基于单片机的简单频率计课程设计报告
- 格式:docx
- 大小:291.23 KB
- 文档页数:19
单片机数字频率计课程设计一、课程目标知识目标:1. 让学生掌握单片机的基本原理,理解数字频率计的工作机制。
2. 使学生能够运用单片机编程实现数字频率计的功能,包括计时、计数和显示。
3. 让学生了解数字频率计在实际应用中的重要性,如信号处理、电子测量等领域。
技能目标:1. 培养学生运用单片机进行数字频率计设计和编程的能力。
2. 培养学生运用相关软件(如Keil、Proteus等)进行电路仿真和调试的能力。
3. 提高学生的动手实践能力,学会在实际操作中发现问题、解决问题。
情感态度价值观目标:1. 激发学生对电子技术和单片机编程的兴趣,培养其创新精神和实践能力。
2. 培养学生严谨的科学态度,注重实验数据的准确性和可靠性。
3. 增强学生的团队协作意识,学会在项目合作中相互支持、共同进步。
课程性质:本课程为实践性较强的课程,要求学生在掌握理论知识的基础上,进行实际操作和项目实践。
学生特点:学生具备一定的单片机基础知识,对编程和电路设计有一定了解,但实际操作能力有待提高。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,以项目为导向,培养学生的动手实践能力和创新能力。
通过课程学习,使学生能够独立完成单片机数字频率计的设计和编程任务,达到课程目标所要求的具体学习成果。
二、教学内容1. 理论知识:- 单片机原理和结构:介绍单片机的内部组成、工作原理及性能特点。
- 数字频率计原理:讲解频率的概念、测量原理及其在电子测量中的应用。
- 编程语言:回顾C语言基础知识,重点掌握单片机编程相关语法。
2. 实践操作:- 电路设计:学习使用Proteus软件设计数字频率计电路,包括单片机、计数器、显示模块等。
- 程序编写:运用Keil软件编写数字频率计程序,实现计数、计时和显示功能。
- 仿真调试:在Proteus环境下进行电路仿真,调试程序,确保其正常运行。
3. 教学大纲:- 第一周:回顾单片机原理和结构,学习数字频率计原理。
基于51单片机的频率计设计报告
在该设计报告中,我将介绍基于51单片机的频率计的设计原理、硬件设计和软件设计。
设计原理:
频率计是一种用于测量信号频率的仪器。
基于51单片机的频率计的设计原理是利用单片机的定时计数器来测量输入信号的脉冲个数,然后将脉冲个数转换为频率。
硬件设计:
硬件设计主要包括输入信号的采集电路、计数电路和显示电路。
输入信号的采集电路使用一个比较简单的电路,包括一个电阻和一个电容,用于将输入信号转换为脉冲信号。
计数电路使用单片机的定时计数器来进行计数。
在这个设计中,我们使用TIMER0和TIMER1作为计数器,分别用于测量输入信号的高电平时间和低电平时间,然后将两个时间相加得到一个完整的周期,再根据周期反推频率。
显示电路使用一个LCD模块来显示测量得到的频率。
在这个设计中,我们使用IO口将计算得到的频率发送给LCD模块,通过LCD模块来显示频率。
软件设计:
软件设计主要包括信号采集、脉冲计数和频率计算。
信号采集主要通过定时器的中断来进行。
在采集到一个脉冲之后,中
断程序会使计数器加1
脉冲计数是通过对输入信号高电平时间和低电平时间计数来完成的。
在脉冲计数的过程中,我们需要启动TIMER0和TIMER1,并设置正确的工
作模式和计数值。
频率计算是通过将高电平时间和低电平时间相加得到一个完整的周期,然后再根据周期反推频率来完成的。
最后,将计算得到的频率发送给LCD
模块进行显示。
总结:。
基于单片机简易频率计设计一、前言频率计是一种测量电信号频率的仪器,其应用广泛。
本文将介绍如何基于单片机设计一个简易的频率计。
二、设计思路本次设计采用单片机作为核心控制芯片,通过捕获输入信号的上升沿和下降沿来计算出信号的周期,从而得到信号的频率。
具体实现过程如下:1. 选择合适的单片机选择一款适合本次设计要求的单片机,需要考虑其性能、价格、易用性等因素。
常见的单片机有STC89C52、AT89C51等。
2. 硬件电路设计硬件电路主要包括输入端口、捕获定时器模块、显示模块等。
其中输入端口需要接收待测信号,捕获定时器模块用于捕获信号上升沿和下降沿的时间,显示模块则用于显示测得的频率值。
3. 软件程序设计软件程序主要包括初始化程序、捕获中断服务函数和主函数等。
其中初始化程序用于设置捕获定时器模块和显示模块参数,捕获中断服务函数则是实现对输入信号上升沿和下降沿时间的捕获与计算,主函数则用于控制程序流程和显示结果。
三、硬件设计1. 输入端口设计输入端口需要接收待测信号,一般采用BNC接头。
由于输入信号可能存在较高的电压和噪声,因此需要加入滤波电路以保证输入信号的稳定性。
2. 捕获定时器模块设计捕获定时器模块是本次设计的核心部分,其主要功能是捕获输入信号的上升沿和下降沿时间,并通过计算得到信号周期和频率值。
常见的捕获定时器模块有16位定时器/计数器、32位定时器/计数器等。
在本次设计中,我们选择了16位定时器/计数器。
3. 显示模块设计显示模块主要用于显示测得的频率值。
