电磁场理论基础总复习
- 格式:ppt
- 大小:1.81 MB
- 文档页数:45
《电磁场理论》知识点第一章 矢量分析一、基本概念、规律矢量微分算子在不同坐标系中的表达,标量场的梯度、矢量场的散度和旋度在不同坐标系中的计算公式,常用的矢量恒等式(见附录一1.和2.)、矢量积分定理(高斯散度定理、斯托克斯旋度定理及亥姆霍兹定理)。
二、基本技能练习1、已知位置矢量z y x e z e y ex r ˆˆˆ++=ρ,r 是它的模。
在直角坐标系中证明 (1)r r r ρ=∇ (2)3=•∇r ρ (3)∇×0=r ρ (4)∇×(0)=∇r (5)03=•∇r rρ2、已知矢量z y e xy e x eA z y x 2ˆˆˆ++=ϖ,求出其散度和旋度。
3、在直角坐标系证明0A ∇⋅∇⨯=r4、已知矢量y x e eA ˆ2ˆ+=ϖ,z x e eB ˆ3ˆ-=ϖ,分别求出矢量A ϖ和B ϖ的大小及B A ϖϖ⋅ 5、证明位置矢量x y z r e x e y e z =++r r r r的散度,并由此说明矢量场的散度与坐标的选择无关。
6、矢量函数z y x e x e y ex A ˆˆˆ2++-=ϖ,试求 (1)A ϖ⋅∇(2)若在xy 平面上有一边长为2的正方形,且正方形的中心在坐标原点,试求该矢量A ϖ穿过此正方形的通量。
第二章 静电场一、基本常数真空中介电常数0ε二、基本概念、规律静电场、库仑定律、电场强度、电位及其微分方程、电荷密度、电偶极子模型、高斯定理、环路定理、极化强度矢量、电位移矢量、场方程(真空中和电介质中)、介质性能方程,边界条件,场能及场能密度。
三、基本技能练习1、设非均匀介质中的自由电荷密度为ρ,试证明其中的束缚电荷密度为)(00εεερεεερ-∇•---=D b ρ。
2、证明极化介质中,极化电荷体密度b ρ与自由电荷体密度ρ的关系为:ρεεερ0--=b 。
3、一半径为a 内部均匀分布着体密度为0ρ的电荷的球体。
求任意点的电场强度及电位。
电磁场理论知识点总结一、电磁场的基本概念电磁场是物理学中的一个重要概念,它是由电场和磁场相互作用而形成的统一体。
电场是由电荷产生的,它对处在其中的电荷有力的作用。
电荷分为正电荷和负电荷,同种电荷相互排斥,异种电荷相互吸引。
电场强度是描述电场强弱和方向的物理量,用 E 表示。
电场强度的定义是单位正电荷在电场中所受到的力。
磁场是由电流或者运动电荷产生的,它对处在其中的运动电荷或者电流有力的作用。
磁场强度用 H 表示,磁感应强度用 B 表示。
磁感应强度是描述磁场强弱和方向的物理量,它等于垂直通过单位面积的磁力线的数量。
二、库仑定律与高斯定理库仑定律描述了真空中两个静止点电荷之间的相互作用力与它们的电荷量以及距离之间的关系。
其表达式为:F = k q1 q2 / r²,其中 k 是库仑常量,q1 和 q2 是两个点电荷的电荷量,r 是它们之间的距离。
高斯定理是电场中的一个重要定理,它表明通过一个闭合曲面的电通量等于这个闭合曲面所包围的电荷的代数和除以真空中的介电常数。
简单来说,如果一个闭合曲面内没有电荷,那么通过这个曲面的电通量为零;如果有电荷,电通量就与电荷量成正比。
三、安培定律与毕奥萨伐尔定律安培定律描述了电流元在磁场中所受到的安培力。
安培力的大小与电流元的大小、电流元所在位置的磁感应强度、电流元与磁感应强度之间的夹角有关。
毕奥萨伐尔定律用于计算电流元在空间某点产生的磁感应强度。
它表明电流元在空间某点产生的磁感应强度与电流元的大小、电流元到该点的距离以及电流元与该点连线和电流方向之间的夹角有关。
四、法拉第电磁感应定律法拉第电磁感应定律指出,当穿过闭合回路的磁通量发生变化时,回路中就会产生感应电动势。
感应电动势的大小与磁通量的变化率成正比。
这一定律揭示了电磁感应现象的本质,是发电机等电磁设备的工作原理基础。
五、麦克斯韦方程组麦克斯韦方程组是电磁场理论的核心,它由四个方程组成,分别描述了电场的高斯定律、磁场的高斯定律、法拉第电磁感应定律和安培麦克斯韦定律。
电磁场与电磁波知识点复习一、电磁场的基本概念电磁场是由电场和磁场相互作用而形成的一种物理场。
电场是由电荷产生的,而磁场则是由电流或变化的电场产生的。
电荷是产生电场的源,库仑定律描述了两个静止点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们之间距离的平方成反比。
电场强度是描述电场强弱和方向的物理量,其定义为单位正电荷在电场中所受到的力。
电流是产生磁场的源,安培定律描述了电流元之间的相互作用。
磁场强度则是描述磁场强弱和方向的物理量。
二、电磁波的产生电磁波是由时变的电场和时变的磁场相互激发而产生,并在空间中以一定的速度传播。
变化的电流和电荷分布都可以产生电磁波。
例如,一个振荡的电偶极子就是一种常见的电磁波源。
