on the 12864LCD LCD screen. In software, the use of C language programming. Through the single-chip program design to achieve the water regime detection system of water data collection, display and detection. Key words:single chip minimum system; PH value sensor; water level sensor; capacitance

基于单片机的电饭煲设计

控制系统综合实训报告 学院计算机与控制工程学院 专业班级自动化115 学生姓名马洪星 指导教师朱玲 成绩

单片机在智能电饭煲控制系统中的应 用 摘要 随着新科技时代的到来,越来越多的新型智能化家电融入了我们的生活。而电饭煲作为与人们生活息息相关的家电,其功能也向着智能化的方向发展。本文基于单片微处理器PICl6F872研制成功了YZ系列微电脑电饭煲智能控制器,阐述了工作原理,并给出了硬件电路。精度高、稳定性高、易操作是本系统的重要特性,中断嵌套是设计软件的难点,温度控制是本系统的重点。 关键词 PIC单片机智能电饭煲硬件分析 YZ系列微机电脑电饭煲系统,是应用美国著名芯片Microchip公司合作开发的新一代模糊、逻辑控制智能电饭煲。采用日本National模糊控制技术原理,能自动根据米饭量的多少。利用“煮饭专家”的工艺技术,对吸水、加热、沸腾、焖饭、膨胀、保温等六个阶段的工艺自动进行火力调节,从而煮出比一般电脑电饭煲更加松软可口的米饭同时拥有快速煮饭、精确煮饭、一小时粥汤、二小时粥汤、三小时粥汤保温以及预约定时煮饭等功能。本系统硬件结构简单,运行稳定可靠,软硬兼备,具有完善的控制功能和抗干扰能力。 一、工作电气图

图1工作电气图 二、工作原理 YZ系列微机电脑电饭煲控制器电路包括如下几个部分:单片机,电源及稳压电路,键盘输入电路,蜂鸣报警电路,LED显示电路,温度检测电路及加热控制电路。其中单片机控制采用PICl6F872封装,它能满足电饭煲的控制需要。电源及稳压电路由高压器、整流电路和稳压电路组成;键盘输入电路由K1、R13、K2、R14组成;即在A/D输入端键入键盘信号,蜂鸣报警电路由晶体管Q2、SP1及电阻R12组成;LED显示电路由两部分组成。一部分是7段数码管用于显示预置定时时问,另一部分是6个LED指示灯,用于显示煮饭、快煮、l小时粥汤、2小时粥汤、3小时粥汤及保温。温度检测电路十分简单,由偏置电阻R10、R1l 和热敏电阻RT1、KT2组成。控制器电路如图2所示 图2控制器电路框图

数字逻辑数字频率计的设计课程设计报告

滁州学院 课程设计报告 课程名称:数字逻辑课程设计 设计题目:数字频率计的设计 系别:网络与通信工程系 专业:网络工程(无线传感器网络方向)组别:第七组 起止日期:2012年5月28日~2012年6 月18日指导教师:姚光顺 计算机与信息工程学院二○一二年制

课程设计任务书

目录 1绪论 (1) 1.1设计背景 (1) 1.2主要工作和方法 (1) 1.3本文结构 (1) 2相关知识 (1) 2.1数字频率计概念...................................................................................................................... .. (1) 2.2数字频率计组成 (1) 3系统设计 (2) 4系统实现 (2) 4.1计数译码显示电路 (2) 4.2控制电路 (3) 5系统测试与数据分析 (5) 6课程设计总结与体会 (8) 6.1设计总结 (8) 6.2设计体会 (8) 结束语 (9) 参考文献 (9) 附录 (10) 致谢 (12)