常见的显示模块有LED数码管、LCD液晶屏等。
在本次设计中,我们选择了LCD液晶屏。
四、软件程序设计1. 初始化程序初始化程序主要包括设置捕获定时器模块参数、设置LCD液晶屏参数等。
2. 捕获中断服务函数捕获中断服务函数是实现对输入信号上升沿和下降沿时间的捕获与计算,其具体实现过程如下:(1)当捕获定时器模块捕获到输入信号上升沿时,记录当前时间值。
基于单片机的简易数字频率计设计报告课程设计名称:近代电子学实验设计项目名称:简易数字频率计设计专业班级:电子信息科学与技术08级1班图1-2放大整形电路其中,放大部分由集成运算放大器构成的反向比例运算电路实图1-4 显示、锁存电路显示、锁存部分的电路是由6片74LS273和6个7段数码管构目录第一章总论错误!未定义书签。
1.1 项目名称及承办单位 ................................................................................................... 错误!未定义书签。
1.2 编制依据及原则 ........................................................................................................... 错误!未定义书签。
1.3 主要建设内容 ............................................................................................................... 错误!未定义书签。
1.4 研究重点 ....................................................................................................................... 错误!未定义书签。
1.5 研究结论 ....................................................................................................................... 错误!未定义书签。
基于51单片机的频率计的设计频率计是一种测量信号频率的仪器或装置,其原理是通过对信号进行计数和定时来测量信号的周期,并进而计算出信号的频率。
在本篇文章中,我们将设计一个基于51单片机的频率计。
设计方案:1.硬件设计:(1)时钟电路:使用11.0592MHz晶振为主频时钟源。
(2)信号输入:选择一个IO口作为信号输入口,通过外部电平转换电路将信号转换为51单片机能够处理的电平。
(3)显示装置:使用一个数码管或液晶显示屏来输出测量结果。
2.软件设计:(1)初始化:设置51单片机的工作模式、引脚功能、定时器等。
初始化时,将IO口配置为输入模式,用于接收外部信号。
(2)定时器设置:利用定时器来进行时间的测量,可以选择适当的定时器和计数器来实现定时功能。
(3)外部中断设置:使用外部中断来触发定时器,当外部信号边沿发生变化时,触发定时器的启动或停止。
(4)中断处理:通过中断处理程序来对定时器进行启动、停止和计数等操作。
(5)频率计算:将计数结果经过一定的处理和运算,计算出信号的频率。
(6)结果显示:将计算得到的频率结果通过数码管或液晶显示屏输出。
3.工作流程:(1)初始化设置:对51单片机进行初始化设置,包括端口、定时器、中断等的配置。
(2)外部信号输入:通过外部电平转换电路将要测量的信号输入至51单片机的IO口。
(3)定时测量:当外部信号发生边沿变化时,触发外部中断,启动定时器进行定时测量。
(4)停止计时:当下一个信号边沿出现时,中断处理程序停止定时器,并将计数结果保存。
(5)频率计算:根据定时器的设置和计数结果,计算出信号的周期和频率。
(6)结果显示:将计算得到的频率结果通过数码管或液晶显示屏进行显示。
4.注意事项:(1)确保信号输入的稳定性:外部信号输入前需要经过滤波处理,保证稳定且无杂波的输入信号。
(2)测量精度的提高:如有必要,可以通过增加定时器的位数或扩大计数范围来提高测量精度。
(3)显示结果的优化:可以根据需要,通过增加缓冲区、优化数码管显示等方式来改善结果的可读性。
基于单片机的频率计的设计一、频率计的基本原理频率是指单位时间内信号周期性变化的次数。
频率计的基本原理就是在一定的时间间隔内对输入信号的脉冲个数进行计数,从而得到信号的频率。
常用的测量方法有直接测频法和间接测频法。
直接测频法是在给定的闸门时间内测量输入信号的脉冲个数,计算公式为:频率=脉冲个数/闸门时间。
这种方法适用于测量高频信号,但测量精度会受到闸门时间和计数误差的影响。
间接测频法是先测量信号的周期,然后通过倒数计算出频率。
其适用于测量低频信号,但测量速度较慢。
在实际设计中,通常会根据测量信号的频率范围选择合适的测量方法,或者结合两种方法来提高测量精度和范围。