当电偶极子中的电荷来回振动时,周围的电场和磁场也随之发生周期性的变化,从而产生电磁波向空间传播。
三、电磁波的性质1、电磁波是横波电磁波中的电场强度和磁场强度都与电磁波的传播方向垂直,这是电磁波作为横波的重要特征。
2、电磁波的传播速度在真空中,电磁波的传播速度恒定,等于光速 c,约为 3×10^8 米/秒。
3、电磁波的频率和波长频率和波长是描述电磁波的两个重要参数,它们之间的关系为:波长=光速/频率。
电磁波的频率范围非常广泛,从低频的无线电波到高频的伽马射线。
4、电磁波的能量电磁波具有能量,其能量密度与电场强度和磁场强度的平方成正比。
四、麦克斯韦方程组麦克斯韦方程组是描述电磁场基本规律的一组方程,包括四个方程:高斯定律、高斯磁定律、法拉第电磁感应定律和安培麦克斯韦定律。
高斯定律描述了电场的通量与电荷量之间的关系;高斯磁定律表明磁场的通量总是为零;法拉第电磁感应定律说明了时变磁场可以产生电场;安培麦克斯韦定律则指出时变电场也可以产生磁场。
这组方程统一了电学和磁学现象,预言了电磁波的存在,并奠定了现代电磁学的基础。
五、电磁波的传播电磁波在不同介质中的传播特性不同。
在均匀介质中,电磁波遵循直线传播规律;当电磁波从一种介质进入另一种介质时,会发生折射和反射现象。
电磁场理论复习指导第一章 矢量分析知识点: ● 矢量代数:()()()A B C B A C C B A ⨯⨯=-()()()A B C B C A C A B⨯=⨯=⨯● 基本概念:场的定义,方向导数、梯度,通量、散度和环量、涡量、旋度 ● 无旋场、无散场及矢量分解定义 以及矢量场的Helmholtz 定理● ▽算子的运算矢量性和微分性,运算规则 ,注意合法运算,两者兼顾。
● 矢量分析中的若干积分定理Guass 定理,Stokes 定理,其他用到会给出2314()r r r r πδ⎛⎫⎛⎫∇=∇= ⎪ ⎪⎝⎭⎝⎭ 30r r ⎛⎫∇⨯= ⎪⎝⎭第二章 静电场知识点:● 静电场的基本定律:基本概念和定律(库仑定律、叠加原理、电场强度、电流密度的定义、点电荷的数学模型、各种分布的电场强度表达式、零级近似)静电场的基本方程:高斯定理和环路定理● 静电场的电位:电位的由来、定义,电位降概念、电位满足的方程(泊松方程和拉普拉斯方程)● 电位的多级展开:单级项和偶级项,点偶极子的物理模型,性质● 存在介质时的静电场:介质极化、极化强度和极化电荷的概念和定义;存在介质时满足的基本方程;本构关系;边界条件(切向电场连续,法向电位移矢量在表面无自由电荷时连续。
电位连续,电位的法向导数在表面无自由电荷时连续),等效思想(三种模型);介质的极化特性(尤其是线性均匀各项同性介质)● 静电场中的导体:基本概念和性质;理想化模型;导体系电容(电容系数等定义和物理意义)互易性 ● 静电场的能量:有无介质时,能量的表达式和物理意义,注意有一个只能表征能量 ● 静电场的求解方法:直接积分法;高斯定理加叠加原理;解泊松方程,注意边界条件和对称性第三章 边值问题的解法知识点:●唯一性定理:概念;重要意义●镜像法:(可直接记忆结果)思路、理论根据、方法;主要是课上所讲几种镜像以及其叠加问题;注意使用镜像法的几个要点(5个)以及对称性●解析函数法:基本概念,保角变换法(指数、对数、幂函数)注意使用条件和单一性区域●分离变量法:定义,解题思路和步骤;直角坐标系需自己记忆,圆柱和球坐标系会给出正交性公式(只考课上所讲几种情况)●格林函数法:基本思想、定义和分类,(只要求解格林函数,无需求解电位分布)●恒定电流场的电场:一般规律:电流和电流密度的定义以及它们之间的关系;电荷守恒定律;焦耳定律;恒定电流场的基本特性;基本方程和边界条件;导电介质中的恒定电流场:欧姆定律;维持恒定电流场的条件;基本方程和边界条件;理想导体在恒定电流场中的特性以及与静电场中导体的对偶性;恒定电流场的求解方法(高斯定理、恒定电流条件;解拉普拉斯方程;电阻的串并联;利用对偶性)一般求解漏电导。
电磁场理论知识点总结电磁场与电磁波总结第1章场论初步⼀、⽮量代数A ?B =AB cos θA B ?=AB e AB sin θA ?(B ?C ) = B ?(C ?A ) = C ?(A ?B ) A ? (B ?C ) = B (A ?C ) – C ?(A ?B ) ⼆、三种正交坐标系 1. 直⾓坐标系⽮量线元 x y z =++l e e e d x y z⽮量⾯元 =++S e e e x y z d dxdy dzdx dxdy 体积元 d V = dx dy dz单位⽮量的关系 ?=e e e x y z ?=e e e y z x ?=e e e z x y 2. 圆柱形坐标系⽮量线元 =++l e e e z d d d dz ρ?ρρ?l ⽮量⾯元 =+e e z dS d dz d d ρρ?ρρ? 体积元 dV = ρ d ρ d ? d z 单位⽮量的关系 ?