(完整版)第八章遗传和变异
- 格式:docx
- 大小:36.56 KB
- 文档页数:6
第八章微生物的遗传遗传:亲代与子代相似。
变异:亲代与子代、子代间不同个体不完全相同。
遗传(inheritance)和变异(variation)是生命的最本质特性之一。
遗传型:生物的全部遗传因子及基因。
表型(表现型):具有一定遗传型的个体,在特定环境条件下通过生长发育所表现出来的形态等生物学特征的总和。
表型饰变:表型的差异只与环境有关。
特点:暂时性、不可遗传性、表现为全部个体的行为。
遗传型变异(基因变异、基因突变):遗传物质改变,导致表型改变。
特点:遗传性、群体中极少数个体的行为自发突变频率通常为10-6---10-9微生物是遗传学研究中的明星:微生物细胞结构简单,营养体一般为单倍体,方便建立纯系。
很多常见微生物都易于人工培养,快速、大量生长繁殖。
对环境因素的作用敏感,易于获得各类突变株,操作性强。
第一节遗传的物质基础一、DNA作为遗传物质Griffith的转化实验(DNA);T2噬菌体感染实验(DNA);植物病毒重建实验(DNA\RNA)。
二、RNA作为遗传物质生化提取分别获得含RNA的烟草花叶病毒蛋白质外壳(病毒1)和核酸(病毒2)抗血清处理,证明杂种病毒的蛋白质外壳来自病毒1,而非病毒2杂种病毒的后代的蛋白质外壳表现为病毒2,而非病毒1遗传物质是核酸(RNA)而非蛋白质三、朊病毒的发现与思考(一)发现:朊病毒是亚病毒的一种,是一种具有传染性的蛋白质致病因子,迄今为止尚未发现该蛋白内含有核酸。
致病机理:其致病作用是由于动物体内正常的蛋白质PrP c改变折叠状态为PrP sc所致,而这二种蛋白质的一级结构并没有改变。
引起人与动物的致死性中枢神经系统疾病,如羊搔痒症(scrapie),牛海绵状脑病(spongiform encephalopathy),人的库鲁病(kuru)、克雅氏病(Creutzfeldt Jakob disease, CJD)等。
Stanley B. Prusiner (1982)提出羊搔痒病因子是一种蛋白质侵染颗粒(proteinaceous infectious particle),并将之称做Prion或Virino,即朊病毒。
第八章微生物的遗传和变异习题与题解一、填空题1、证明DNA是遗传物质的事例很多,其中最直接的证明有1928年Griffith的细菌转化实验、Avery等的1944年发表的细菌细胞抽提物的降解、转化实验和1952年Alfred等进行的35S、32P标记的T2噬菌体繁殖实验。
而1956年,H.Fraenkel-Conrat用RNA病毒(烟草花叶病毒TMV)所进行的拆分和重建实验,证明了RNA也是遗传物质。
2、细菌在一般情况下是一套基因,即单倍体;真核微生物通常是有两套基因又称二倍体。
3、大肠杆菌基因组为双链环状的在细胞中以紧密缠绕成的较致密的不规则小体形式存在于细胞中,该小体被称为拟核。
4、酵母菌基因组最显著的特点是高度重复。
酵母基因组全序列测定完成后,在其基因组上发现了许多较高同源性的DNA重复序列,称之为遗传丰余。
5、质粒DNA分子存在于细胞中,但从细胞中分离的质粒大多是3种构型,即CCC型、OC型和L型。
6、转座因子1)是细胞中位于染色体或质粒上能改变自身位置(如从染色体或质粒的一个位点转到另一个位点,或者在两个复制子之间转移)的一段DNA序列。
2)原核微生物中的转座因子有三种类型:插入序列(IS)、转座子(Tn)和某些特殊病毒(如Mu)。
3)转座因子可引发多种遗传变化,主要包括插入突变、产生染色体畸变、基因的移动和重排。
7、在普遍性转导中,噬菌体可以将供体细菌染色体的任何部分转导到受体细菌中;而在局限性转导中,噬菌体总是携带同样的片段到受体细胞中。