二、系统硬件设计1、单片机选型在基于单片机的频率计设计中,单片机是核心控制部件。
常用的单片机有 51 系列、STM32 系列等。
选择单片机时需要考虑其性能、资源、价格等因素。
例如,对于测量精度和速度要求不高的应用,可以选择51 单片机;而对于复杂的系统,可能需要选择性能更强的 STM32 单片机。
2、信号输入电路为了将输入信号接入单片机,需要设计合适的信号输入电路。
一般需要对输入信号进行放大、整形等处理,使其成为标准的脉冲信号。
常见的整形电路可以使用施密特触发器来实现。
3、显示电路频率计的测量结果需要通过显示电路进行显示。
常用的显示器件有液晶显示屏(LCD)和数码管。
LCD 显示效果好,但驱动较为复杂;数码管显示简单直观,驱动相对容易。
4、时钟电路单片机需要一个稳定的时钟信号来保证其正常工作。
时钟电路可以采用外部晶振或内部振荡器,根据系统的精度和稳定性要求进行选择。
5、复位电路为了确保单片机在系统启动时能够正常初始化,需要设计复位电路。
复位电路可以采用上电复位和手动复位两种方式。
三、系统软件设计1、主程序流程系统启动后,首先进行初始化操作,包括设置单片机的工作模式、初始化显示、设置定时器等。
然后进入测量循环,等待输入信号,在给定的闸门时间内进行计数,并计算频率,最后将结果显示出来。
前言 (3)一、总体设计 (4)二、硬件设计 (6)AT89C51单片机及其引脚说明: (6)显示原理 (8)技术参数 (10)电参数表 (10)时序特性表 (11)模块引脚功能表 (12)三、软件设计 (12)四、调试说明 (15)五、使用说明 (17)结论 (17)参考文献 (17)附录 (19)Ⅰ、系统电路图 (19)Ⅱ、程序清单 (19)前言单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。
导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,民用豪华轿车的安全保障系统,录像机、摄像机、全自动洗衣机的控制,以及程控玩具、电子宠物等等,这些都离不开单片机。
更不用说自动控制领域的机器人、智能仪表、医疗器械以及各种智能机械了。
因此,单片机的学习、开发与应用在生活中至关重要。
随着电子信息产业的不断发展,信号频率的测量在科技研究和实际应用中的作用日益重要。
传统的频率计通常是用很多的逻辑电路和时序电路来实现的,这种电路一般运行缓慢,而且测量频率的围比较小。
考虑到上述问题,本论文设计一个基于单片机技术的数字频率计。
首先,我们把待测信号经过放大整形;然后把信号送入单片机的定时计数器里进行计数,获得频率值;最后把测得的频率数值送入显示电路里进行显示。
本文从频率计的原理出发,介绍了基于单片机的数字频率计的设计方案,选择了实现系统得各种电路元器件,并对硬件电路进行了仿真。
一、总体设计用十进制数字显示被测信号频率的一种测量装置。
它以测量周期的方法对正弦波、方波、三角波的频率进行自动的测量。
所谓“频率”,就是周期性信号在单位时间(1s)变化的次数。
若在一定时间间隔T测得这个周期性信号的重复变化次数N,则其频率可表示为f=N/T。
其中脉冲形成电路的作用是将被测信号变成脉冲信号,其重复频率等于被测频率f。
时间基准信号发生器提供标准的时间脉冲信号,若其周期为1s,则门控电路x的输出信号持续时间亦准确地等于1s。
《单片机技术及应用》课程设计报告题目:频率计数器班级:学号:姓名:指导教师:蒋近2014年4 月9日摘要.............................................................一、设计任务.......................................................二、AT89C51单片机及其引脚说明......................................三、设计内容.......................................................四、系统硬件设计...................................................五、串口下载电路 ..................................................六、C语言源程序 ..................................................七、测试结果.......................................................八、心得体会.......................................................九、参考文献.......................................................随着电子信息产业的不断发展,信号频率的测量在科技研究和实际应用中的作用日益重要。
传统的频率计通常是用很多的逻辑电路和时序电路来实现的,这种电路一般运行较慢,而且测量频率的范围较小。
考虑到上述问题,本文设计一基于单片机设计频率计。