=?? =e e e e e =e e e e zz z ρ??ρρ?3. 球坐标系⽮量线元 d l = e r d r + e θ r d θ + e ? r sin θ d ? ⽮量⾯元 d S = e r r 2sin θ d θ d ? 体积元 dv = r 2sin θ d r d θ d ? 单位⽮量的关系 ?=??=e e e e e =e e e e r r r θ?θ??θcos sin 0sin cos 0 001x r y z z A A A A A A ??=-sin cos sin sin cos cos cos cos sin sin sin cos 0x r y z A A A A A A=--θ?θ?θ?θθ?θ?θ??sin 0cos cos 0sin 010r r z A A A A A A=-θ??θθθθ三、⽮量场的散度和旋度1. 通量与散度=??A S Sd Φ 0lim→?=??=??A S A A Sv d div v2. 环流量与旋度=??A l ?ld Γ maxnrot =lim→A l A e ?lS d S3. 计算公式=++A y x zA A A x y z11()=++A zA A A z ?ρρρρρ? 22111()(sin )sin sin =++A r A r A A r r r r ?θθθθθ?x y z ?=e e e A x y z x y z A A A=?e e e A z z z A A A ρ?ρρρ?ρ sin sin=?e e e A r r zr r r A r A r A ρθθθ?θ 4. ⽮量场的⾼斯定理与斯托克斯定理=A S A SVd dV ?=A l A S ?l四、标量场的梯度 1. ⽅向导数与梯度00()()lim→-?=??l P u M u M u llcos cos cos =++P uu u ulx y zαβγ cos ??=?e l u u θ grad = =+e e e +e n x y zu u u uu n x y z2. 计算公式=++???e e e xy zu u uu x y z1=++???e e e z u u u u z ρρρ? 11sin =++???e e e r u u u u r r r zθ?θθ五、⽆散场与⽆旋场1. ⽆散场 ()0=A =??F A2. ⽆旋场 ()0=u =?F u六、拉普拉斯运算算⼦ 1. 直⾓坐标系222222222222222222222222222222=++?=?+?+??=++?=++?=++A e e e x x y y z zy y y x x x z z z x y zu u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212=++ =?--+?-++? ? ??????A e e e z z u u uu zA A A A A A A ?ρρρρρρρρρ?ρρ?ρρ?3. 球坐标系22222222111sin sin sin =++ ? ??????????u u uu r r r r r r θθθ?θ? ???+-??+?+???--??+?+???----=θθθ?θ?θθθθ?θθθθθθθ?θθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 2 22222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果⽮量场F 在⽆限区域中处处是单值的,且其导数连续有界,则当⽮量场的散度、旋度和边界条件(即⽮量场在有限区域V ’边界上的分布)给定后,该⽮量场F 唯⼀确定为()()()=-?+??F r r A r φ其中 1()()4''??'='-?F r r r r V dV φπ1()()4''??'='-?F r A r r r V dV π第2章电磁学基本规律⼀、麦克斯韦⽅程组 1. 静电场基本规律真空中⽅程: 0d ?=SE S ?qεd 0?=?lE l ? 0=E ρε 0??=E 场位关系:3''()(')'4'-=-?r r E r r r r V q dV ρπε =-?E φ 01()()d 4π''='-?r r |r r |V V ρφε介质中⽅程: d ?=?D S ?S qd 0?=?lE l ? ??=D ρ 0??=E极化:0=+D E P ε e 00(1)=+==D E E E r χεεεε极化电荷:==?P e PS n n P ρ =-??P P ρ 2. 恒定电场基本规律电荷守恒定律:0+=?J tρ传导电流: =J E σ与运流电流:ρ=J v恒定电场⽅程: d 0?=?J S ?Sd 0l=E l 0=J 0E =3. 