1绪论 1.1设计背景 数字频率计是一种基础测量仪器,到目前为止已有 30 多年的发展史。早期,设计师们追求的目标主要是扩展测量范围,再加上提高测量精度、稳定度等,这些也是人们衡量数字频率计的技术水平,决定数字频率计价格高低的主要依据。目前这些基本技术日臻完善,成熟。应用现代技术可以轻松地将数字频率计的测频上限扩展到微频段。 随着科学技术的发展,用户对数字频率计也提出了新的要求。对于低档产品要求使用操作方便,量程(足够)宽,可靠性高,价格低。而对于中高档产品,则要求有高分辨率,高精度,高稳定度,高测量速率;除通常通用频率计所具有的功能外,还要有数据处理功能,统计分析功能,时域分析功能等等,或者包含电压测量等其他功能。这些要求有的已经实现或者部分实现,但要真正完美的实现这些目标,对于生产厂家来说,还有许多工作要做,而不是表面看来似乎发展到头了。 随着数字集成电路技术的飞速发展,应用计数法原理制成的数字式频率测量仪器具有精度高、测量范围宽、便于实现测量过程自动化等一系列的突出特点。 1.2主要工作和方法 设计一个数字频率计。要求频率测量范围为1Hz-10kHz。数字显示位数为四位静态十进制计数显示被测信号。先确定好数字频率计的组成部分,然后分部分设计,最后组成电路。 1.3本文结构 本文第1部分前言主要说明频率计的用处和广泛性。第2部分简要说明了本次课程设计的要求。第3部分概要设计大致的勾画出本次设计的原理框架图和电路的工作流程图。第4部分简要说明4位二进制计数器74160的原理和搭建计数译码显示电路的原理,同时分析控制电路的功能,形成控制电路图,及搭建显示电路和控制电路的组合原理图。第5部分调试与操作说明,介绍相关的操作和输入不同频率是电路的显示情况。 2相关知识 2.1数字频率计介绍 2.1.1数字频率计概念 数字频率计是一种直接用十进制数字现设被测信号频率的一种测量装置,它不仅可以测量正弦波、方波、三角波等信号的频率,而且还可以用它来测量被测信号的周期。经过改装,在电路中增加传感器,还可以做成数字脉搏计、电子称、计价器等。因此,数字频率计在测量物理量方面有广泛的应用。 2.1.2数字频率计组成 数字频率计由振荡器、分频器、放大整形电路、控制电路、计数译码显示电路等部分组成。其中的控制脉冲采用时钟信号源替代,待测信号用函数信号发生器产生。数字频结构原理框图如图3.1

数字频率计的设计

数字频率计的设计 摘要:采用STC89C52RC单片机作为系统的核心控制器件,该系统采用直流供电,由信号输入模块、信号相加模块、滤波模块、信号比较器模块,电平转换模块组成,具有信号输入、测信号频率、测量矩形方波占空比的功能,并且具有测量精度高功耗低、抗干扰能力强等特点。

1 方案设计与比较

信号混合电路模块 方案一:同相加法器。加法器是一种数位电路,其可进行信号的加法计算。加法器是产生数的和的装置。加数和被加数为输入,和数与进位为输出的装置为半加器。若加数、被加数与低位的进位数为输入,而和数与进位为输出则为全加器。同相加法器输入阻抗高,输出阻抗低反相加法器输入阻抗低,输出阻抗高当选用同相加法器时,如A输入信号时,因为是同相加法器,输入阻抗高,这样信号不太容易流入加法器,反而更容易流入B端,而影响到B端的正常使用;同样,如B输入信号时,容易流入A端,而影响到A端的正常使用。 方案二:反相加法器。当选用反相加法器时,因为加法器输入阻抗低,不管是A端,还是B端信号,更容易流入加法器,而不会影响其它路的正常使用。 综上所述选择方案一。 滤波电路模块 方案一:选用有源二阶切比雪夫高通滤波器。切比雪夫滤波电路在通带或阻带上频率响应幅度等波纹波动的滤波器。切比雪夫滤波器在过渡带比巴特沃斯滤波器的衰减快,但频率响应的幅频特性不如后者平坦。切比雪夫滤波器和理想滤波器的频率响应曲线之间的误差最小,但是在通频带内存在幅度波动,有可能有纹波波动导致电压达到施密特触发器的上限或下限出发电平,导致误触发,输出方波可能严重失真。 方案二:选用有源二阶巴特沃斯高通滤波器。巴特沃斯滤波电路的幅频响应在通带中具有最平幅度特性没有起伏,而在阻频带则逐渐下降为零,由于巴特沃斯滤波电路的幅频响应曲线很平滑,没有起伏,可以有效规避施密特比较器中的误触发,所以选用幅频响应曲线最平滑的巴特沃斯型滤波器,可以有效规避误触发。 综上所述选择方案二。