本文从频率计的原理出发,介绍了基于单片机的频率计的设计方案,选择了实现系统的各种电路元器件,并对硬件电路进行了仿真,并焊制出了实际的电路板,测试表明与理论大体相符。
基于单片机的频率计设计频率计是一种常用仪器,用于测量信号的频率。
本文将介绍一种基于单片机的频率计的设计。
设计思路:1. 选择合适的单片机:由于频率计需要精确测量信号的周期,所以选择一个具有高精度和稳定性的单片机至关重要。
常用的单片机有AT89S51、ATmega328等。
2.连接外部时钟源:为了提高计时的精度,可以选择连接一个外部时钟源,如晶振。
将晶振连接到单片机的计时器输入引脚,通过计时器来计算脉冲信号的周期。
3.配置计时器模式:根据信号的特性,选择合适的计时器模式。
常用的模式有边沿计数模式和脉冲计数模式。
边沿计数模式适用于非连续的信号,脉冲计数模式适用于连续的信号。
4.初始化计时器:在程序中对计时器进行初始化,设置计时器的工作模式、计数范围等参数。
还需设置中断使能和相应的中断处理函数。
5.开始计时:当信号输入到单片机的计时器引脚时,通过中断处理函数开始计时,记录起始时间。
6.结束计时:当信号的周期结束时,再次触发中断,记录结束时间。
7.计算频率:根据起始时间和结束时间,计算出信号的周期,再通过周期计算出频率。
可以选择在显示器上显示频率或者通过串口通信输出。
8.重复计算:根据需要,可以选择连续计算多个信号的频率,以增加测量的准确性。
这个设计是一个基本的频率计,可以测量连续或间断的信号频率。
根据实际需求,还可以进行一些改进和扩展,例如可以加入滤波电路来提高信号的稳定性和抗干扰能力,还可以增加输入和输出接口,方便与其他仪器和设备进行连接和通信。
总结:基于单片机的频率计是一种常见的测量仪器,通过利用计时器来测量信号的周期,从而计算出信号的频率。
这种设计简单易行,稳定性好,可以满足大多数频率测量的需求。
在实际应用中,可以根据具体要求进行相应的改进和扩展。
单片机频率计实验报告实验报告:单片机频率计摘要:本实验通过使用单片机设计和实现了一种简单的频率计,通过测量输入信号的周期来计算其频率。
实验结果表明,该方法可以准确地测量信号的频率,并且具有较高的稳定性和精确度。
1.引言在电子测量领域中,频率是一个重要的参数,它是指单位时间内信号变化周期的次数。
测量信号的频率可以帮助我们了解信号的特性和性能。
而单片机作为常见的嵌入式微处理器,提供了较高的计算和控制能力,可以应用于频率计的设计和实现中。
2.实验原理在本实验中,我们使用了一种简单的基于单片机的频率测量方法。
该方法基于计算输入信号的周期,并以此计算信号的频率。
具体实验原理如下:(1)信号输入:将需要测量频率的信号接入单片机的输入口。
(2)信号计数:通过单片机的定时器,测量输入信号的时间间隔。
(3)计算频率:将信号的周期时间转换为频率值。
3.实验设备与材料(1)单片机:使用STC89C52单片机。
(2)信号发生器:产生需要测量频率的信号。
(3)蜂鸣器:用于发出测量结果。
(4)杜邦线:用于连接单片机和其他器件。
4.实验步骤(1)搭建实验电路:将单片机与信号发生器、蜂鸣器等器件通过杜邦线连接。
(2)编写程序:使用汇编语言或C语言编写程序,设置定时器,测量输入信号的时间间隔。
(3)烧录程序:将编写好的程序烧录到单片机中。
(4)测量频率:通过信号发生器产生不同频率的信号,并使用单片机进行测量。
(5)显示结果:将测量得到的频率值通过蜂鸣器等方式显示出来。
5.实验结果经过多次测量和对比,我们得到了较为准确的信号频率测量结果。
实验结果表明,该频率计具有较高的稳定性和精确度,可以满足日常实验工作的要求。
6.实验总结通过本次实验,我们了解了基于单片机的频率计的设计和实现方法,并成功地搭建了一个简单的频率计电路。
实验结果表明,这种方法可以比较准确地测量信号的频率,并且具有较高的稳定性和精确度。
然而,在实际应用中可能还需要考虑一些其他因素,如输入信号的幅度和噪声等。
基于单片机的简易频率计设计频率是电信号的基本参数之一,频率的测量在科学研究、工程应用、工业控制等领域具有重要价值。
单片机作为一种微型计算机,具有高性能、低功耗、易于编程等优点,因此,基于单片机的简易频率计设计具有实际的应用价值。
系统架构:基于单片机的简易频率计主要由单片机、信号源、频率计和显示模块组成。
其中,单片机是整个系统的核心,控制信号源的启动和停止,读取频率计的数据,并通过显示模块显示测量结果。
信号源:信号源是用来产生需要测量的交流信号。
一般可以使用函数发生器或信号发生器作为信号源。
频率计:频率计是用来测量交流信号的频率。
可以使用专用的频率计芯片,也可以使用单片机内部的计数器功能。
显示模块:显示模块用于显示测量结果。
可以使用LED显示屏、液晶显示屏等。
主程序:主程序主要负责控制整个系统的运行。
主程序需要初始化单片机和各个模块。
然后,主程序需要从频率计读取频率数据,并计算出频率值。
主程序需要将测量结果显示在显示模块上。
中断服务程序:中断服务程序用于处理外部中断事件,例如信号源的启动和停止。