8、细菌的结合作用是指细菌与细菌的直接接触而产生的遗传信息的转移和重组过程9、线粒体遗传特征的遗传发生在核外,且在有丝分裂和减数分裂过程以外,因此它是一种细胞质遗传。
10、丝状真菌遗传学研究主要是借助有性过程和准性生殖过程,并通过遗传分析进行的,而准性生殖是丝状真菌,特别是不产生有性孢子的丝状真菌特有的遗传现象。
准性生殖是指不经过减数分裂就能导致基因重组的生殖过程。
第八章遗传与变异一、本章教材分析:生物世代相传,其性状的传递保持着相对稳定。
性状传递有序地按规律进行。
在第六章探讨过遗传信息的传递和表达、第七章了解生殖方式和细胞分裂过程中遗传物质传递规律的基础上,本章继续研究遗传规律。
了解遗传规律,有助于人们对生命的认识,并指导生产实践和预防遗传病。
本章从遗传规律、伴性遗传、变异、人类遗传病和遗传病的预防四个方面阐述了生命遗传与变异的最基本规律。
基因的分离和自由组合规律是孟德尔首先发现的,孟德尔的实验过程和科学方法是学生学习科学探究方法和精神的良好教材。
通过模拟实验能帮助学生进一步了解性状与基因组合之间的关系,从而使学生更好理解基因的两大遗传规律。
对于“伴性遗传”的内容,教材以人类伴性遗传的典型例子如红绿色盲、抗维生素D佝偻病、毛耳性状的遗传等,说明伴随着X、Y染色体遗传的特点,方便学生理解伴性遗传的相关知识。
“变异”是生物多样性和进化的来源。
教材通过举例说明变异在生物界无处不在,然后简要介绍基因重组、基因突变、染色体畸变等概念,并指出这些变化是导致遗传物质发生变异的主要原因。
变异可以自发产生也可以在人工条件下发生。
人类可通过物理、化学、太空育种等方法实施人工诱变获得需要的品种。
但某些人工诱变可可能导致人体细胞的癌变,是生活中需要避免的。
通过实验“探究化学因子对蚕豆根尖细胞变异的影响”,学生可以直观地了解化学、物理因子引起细胞染色体发生变异实例。
第4节介绍常见的遗传病种类及病因,并从遗传学角度分析探讨人类优生与遗传病的预防关系,体现STS教学理念。
二、课题:第八章遗传和变异第1节遗传规律三、本节教材分析:遗传与变异是生命的基本特征之一,遗传现象普遍存在,遗传规律的揭示是建立在实验基础上的。
孟德尔是近代遗传学的奠基人,本节首先介绍孟德尔的研究轶事,突出他的研究思路、方法及科学研究的精神。
通过让学生读出孟德尔的研究获得成功的原因,让学生思考成功的科学研究包含的要素,鼓励学生积极运用科学知识、树立正确的态度解决自己学生和生活中遇到的问题。
第八章微生物的遗传和变异习题与题解一、填空题1、证明DNA是遗传物质的事例很多,其中最直接的证明有1928年Griffith的细菌转化实验、Avery等的1944年发表的细菌细胞抽提物的降解、转化实验和1952年Alfred等进行的35S、32P标记的T2噬菌体繁殖实验。
而1956年,H.Fraenkel-Conrat 用RNA病毒(烟草花叶病毒TMV)所进行的拆分和重建实验,证明了RNA也是遗传物质。
2、细菌在一般情况下是一套基因,即单倍体;真核微生物通常是有两套基因又称二倍体。
3、大肠杆菌基因组为双链环状的在细胞中以紧密缠绕成的较致密的不规则小体形式存在于细胞中,该小体被称为拟核。
4、酵母菌基因组最显著的特点是高度重复。
酵母基因组全序列测定完成后,在其基因组上发现了许多较高同源性的DNA重复序列,称之为遗传丰余。
5、质粒DNA分子存在于细胞中,但从细胞中分离的质粒大多是3种构型,即CCC型、OC型和L型。
6、转座因子1)是细胞中位于染色体或质粒上能改变自身位置(如从染色体或质粒的一个位点转到另一个位点,或者在两个复制子之间转移)的一段DNA序列。
2)原核微生物中的转座因子有三种类型:插入序列(IS)、转座子(Tn)和某些特殊病毒(如Mu)。