电子技术乒乓球比赛游戏机课程设计报告书

1绪论 1.1选题背景 1.1.1 课题目的及意义 本次课程设计的容是独立完成一个乒乓球比赛游戏机的设计,采用EWB电路仿真设计软件完成乒乓球比赛游戏机电路的设计及仿真调试,在微机上仿真实现乒乓球比赛游戏机的设计。通过这次课程设计让我们了解和熟悉了乒乓球游戏机的原理和Multisim仿真设计软件的操作,也让我们加深了解了对双向移位寄存器、双D触发器及、加法器及逻辑门电路的一些实际用途,并将理论与实践相结合。 1.1.2 课题的容和要求 独立完成一个乒乓球比赛游戏机的设计,采用EWB电路仿真设计软件完成乒乓球比赛游戏机电路的设计及仿真调试,在微机上仿真实现乒乓球比赛游戏机的设计。 课程设计具体容如下:乒乓球比赛是由甲乙双方参赛,加上裁判的三人游戏(也可以不用裁判),乒乓球比赛模拟机是用发光二极管(LED)模拟乒乓球运 乒乓球比赛模拟机框图 设计要求:

1、基本部分 (1) 至少用8个LED排成直线,以中点为界,两边各代表参赛双方的位置,其中一个点亮的LED(乒乓球)依次从左到右,或从由到左移动,“球”的移动速度能由时钟电路调节。 (2) 当球(被点亮的那只LED)移动到某方的最后一位时,参赛者应该果断按下自己的按扭使“球”转向,即表示启动球拍击中,若行动迟缓或超前,表示未击中或违规,则对方得一分。 (3) 设计自动记分电路,甲乙双方各用一位数码管显示得分,每记满9分为一局。 2、发挥部分(选做) (1) 甲乙双方各设一个发光二极管表示拥有发球权,每得5分自动交换发球权,拥有发球权的一方发球才能有效。 (2) 发球次数能由一位数码管显示。 (3) 一方得分,电路自动响铃3秒,此期间发球无效,等铃声停止后方可比赛。 课题任务要求 1、画出总体设计框图,以说明乒乓球比赛游戏机由哪些相对独立的功能模块组成,标出各个模块之间互相联系,时钟信号传输路径、方向和频率变化。并以文字对原理作辅助说明。 2、设计各个功能模块的电路图,加上原理说明。 3、选择合适的元器件,在EWB上连接验证、仿真、调试各个功能模块的电路。在连接验证时设计、选择合适的输入信号和输出方式,在充分电路正确性同时,输入信号和输出方式要便于电路的仿真、调试和故障排除。 4、在验证各个功能模块基础上,对整个电路的元器件和连接,进行合理布局,进行整个数字钟电路的连接验证、仿真、调试。 5、自行接线验证、仿真、调试,并能检查和发现问题,根据原理、现象和仿真结果分析问题所在,加以解决。学生要解决的问题包括元器件选择、连接和整体设计引起的问题。 1.2 方案选择 根据设计任务,对照图乒乓球比赛模拟及1.1,可以分为三个模块进行设计:

电饭锅工作原理设计.