当外部中断触发时,中断服务程序会执行相应的操作,例如启动或停止测量过程。
定时器程序:定时器程序用于控制测量周期和读取频率计数据的时间间隔。
定时器程序需要在主程序的控制下启动和停止。
测试环境:在实验室环境下进行测试,使用函数发生器作为信号源,输出不同频率的交流信号。
测试方法:将设计的频率计连接到函数发生器的输出端,启动频率计进行测量,并观察显示模块上的测量结果。
验证结果:经过测试和验证,基于单片机的简易频率计能够准确测量不同频率的交流信号,测量结果稳定可靠。
本文设计了一种基于单片机的简易频率计,该频率计具有结构简单、成本低、易于实现等优点。
通过测试和验证,该频率计能够准确测量不同频率的交流信号,具有实际的应用价值。
本设计可以为科学研究、工程应用、工业控制等领域提供一种实用的测量工具。
频率计是一种用于测量信号频率的电子仪器,被广泛应用于各种领域。
《单片机原理与接口技术》课程设计报告频率计目录测试数据处理,图表及现象描述 (10)126 附录(程序及注释) (13)1功能分析与设计目标背景:在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。
为了实现智能化的计数测频,实现一个宽领域、高精度的频率计,一种有效的方法是将单片机用于频率计的设计当中。
用单片机来做控制电路的数字频率计测量频率精度高,测量频率的范围得到很大的提高。
题目要求:用两种方法检测(Δm ,ΔT )要求显示单位时间的脉冲数或一个脉冲的周期。
设计分析:电子计数式的测频方法主要有以下几种:脉冲数定时测频法(M法),脉冲周期测频法(T法),脉冲数倍频测频法(AM法),脉冲数分频测频法(AT法),脉冲平均周期测频法(M/T法),多周期同步测频法。
下面是几种方案的具体方法介绍。
脉冲数定时测频法(M法):此法是记录在确定时间Tc内待测信号的脉冲个数Mx,则待测频率为:Fx=Mx/ Tc脉冲周期测频法(T法):此法是在待测信号的一个周期Tx内,记录标准频率信号变化次数Mo。
这种方法测出的频率是:Fx=Mo/Tx脉冲数倍频测频法(AM法):此法是为克服M法在低频测量时精度不高的缺陷发展起来的。
通过A倍频,把待测信号频率放大A倍,以提高测量精度。
其待测频率为:Fx=Mx/ATo脉冲数分频测频法(AT法):此法是为了提高T法高频测量时的精度形成的。
由于T法测量时要求待测信号的周期不能太短,所以可通过A分频使待测信号的周期扩大A倍,所测频率为:Fx=AMo/Tx脉冲平均周期测频法(M/T法):此法是在闸门时间Tc内,同时用两个计数器分别记录待测信号的脉冲数Mx和标准信号的脉冲数Mo。
若标准信号的频率为Fo,则待测信号频率为:Fx=FoMx/Mo多周期同步测频法:是由闸门时间Tc与同步门控时间Td共同控制计数器计数的一种测量方法,待测信号频率与M/T法相同。
课程设计报告课程名称:单片机课程设计报告题目:数字频率计课程设计任务书以ATMEL单片机为核心,利用单片机的外部中断、定时器的计数模式和定时器的功能对信号发生器产生的脉冲频率进行计数。
且可以根据频率的不同,单片机控制选择测周法或者测频法对产生的脉冲波形进行计数,以进行更加精确的频率测量。
而且可以通过按键来进行频率测量方法的选择。
关键词:数字频率计;测频发;测周法;单片机一、概述 (1)二、方案论证 (1)1.总体方案 (1)2.测量方案选择 (2)三、硬件设计 (2)1.系统功能描述 (2)2.硬件电路设计方框 (3)3.单片机各部分电路 (3)四、软件设计 (4)1.测频发 (4)2.测周法 (4)3.主程序流程图设计 (5)4.程序设计 (14)五、课程与心得 (14)六、参考文献 (15)一、概述数字频率计是采用数字电路制成的实现对周期性变化信号的频率的测量。
数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。
它是一种用十进制数字,显示被测信号频率的数字测量仪器。
它的基本功能是测量正弦信号,方波信号以及其他各种单位时间内变化的物理量。
在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精度高,显示直观,所以经常要用到数字频率。
二、方案论证1 总体方案本次设计包含硬件设计与软件设计两部分,根据设计任务要求,采用AT89S52单片机,配置时钟电路,复位电路构成单片机最小系统,配置前置放大电路,人机对话通道中的键盘,数码管显示,从而构成设计要求的单片机应用测频系统,其结构框图如下图1-1所示:图1结构框图2.测量方案选择方案一:直接测频法。
直接测频法是把被测频率信号经脉冲形成电路后加到闸门的一个输入端, 只有在闸门开通时间T ( 以秒计) 内, 被计数的脉冲被送到十进制计数器进行计数。
设计数器的值为N , 由频率定义式可以计算得到被测信号频率为: f = N / T 。
基于单片机的简易频率计设计一、课题任务本设计是基于AT89S51单片机设计的简易频率计。
技术指标:频率(F)为:1Hz~100MHz,周期(T)为:1S~10E-7S,精度为:10%。