3)转座因子可引发多种遗传变化,主要包括插入突变、产生染色体畸变、基因的移动和重排。
7、在普遍性转导中,噬菌体可以将供体细菌染色体的任何部分转导到受体细菌中;而在局限性转导中,噬菌体总是携带同样的片段到受体细胞中。
8、细菌的结合作用是指细菌与细菌的直接接触而产生的遗传信息的转移和重组过程9、线粒体遗传特征的遗传发生在核外,且在有丝分裂和减数分裂过程以外,因此它是一种细胞质遗传。
10、丝状真菌遗传学研究主要是借助有性过程和准性生殖过程,并通过遗传分析进行的,而准性生殖是丝状真菌,特别是不产生有性孢子的丝状真菌特有的遗传现象。
准性生殖是指不经过减数分裂就能导致基因重组的生殖过程。
第八章遗传与变异知识点总结基本概念:1、相对性状:同种生物同一性状的不同表现;例如豌豆的紫花和白花2、性状分离:在杂种后代中呈现出不同亲本性状的现象;3、等位基因:位于一对同源染色体同一位置上的控制着相对性状的基因;例如A与a4、测交:就是让杂种子一代与隐性亲本杂交;5、纯合子:同源染色体同一位置上的基因组成相同的个体;例如:AA,aa, AAbb6、基因的分离定律:减数分裂时,等位基因会随着同源染色体的分离而分开,分别进入两个配子中,独立地随配子遗传给后代,这就是基因的分离定律;7、基因的自由组合定律:当两对(或更多对)相对性状的亲本进行杂交后,在F1形成配子时,等位基因会彼此分离,同时非同源染色体上的非等位基因表现为自由组合,这就是基因的自由组合定律;&伴性遗传:由性染色体上的基因所控制的性状表现出与性别相关联的遗传现象;9、基因重组:指生物体在有性生殖过程中,控制不同性状的基因之间的重新组合,结果使后代中出现不同于亲本的类型;10、基因突变:这种由DNA分子中碱基对的替换、缺失或增加而使基因特定核苷酸系列(实质)发生改变的现象;11、染色体组:细胞中的一组非同源染色体,它们在形态和功能上各不相同,但是携带着控制一种生物生长发育、遗传和变异的全部信息,这样的一组染色体,叫做一个染色体组。
12、染色体畸变:包括染色体结构和数目的变异;13、单倍体:指生物体的体细胞中含有的染色体数目与本物种配子染色体数目相同的生物个体;基础知识:1、遗传的两个基本规律:内容(基因的分离规律和基因的自由组合规律),提出者(奥地利人孟德尔),研究方法(杂交实验法一一人工去雄、套上纸袋、人工授粉、套上纸袋),实验材料(豌豆;优点:严格自花传粉并且是闭花传粉,具有多对区分明显的相对性状),研究思路(由简到繁、先易后难),数据处理(运用数学统计方法),大胆提出假说,假说验证方法(测交),坚持不懈地科研精神(8年潜心研究)2、遗传图解符号:亲本(P);子一代(F1);子二代(F2);杂交(X);自交()3、测交遗传图解三步:第一步测交亲本的基因型和表现型第二步测交亲本的配子类型及相应比例第三步测交后代的基因型及比例;表现型及比例5、显性个体是纯合体还是杂合体判断方法:植物(自交);动物(测交)6、由性染色体决定性别的类型主要有XY型和ZW型;7、XY型性别决定中雄性个体的性染色体为XY ;雌性个体的性染色体为XX ;ZW型性别决定中雄性个体的性染色体为ZZ ;雌性个体的性染色体为ZW ;& 人染色体组成(体细胞[女性:22AA+XX或44+XX 男性:22AA+XY或44+XY]、配子[男性:22A+X或22A+Y;女性:22A+X])果蝇染色体组成(体细胞[雌性:3AA+XX或6+XX雄性:3AA+XY或6+XY]、配子[雄性:3A+X或3A+Y 