新乡学院 毕业论文(设计) 题目:电饭锅工作原理 专业:机电一体化 班级: 10级机电一班 学生姓名:朱见光 学号: 10050301003 提交日期:年月日

目录 内容摘要 (3) 关键字 (3) ABSTRACT (3) Keywords (3) 第一章绪论 (4) 第二章电饭锅组成 (5) 第三章电路分析 (7) 3.1 元器件简介 (7) 3.1.1电阻 (7) 3.1.2电容 (8) 3.1.3二极管 (9) 3.1.4三极管 (11) 3.1.5变压器 (13) 3.1.6电磁继电器 (14) 3.1.7晶闸管 (16) 3.2 电路设计 (17) 3.2.1电路 (17) 3.2.2工作原理 (17) 第四章产品说明书 (19) 第五章总结与展望 (24) 参考文献 (26) 致谢 (27)

内容摘要:在信息和科技时代我们的生活已离不开电,而与之共同发展起来的电器已出现在日常生活中成了不可替换的部分。随着各种电器的发明和运用问题也就接踵而来,像漏电,短路等各种问题。所以在这篇论文中我将以电饭煲为例向大家着重介绍,各个元件的功用和检测方法;电饭锅自动控制原理及与它相关的各部位原理图,进而帮助大家从专业的角度去了解家用电器以及对它们做出合理的保护 关键字:电饭锅电饭锅自动控制原理图元器件的功能 ABSTRACT:In information and technological age , our life has been inseparable from power。 But the common electrical appliances which appeared with the developing of age have become an irreplaceable part in daily life. With the invention and application of various electrical appliances, various problems will come one after another, like leakage, short circuit problems and so on. So in this paper, I will make a brief introduction to you, which is about the various components function and detection methods of electrical appliances according cooker Controlling principle and its relevance diagram site .Depending on them ,you can make a correct elect by the professional point of view to understand the appliances and make reasonable protection for them. Keywords: rice cooker automatic control schematics component to explain

数电课程设计报告-数字频率计

数电课程设计报告:频率计 目录 一、设计指标 二、系统概述 1.设计思想 2.可行性论证 3.工作过程 三、单元电路设计及分析 1.器件选择 2.设计及工作原理分析 四、电路的组构及调试 1.遇到的问题 2.现象记录及原因分析 3.解决及结果 4.功能的测试方法、步骤、设备、记录的数据 五、总结 1.体会 2.电路总图 六、参考文献 一、设计指标 设计指标:要求设计一个测量TTL方波信号频率的数字系统。测试值采用4个LED七段数码管显示,并以发光二极管只是测量对象(频率)的单位:Hz、kHz。

频率的测量范围有四档量程。 1)测量结果显示四位有效数字,测量精度为万分之一。 2)频率测量范围:100.1Hz——999.9kHz,分为: 第一档: 100.0Hz——999.9Hz 第二档: 1.000kHz——9.999kHz 第三档: 10.00kHz——99.99kHz 第四档: 100.0kHz——999.9kHz 3)量程切换可以采用两个按键SWB、SWA手动切换。 扩展要求: 一、当被测频率大于999.9kHz,超出最大值时,设置亮一个警灯,并同时发出报警声音。 二、自动切换量程 提示: 1.计数器计到9999时,产生溢出信号CO,启动量程加档。 2.显示不足4位有效数字时量程减档。 三、各量程输出信号的频率最高位有效数字为1、2、3、4、5、6、7、8、9。 二、系统概述 1.设计思想 周期性信号频率可通过记录信号在1s内的周期数来确定其频率。

累计标准时间Ts中被测信号的脉冲个数Nx,被测信号频率:fx≈Nx/Ts 测量时间Ts选择:由于测量时间Ts需要根据被测信号的频率切换,所以通常对振荡时钟进行分频以获得不同的定时时间。 采样定时、显示锁存、计数器清零的控制时序波形图 2.可行性论证 用计数器实现记录周期数的功能;用时基信号产生计数时间作为采样时间;用四位动态扫描通过数码管显示结果;因为如果计数器直接把数据输入到数码管显示,那么数码管的数据就会不断变化,累计增加的情况,所以采用锁存器,在每个时间信号内,通过一个高电平使能有效,将计数器的数值锁存到寄存器或者锁存器;为了不要让每次锁存的数据会比上次