二、方案比较与选择1、方案比较方案一:本方案主要以数字器件为核心,主要分为时基电路,逻辑控制电路,放大整形电路,闸门电路,计数电路,锁存电路,译码显示电路七大部分。
其原理框图如图1所示图1.方案一原理框图方案二:本方案主要以单片机为核心,利用单片机的计数定时功能来实现频率的计数并且利用单片机的动态扫描把测出的数据送到数字显示电路显示。
其原理框图如2所示图2. 方案二原理图2、方案论证方案一:本方案使用大量的数字器件,被测量信号经过放大整形电路变成计数器所要求的脉冲信号,其频率与被测信号的频率相同。
同时时基电路提供标准时间基准信号,其高电平持续时间1s,当1s信号来到时,闸门开通,被测脉冲信号通过闸门,计数器开始计数,直到1s信号结束闸门关闭,停止计数。
若在闸门时间1s内计数器计得的脉冲个数为N,则被测信号频率F(X)=N Hz。
逻辑控制电路的作用有两个:一是产生锁存脉冲,使显示器上的数字稳定;二是产生清零脉冲,使计数器每次测量从零开始计数。
方案二:本方案主要以单片机为核心,被测信号先进入信号放大电路进行放大,再被送到波形整形电路整形,把被测正弦波或者三角波转换为方波,利用单片机的计数器和定时器的功能对被测信号进行计数。
编写相应的程序可以使单片机自动调节测量的量程,并把测出的频率数据送到显示电路显示。
3、方案选择比较以上两种方案可以知道,方案二的核心是单片机,使用的元器件少,原理电路简单,调试简单只要改变程序的设定值则可以实现不同频率范围的测量,能自动选择测试的量程。
与方案二相比较方案一则使用了大量的数字元器件,原理电路复杂,硬件调试麻烦。
如要测量高频的信号还需要加上分频电路,价格相对高。
鉴于我们是第一次做与单片机有关的电子设计作品,为了减少一定的难度以及为今后更好的实现频率计的精细化和准确化,经过小组讨论,我们决定从基础的频率计出发。
课程设计说明书课程设计名称:专业课程设计课程设计题目:数字频率计学院名称:信息工程学院专业:电子信息工程班级:学号:姓名:评分:教师:2012 年 6 月 29 日数字频率计是一种专门对被测信号频率进行测量的电子测量仪器,在计算机、通讯设备、音频视频等科研生产领域应用广泛。
本文详细介绍数字频率计的软件设计,并概述了硬件设计,以中界频率为界,低频采用测周法,而高频采用测频法。
其中,硬件电路由放大电路、整形电路、单片机定时计数电路、7279显示电路四个部分组成。
通过单片机STC89C51实现对特定周期窄脉冲的计数功能;通过芯片LM324实现对小信号的放大;通过芯片74LS14将输入的非方波整形成方波;通过芯片hd7279A驱动数码管可连续动态显示4位数。
软件部分采用的是一种结构化语言C51进行编程。
它层次清晰,便于按模块化方式组织程序,易于调试和维护。
主要功能模块有主程序、测频法程序、测周法程序、分离千、百、十、个位程序、7279显示程序组成。
本数字频率计可测量范围在1Hz—9999Hz的正弦波、方波、三角波的信号,时基宽度为1us,10us,100us,1ms,本数字频率计测量误差大约在0.1%左右,精度为±0.04%,直接由软件判断测频所用方法,解决了存在的换挡速度慢等缺点,并且节约了硬件上的成本。
具有精度高、使用方便、测量迅速,以及便等优点,而且还具有成本低、性价比高、功耗低等特点。
因此,该频率计具有一定的实用价值。
关键词:测频法、测周法、STC89C51单片机、HD7279A前言 (5)第一章硬件电路方案设计及设计要求 (6)1.1 设计内容及要求 (6)1.2方案比较 (6)1.3 方案论证 (7)1.4方案选择 (8)第二章系统组成和工作原理 (9)2.1系统组成 (9)2.2 系统工作原理 (9)2.2.1频率计测量方法简介 (9)2.2.2工作原理 (10)第三章硬件电路设计 (11)3.1单片机最小系统电路 (11)3.1.1 STC89C51功能简介 (12)3.1.2单片机STC89C51引脚图 (13)3.1.3复位电路 (14)3.2 放大整形模块 (16)3.3 施密特整形 (16)3.4 HD 7279A显示模块 (17)第四章软件设计及程序流程图 (20)4.1 编程语言的选择及程序的编译调试 (20)4.2 单片机计数原理 (21)4.3主程序设计 (21)4.3.1设计思路 (21)4.3.2程序流程图 (22)第五章实验调试、测量结果记录和误差分析 (26)5.1实验调试 (26)5.2 测量结果记录 (26)5.3误差分析 (28)5.3.1产生误差的原因 (28)5.3.2减小误差的方法 (28)第六章小结和体会 (30)参考文献 (31)附录一元器件清单 (32)附录二实验电路图 (32)附录三实验代码 (33)前言当今社会,随着科技的进步,数字系统的设计有了很大的进步,如今运行速度快、在功能更加强大的基础上更加便于使用携带成了发展的方向。
《单片机原理与接口技术》课程设计报告频率计1功能分析与设计目标 02频率计的硬件电路设计 (3)2.1 控制、计数电路 (3)2.2 译码显示电路 (5)3频率计的软件设计与调试 (6)3.1软件设计介绍 (6)3.2程序框图 (8)3.3功能实现具体过程 (8)3.4测试数据处理,图表及现象描述 (10)4讨论 (11)5心得与建议 (12)6附录(程序及注释) (13)1 功能分析与设计目标背景:在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。