雌性:3A+X])9、遗传物质发生变化的主要来源有三个方面:基因重组、基因突变、染色体畸变;10、基因突变的特点:大部分是中性的;具有可逆性、多方向性;自然突变频率很低;11、育种的方法:诱变育种(用物理射线或某些化学物质处理萌发的种子或幼苗);杂交育种(具不同优势性状的个体杂交后选种);人工诱变多倍体育种(用秋水仙素处理萌发的种子或幼苗);单倍体育种(对种子植物的花粉进行离体培养获得单倍体植株后用秋水仙素处理萌发的种子或幼苗)12、遗传病的预防措施:禁止近亲结婚、遗传咨询、避免遗传病患儿的出生(产前检查)、倡导婚前体检、提倡适龄生育(女子24―― 29岁);13、单基因遗传病的类型:常染色体显性(并指、多指)、常染色体隐性(白化病、先天耳聋、苯丙酮尿症)、伴X显性(抗维生素阿D佝偻病)、伴X隐性(红绿色盲、血友病)、伴Y (外耳道多毛症)14、遗传咨询的服务对象:遗传病患者;生育过有遗传病或先天畸形孩子的父母;家中有遗传病史或直系、旁系亲属中出生过畸形儿的待婚青年;有多次不明原因流产史的夫妇或35岁以上的高龄孕妇;孕期接受过放射性照射、接触致畸物质或受过病毒感染的孕妇等。
理解掌握:1、禁止近亲结婚的原因:近亲双方从共同的祖先那里继承同一种致病基因的机会大大增加;已知多数遗传病是由隐性基因纯合造成的。
2、伴X隐性遗传病的特点:男性患者多于女性患者(男性只要得到一条带有致病基因的X染色体就会生病,女性必须同时获得两条带有致病基因的X染色体才会患病);女性患病,她的父亲和儿子必患病;隔代遗传(男性患者可以通过女儿将致病基因传给他的外孙)3、伴X显性遗传的特点:女性患者多于男性患者(女性两条X染色体中只要有一条有致病基因即患病,而男性只含有1条X染色体,患病概率低于女性);男性患病,他的母亲和女儿必患病;代代遗传(子女患病,双亲之一必患病)4、隔代遗传一定是隐性遗传病;代代遗传可能是显性遗传病也可能是隐性遗传病,但显性遗传病的概率较大。
5、单倍体育种的优点:可以缩短育种的年限(因为得到的是纯合体后代不会出现性状分离)6、人工诱变多倍体的方法:用秋水仙素处理萌发的种子或幼苗(秋水仙素能抑制细胞纺锤体的形成,导致复制后的染色体在细胞分裂时不分离,使细胞停止在分裂的后期,从而引起细胞内染色体数目的加倍;)7、基因重组是通过有性生殖的过程来实现的:首先减数分裂前期同源染色体内的非姐妹染色单体之间发生交叉互换会导致配子中基因重组,减数第一次分裂后期非同源染色体的非等位基因会自由组合也会导致配子中基因重组,从而产生配子基因型的多样性;其次,雌雄配子随即受精,会导致个体基因型的多样性。
8、基因突变发生在细胞分裂的间期(DNA 复制时)9、三倍体西瓜不会结种子的原因:由于三倍体植株在减数分裂过程中,染色体的联会发生紊乱,不能形成正常的生殖细胞,所以不能正常受精形成种子。
10、在培育无籽西瓜时,要给三倍体植株授以二倍体的花粉的原因:刺激子房发育为果实。
11、无籽番茄的培育与无籽西瓜不同:无籽番茄的配子虽正常,但未受精,所以无种子,对未受精的雌蕊蘸涂生长素后刺激子房发育为果实。
12、单倍体是由配子直接发育而来(未受精),配子中有几个染色体组,相应的单倍体生物就有几个染色体组;二倍体和多倍体是由受精卵发育而来,有几个染色体组就为几倍体。
13、基因型和表现型的相互关系:基因型是决定性状的内在因素,表现型是性状的外在表现。
基因型可能导致表现型的改变。
14、基因突变能产生新的基因是生物变异的主要原因;基因重组能产生新的基因型,相对基因突变基因重组能产生更多的变异型个体,因此基因重组为生物体的多样性提供了极其丰富的来源,为动物育种和生物进化提供了丰富的物质基础。