电子设计大赛四旋翼设计报告最终版

四旋翼飞行器(A 题)参赛队号:20140057号

四旋翼飞行器 设计摘要: 四旋翼作为一种具有结构特殊的旋转翼无人飞行器,与固定翼无人机相比,它具有体积小,垂直起降,具有很强的机动性,负载能力强,能快速、灵活的在各个方向进行机动,结构简单,易于控制,且能执行各种特殊、危险任务等特点。 因此在军用和民用领域具有广泛的应用前景如低空侦察、灾害现场监视与救援等。多旋翼无人机飞行原理上比较简单,但涉及的科技领域比较广,从机体的优化设计、传感器算法、软件及控制系统的设计都需要高科技的支持。 四旋翼无人机的飞行控制技术是无人机研究的重点之一。它使用直接力矩,实现六自由度(位置与姿态)控制,具有多变量、非线性、强耦合和干扰敏感的特性。此外,由于飞行过程中,微型飞行器同时受到多种物理效应的作用,还很容易受到气流等外部环境的干扰,模型准确性和传感器精度也将对控制器性能产生影响,这些都使得飞行控制系统的设计变得非常困难。 因此,研究既能精确控制飞行姿态,又具有较强抗干扰和环境自适应能力的姿态控制器是微小型四旋翼飞行器飞行控制系统研究的当务之急。

一、引言: 1.1 题目理解:四旋翼飞行器,顾名思义,其四只旋转的翅膀为飞行的动力来源。四只旋转翼是无刷电机,因此对于无刷电机的控制调速系统对飞行器的飞行性能起着决定性的作用。在本次大赛中,需要利用四旋翼飞行器平台,实现四旋翼的起飞,悬停,姿态控制,以及四旋翼和地面之间的测距等功能。 1.2 设计思路:为了满足飞行器的设计要求,要使用以微控制器为核心的控制系统,使本系统以MC9S12XS128模拟出控制信号,用STM32 MMC10接收模拟信号,然后翻译出模拟信号,利用加速度与陀螺仪传感器采集飞行器的飞行数据,加以闭环调控和精准的控制算法。进行上升、下降以及悬停等动作。 1.3 特点:本飞行器脱离遥控器控制,用微处理器实现整个飞行过程全自动控制,控制精度高。 二、方案设计: 系统主要由STM32模块,微处理器MC9S12XS128模块,电源模块,电机模块,超声波模块,加速度陀螺仪模块等构成。 系统总体框图如下图(图2.0): STM32 MMC10 四路 PWM 通道 电调 无刷电机 高度显示数码管 信号接收 MC9S12XS128 GPIO 模块 时钟 模块 超声波传 感器 电源 图2.0 其中微处理器MC9S12XS128模块的外围电路见附录一2.1 控制系统选择方案:

数字频率计_课程设计报告

电气与信息工程学院 数字频率计 设计报告书 前言 摘要:在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的 测量就显得更为重要。测量频率的方法有多种,其中数字计 数器测量频率具有精度高、使用方便、测量迅速,以及便于 实现测量过程自动化等优点,是频率测量的重要手段之一。 其原理为通过测量一定闸门时间内信号的脉冲个数。本文阐 述了设计了一个简单的数字频率计的过程。 关键词:频率计,闸门,逻辑控制,计数-锁存

目录 第一章设计目的 第二章设计任务和设计要求 2.1 设计任务及基本要求 2.2.系统结构要求 第三章系统概述 3.1概述 3.2设计原理及方案 第四章单元电路设计及分析 4.1 时基电路 4.2逻辑控制电路 4.3计数电路 4.4锁存电路 4.5显示译码电路 4.6 闸门电路 第五章安装与调试过程 5.1 电路的安装过程 5.2 电路的调试过程 5.3 出现的问题及解决办法 第六章结果分析 第七章收获与体会