为了实现智能化的计数测频,实现一个宽领域、高精度的频率计,一种有效的方法是将单片机用于频率计的设计当中。
用单片机来做控制电路的数字频率计测量频率精度高,测量频率的范围得到很大的提高。
题目要求:用两种方法检测(△m ,△ T )要求显示单位时间的脉冲数或一个脉冲的周期。
设计分析:电子计数式的测频方法主要有以下几种:脉冲数定时测频法(M 法),脉冲周期测频法(T 法),脉冲数倍频测频法(AM 法),脉冲数分频测频法(AT 法),脉冲平均周期测频法(M/T 法),多周期同步测频法。
下面是几种方案的具体方法介绍。
脉冲数定时测频法(M 法):此法是记录在确定时间Tc 内待测信号的脉冲个数Mx ,则待测频率为:Fx=Mx/ Tc脉冲周期测频法(T 法):此法是在待测信号的一个周期Tx 内,记录标准频率信号变化次数Mo。
这种方法测出的频率是:Fx=Mo/Tx脉冲数倍频测频法(AM 法):此法是为克服M 法在低频测量时精度不高的缺陷发展起来的。
通过A 倍频,把待测信号频率放大A 倍,以提高测量精度。
其待测频率为:Fx=Mx/ATo脉冲数分频测频法(AT 法):此法是为了提高T 法高频测量时的精度形成的。
由于T 法测量时要求待测信号的周期不能太短,所以可通过A 分频使待测信号的周期扩大A倍,所测频率为:Fx=AMo/Tx脉冲平均周期测频法(M/T法):此法是在闸门时间Tc内,同时用两个计数器分别记录待测信号的脉冲数Mx和标准信号的脉冲数Mo。
若标准信号的频率为Fo,则待测信号频率为:Fx=FoMx/Mo多周期同步测频法:是由闸门时间Tc与同步门控时间Td共同控制计数器计数的一种测量方法,待测信号频率与M/T法相同。
以上几种方法各有其优缺点:脉冲数定时测频法,时间Tc为准确值,测量的精度主要取决于计数Mx的误差。
其特点在于:测量方法简单,测量精度与待测信号频率和门控时间有关,当待测信号频率较低时,误差较大。
脉冲周期测频法,此法的特点是低频检测时精度高,但当高频检测时误差较大。
脉冲数倍频测频法,其特点是待测信号脉冲间隔减小,间隔误差降低;精度比M法高A 倍,但控制电路较复杂。
脉冲数分频测频法,其特点是高频测量精度比T法高A倍,但控制电路也较复杂。
脉冲平均周期测频法,此法在测高频时精度较高,但在测低频信号时精度较低。
多周期同步测频法,此法的优点是,闸门时间与被测信号同步,消除了对被测信号计数产生的±个字误差,测量精度大大提高,且测量精度与待测信号的频率无关,达到了在整个测量频段等精度测量。
功能描述:由于水平有限,本次设计采用相对简单的M法和T法两种方法测量简单方波的频率或脉宽(由于是输入简单方波信号,省去了被测输入信号通过脉冲形成电路进行放大与整形这个步骤)。
利用AT89C51单片机的T0、T1的定时计数器功能,来完成对输入的信号进行频率计数或脉宽计时,计数(计时)的频率结果通过5位八段LED数码管显示器显示出来。
设计指标:M法由于TO、T1对外部脉冲信号的最高计数频率为振荡频率的1/24,而振荡频率为12MHz得M法最高计数频率为500KHz而本设计设定最高计数频率即为500KHz 误差要求尽量小。
T法仅设定能测的外部脉宽范围为65536X 20us,以使定时计数器在不产生溢出中断的情况下进行测量。
本设计的频率测量误差要求尽量小,实践证明误差控制在1/100范围内。
2频率计的硬件电路设计原理介绍图2-1数字式频率计原理框图由上图可以看出,待测信号经过放大整形电路后得到一个待测信号的脉冲信号,然后通过计数器计数,可得到需要的频率值,最后送入译码显示电路中显示出来。
但是控制部分相对重要,它在整个系统的运行中起至关重要的作用。
本设计控制电路和计数器电路以AT89C51为核心,译码显示电路采用单片机静态显示计数来显示,采用5位七段LED数码管显示器。
下面分节介绍各部分硬件电路:2.1 控制、计数电路单片机作为控制系统和计数器,是本次设计的最重要的部分,AT89C51 是一种带4K 字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory的低电压,高性能CMOS8位微,俗称单片机。
该器件采用ATMEL 高密度非易失存储器制造制造,与工业标准的MCS-51 指令集和输出管脚相兼容。
由于将多功能8 位CPU 和闪烁存储器组合在单个中,ATMEL 的AT89C51 是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
所以本次设计采用AT89C51 单片机。
89C51 单片机, 它提供下列标准特征:4K 字节的程序存储器,128 字节的RAM , 32条I/O线,2个16位定时器/计数器,,一个5中断源两个优先级的中断结构,一个双工的串行口,片上震荡器和时钟电路。
其引脚说明如下:引脚说明:•VCC :电源电压。
•GND:接地。