15、遗传物质改变引起的变异不一定可以遗传,只有发生在参与了受精的生殖细胞中时才可遗传;基本技能:1、基因型的书写:位于常染色体上的基因直接书写;位于性染色体上的基因先写性染色体再将携带基因写在右上方;显性基因在前,隐性基因在后;常染色体基因在前,性染色体基因在后;例如AaBbX h Y2、遗传病类型的判断:(1)首先判断显性遗传还是隐性遗传:方法一:(两代三个个体)双亲都正常,其子代中存在患者(无中生有)一定是隐性遗传病双亲都是患者,其子代中存在表现正常者(有种生物)一定是显性遗传病方法二:若找不到符合标准的两代三个个体看代代遗传还是隔代遗传:隔代遗传一定是隐性遗传病代代遗传有两种可能显性遗传病或隐性遗传病(但显性遗传病概率较大)(2)致病基因所位于染色体种类判断:一般先判断Y 染色体、在判断X 染色体,最后常染色体①Y 染色体的判断:患者均为男性,有Y 染色传递的男性要患病均患病②X 染色体的判断:X 隐性:所有女性患者的父亲和儿子均患病X 显性:所有男性患者的母亲和女儿均患病③常染色体:排除了Y 染色体、X 染色体则为常染色体若是隐性遗传病无患病女性,则题干中会有其它信息,此时先判断常染色体后判断X 染。
色体3、单倍体、二倍体、多倍体的区分首先判断该细胞是由配子直接发育(单性生殖、孤雌生殖)而来还是由受精卵发育而来:由配子发育而来则为单倍体由受精卵发育而来有几个染色体组就是几倍体若没有说明则有两种可能单倍体或N 倍体(细胞中有N 个染色体组)4、育种方式的判断和选择:种子或幼苗其中A 和D 代表杂交育种;C 代表单倍体育种;E 代表人工诱变基因突变育种;F 代 表多倍体育种。
练习:现有两个小麦品种,一个纯种小麦性状是高杆(D )抗锈病(T );另一个纯种小麦的性状是矮杆(d )易染锈病⑴。
两对基因独立遗传。
育种专家提出了如右图所示的I 、n 两种育种方法以获得 小麦新品种。
问:(1)要缩短育种年限,应选择的方法是 」_,依据的变异原理是—染色体畸变另一种方法的育种原 理是—基因重组_。
(2) 图中①和④基因组成分别为 _DT_和_ddTT_。
(3) (二)过程中,D 和d 的分离发生在减数第一次 后期_;(三)过程采用的方法称为花药离体培养 _(四)过程最常用的化学药剂是秋水仙素。
(4) (五)过程产生的抗倒伏抗锈病植株中的纯合 体占__1/3_ ;如果让F i 按(五)、(六)过程连续自 交2代,则⑥中符合生产要求的能稳定遗传的个体 占 _1/2。
(5)如将方法I 中获得的③⑤植株杂交,再让所得 到的后代自交,则后代的基因型比例为 _DDtt : Ddt5、 遗传规律的判断:若基因中只存在等位基因则符合基因的分离规律(如Aa );若基因中只存在非等位基因则符合基因的自由组合规律 (如A 与b );若同时存在等位基因与非等位基因则符合基因的分离规律合基因的自由组合规律(如: AaBb ) 6、 遗传谱系图中基因型的书写:突破口隐性个体,根据表现型先确定个别基因,再参照亲代和子代 完善基因型。
7、 纯合体和杂合体的判断已知基因型,看产生的配子类型是否只有一种:当只有一种是该个体为纯合体。
已知表现型,则可采用自交或测交:自交:纯合体自交后代性状不分离,稳定遗传;杂合体自交后代性状分离。
测交:纯合体测交后代表现型只有一种,杂合体测交后代表现型两种1: 1。
&六把钥匙的相关应用:(注意先分区,再组合 [相乘],具体基因型表现型分支法,具体比例生物 乘法)已知亲本基因型求子代基因型的种类及比例,表现型及比例。
[例:AaBb X Aabb ] 已知亲本基因型求子代某种基因型或表现型出现的概率。
[例:AaBbXaaBb* aaBb ]已知亲本表现型和子代表现型及比例求亲本的基因型:将各对相对性状分开考虑,后组合先根据亲本表现型确定个别基因(显性形状只能确定一个基因,隐性形状可以确定两个基因) 再结合子代表现型比例完善基因型:3: 1两个亲本均为杂合体nJ______ 卒 ________ _______ @a _______DDTTiiddtt=1:2:1。