第八章元件清单 第九章实现结果实物图 附录A 参考文献 第一章 设计目的: 1.了解数字频率计测量频率与测量周期的基本原理; 2.熟练掌握数字频率计的设计与调试方法及减小测量误 差的方法。 3.本设计与制作项目可以进一步加深我们对数字电路应 用技术方面的了解与认识,进一步熟悉数字电路系统设计、制作与调试的方法和步骤。 4.针对电子线路课程要求,对我们进行实用型电子线路设 计、安装、调试等各环节的综合性训练,培养我们运用课程中所学的理论与实践紧密结合,独立地解决实际问题的能力。

第二章 设计任务及要求: 2.1设计任务及基本要求: 设计一简易数字频率计,其基本要求是: 1)测量频率范围0~9999Hz; 2)最大读数9999HZ,闸门信号的采样时间为1s;. 3)被测信号可以是正弦波、三角波和方波; 4)显示方式为4位十进制数显示; 5)完成全部设计后,可使用EWB进行仿真,检测试验设计电路的正确性。 2.2.系统结构要求 数字频率计的整体结构要求如图所示。图中被测信号为外部信号,送入测量电路进行处理、测量。 波形 整 形 计 数 器 数 码 显 示 振荡 电 路分 频 器 控 制 门 数 据 锁 存 器 显 示 译 码 器 被测 信 号

数字频率计的设计与实现课程设计

课程设计任务书 学生:专业班级:通信 指导教师:工作单位:信息工程学院 题目: 数字频率计的设计与实现 初始条件: 本设计既可以使用集成脉冲发生器、计数器、译码器、单稳态触发器、锁存器、放大器、整形电路和必要的门电路等,也可以使用单片机系统构建简易频率计。用数码管显示频率计数值。 要求完成的主要任务: (包括课程设计工作量及技术要求,以及说明书撰写等具体要求) 1、课程设计工作量:1周。 2、技术要求: 1)设计一个频率计。要求用4位7段数码管显示待测频率,格式为0000Hz。 2)测量频率围:10~9999Hz。 3)测量信号类型:正弦波、方波和三角波。 4)测量信号幅值:0.5~5V。 5)设计的脉冲信号发生器,以此产生闸门信号,闸门信号宽度为1s。 6)确定设计方案,按功能模块的划分选择元、器件和中小规模集成电路,设计分电路,画出总体电路原理图,阐述基本原理。 3、查阅至少5篇参考文献。按《理工大学课程设计工作规》要求撰写设计报告书。全文用A4纸打印,图纸应符合绘图规。 时间安排: 1、2013年5 月17日,布置课设具体实施计划与课程设计报告格式的要求说明。 2、2013 年 6 月18 日至2013 年6 月22 日,方案选择和电路设计。 3、2013 年6 月22 日至2013 年7 月1 日,电路调试和设计说明书撰写。 4、2013年7月5日,上交课程设计成果及报告,同时进行答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (3) 1电路的设计思路与原理 (4) 1.1电路设计方案的选择 (4) 1.1.1方案一:利用单片机制作频率计 (4) 1.1.2方案二:利用锁存器与计数器制作频率计 (5) 1.1.3方案三:利用定时电路与计数器制作频率计 (6) 1.1.4方案确定 (7) 1.2 原理及技术指标 (8) 1.3 单元电路设计及参数计算 (9) 1.3.1时基电路 (9) 1.3.2放大整形电路 (10) 1.3.3逻辑控制电路 (11) 1.3.4计数器 (13) 1.3.5锁存器 (15) 1.3.6译码电路 (16) 2仿真结果及分析 (16) 2.1仿真总图 (16) 2.2单个元电路仿真图 (17) 2.3测试结果 (20) 3测试的数据和理论计算的比较分析 (20) 4制作与调试中出现的故障、原因及排除方法 (20) 4.1故障a (20) 4.2故障b (21) 4.3故障c (21) 4.4故障d (21) 4.5故障e (22) 5 心得体会 (22)

相关主题
文本预览
相关文档 最新文档