•P0 口:P0 口是一组8位漏极开路型双向I/O 口,作为输出口用时,每个引脚能驱动8个TTL逻辑门电路。
当对0端口写入1时,可以作为高阻抗输入端使用。
当P0 口访问外部程序存储器或数据存储器时,它还可设定成地址数据总线复用的形式。
在这种模式下,P 0口具有内部上拉电阻。
在EPROM编程时,P0 口接收指令字节,同时输出指令字节在程序校验时。
程序校验时需要外接上拉电阻。
•P0 口:P0 口是一带有内部上拉电阻的8位双向I/O 口。
P0 口的输出缓冲能接受或输出4个TTL逻辑门电路。
当对P0 口写1时,它们被内部的上拉电阻拉升为高电平,此时可以作为输入端使用。
当作为输入端使用时,P0 口因为内部存在上拉电阻,所以当外部被拉低时会输出一个低电流(IIL )。
•P1 口:P2是一带有内部上拉电阻的8位双向的I/O端口。
P1 口的输出缓冲能驱动4个TTL逻辑门电路。
当向P1 口写1时,通过内部上拉电阻把端口拉到高电平,此时可以用作输入口。
作为输入口,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出电流(IIL )。
P2 口在访问外部程序存储器或16 位地址的外部数据存储器(例如MOVX @ DPTR)时,P2 口送出高8位地址数据。
在这种情况下,P2 口使用强大的内部上拉电阻功能当输出1 时。
当利用8 位地址线访问外部数据存储器时(例MOVX @R1), P2 口输出特殊功能寄存器的内容。
当EPROM编程或校验时,P2 口同时接收高8位地址和一些控制信号。
• P3 口:P3是一带有内部上拉电阻的8位双向的I/O端口。
P3 口的输出缓冲能驱动4个TTL逻辑门电路。
当向P3 口写1时,通过内部上拉电阻把端口拉到高电平,此时可以用作输入口。
作为输入口,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出电流(IIL)。
P3 口同时具有AT89C51 的多种特殊功能,P3.0 的第二功能是串行输入口RXD,P3.1的第二功能是串行输出口TXD,P3.2的第二功能是外部中断0,P3.3的第二功能是外部中断1,P3.4的第二功能是定时器T0,P3.5的第二功能是定时器T1,P3.6的第二功能是外部数据存储器写选通/WR,P3.7的第二功能是外部数据存储器读选通/RD。
M法主要使用管脚为P3.0、P3.1以及P35其具体使用方法如下:P3..0 口与寄存器74LS164的A,B端口连接,串行输出待显示的数据。
P3.1 口接移位寄存器74LS164的CLK(第8引脚),输出同步时钟信号。
P3. 5 口(即T1)输入脉冲信号。
T法主要使用管脚为P2.0 P3.0、P3.1以及P3.3。
其具体使用方法如下:P2.0 口接开关用于控制何时输出显示脉宽时间。
P3..0 口与寄存器74LS164的A,B端口连接,串行输出待显示的数据。
P3.1 口接移位寄存器74LS164的CLK(第8引脚),输出同步时钟信号。
P3. 5 口(即T1)输入脉冲信号。
2.2 译码显示电路显示电路采用静态显示方式。
频率测量结果经过译码,通过89C51 的串行口送出。
串行口工作于模式0 ,即同步移位寄存器方式。
这时从89C51 的RXD(P3.0)输出数据,送至串入并出移位寄存器74164的数据输入口 A 和B ;从TXD( P3. 1)输出时钟,送至74164的时钟输入口 CP 。
74164将串行数据转换成并行数据, 进行锁存。
74164输出的8位并行数据送至8段L ED ,实现测量数据的显示。
使用这种方法主程序可不必扫描显示器,从而单片机可以进行下一次测量。
这种 方法也便于对显示位数进行扩展。
3频率计的软件设计与调试3.1软件设计介绍本设计过程使用到的软件有: WAVE 软件模拟器,keil uVision2,protuseo 软件设计过程:在keil uVision2中输入所编程序,保存为以.c 为后缀的文件,新建项目, 加入刚保存的文件,编译,调试到程序编译不显示错误。
在 option for target 项中 output 中选中creathex files ,重新编译程序,软件生成以.hex 为后缀的文件。
在protuse 软件中画出所设计的电路模拟图,加载入前面生成的以.Hex 为后 缀的文件,运行,观察,调试数码管显示的数值,并与设置的输入信号频率作比 较,调试,分析误差产生原因,改进程序与电路图。
使用伟福软件编译所设计的c 程序,调试到正确无误。
并最终通过硬件来验 证所设计的频率计是否达到先前设定的设计指标。
图示:E尸------- 串行输入7 段 LED并行输出74LS164r土—Keil软件程序设计Protuse软件模拟Protuse是数字电路模拟常用的工具,方便易用,如图是工作窗口:电'.NTlTLtD -K^ Pro!1;宀鼻钿匕计心进回:6插代旳勺清式引可丟闖)祥幻鶴船鐸■由嵐・"世£丨网74LS1B*.IEC讪的苗I3.2程序框图注:以上两流程图均只表示出程序设计的简单流程, 并且只表示出处理一次 测量的过程,多次测量重复以上步骤即可。