恒定磁场基本规律真空中⽅程:0 d ?=?B l ?lI µd 0?=?SB S ? 0=B J µ 0=B场位关系:03()( )()d 4π ''?-'='-?J r r r B r r r VV µ =??B A 0 ()()d 4π'''='-?J r A r r r V V µ 介质中⽅程:d ?=?H l ?l Id 0?=?SB S ? ??=H J 0??=B磁化:0=-BH M µ m 00(1)=+B H =H =H r χµµµµ 磁化电流:m =??J M ms n =?J M e4. 电磁感应定律d d ?=-SE l B S ?lddt =-BE t5. 全电流定律和位移电流全电流定律:d ()d ??=+D H l J S ?lSt =+DH J t位移电流: d =DJ d dt6. Maxwell Equationsd ()d d d d d 0=+?=-??==D H J S B E S D S B Sl S l S SV S l t l t V d ρ 0=+???=-?==?D H J B E D B t t ρ ()() ()()0=+???=-?==?E H E H E E H t t εσµερµ ⼆、电与磁的对偶性e m e m e m e e m m e e m mm e 00=-??==+??=--?=?=?????=?=??B D E H D B H J E J D B D B t t &t t ρρ m e e m ??=--?=+==B E J D H J D B tt ρρ三、边界条件 1. ⼀般形式12121212()0()()()0-=-=-=-=e E E e H H J e D D e B B n n S n Sn ρ2. 理想导体界⾯和理想介质界⾯111100?=??===e E e H J e D e B n n Sn S n ρ 12121212()0()0()0()0-=-=-=-=e E E e H H e D D e B B n n n n 第3章静态场分析⼀、静电场分析1. 位函数⽅程与边界条件位函数⽅程: 220?=-电位的边界条件:121212=??-=-?s nn φφφφεερ 111=??=-?s const nφφερ(媒质2为导体) 2. 电容定义:=qC φ两导体间的电容:=C q /U任意双导体系统电容求解⽅法:2211===D SE S E lE l蜒SS d d q C U d d ε3. 静电场的能量N 个导体: 112==∑ne i i i W q φ连续分布: 12=?e V W dV φρ电场能量密度:12D E ω=?e⼆、恒定电场分析1. 位函数微分⽅程与边界条件位函数微分⽅程:20?=φ边界条件:121212=??=?nn φφφφεε 12()0?-=e J J n 1212[]0?-=J J e n σσ 2. 欧姆定律与焦⽿定律欧姆定律的微分形式: =J E σ焦⽿定律的微分形式: =??E J V3. 任意电阻的计算2211d d 1??====E l E l J SE SSSUR G Id d σ(L R =σS )4. 静电⽐拟法:C —— G ,ε —— σ2211===D SE S E lE l蜒SS d d q C U d d ε 2211d d d ??===J S E SE lE lS S d I G Uσ三、恒定磁场分析1. 位函数微分⽅程与边界条件⽮量位:2?=-A J µ 12121211A A e A A J n s µµ()=?-=标量位:20m φ?= 211221??==??m m m m n nφφφφµµ 2. 电感定义:d d ??===??B S A l ?SlL IIIψ=+i L L L3. 恒定磁场的能量 N 个线圈:112==∑Nm j j j W I ψ连续分布:m 1d 2A J =??V W V 磁场能量密度:m 12H B ω=? 第4章静电场边值问题的解⼀、边值问题的类型●狄利克利问题:给定整个场域边界上的位函数值()=f s φ●纽曼问题:给定待求位函数在边界上的法向导数值()?=?f s nφ●混合问题:给定边界上的位函数及其向导数的线性组合:2112()()?==?f s f s nφφ●⾃然边界:lim r r φ→∞=有限值⼆、唯⼀性定理静电场的惟⼀性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表⾯电荷分布)下,空间静电场被唯⼀确定。
电磁场理论知识点总结1.麦克斯韦方程组:麦克斯韦方程组是电磁场理论的核心方程,它由四个方程组成,分别是高斯定律、法拉第电磁感应定律、安培环路定律和法拉第电磁感应定律的积分形式。
这些方程描述了电场和磁场随空间和时间的变化规律。
2.电场和磁场的相互作用:根据麦克斯韦方程组,电场和磁场相互作用,通过电场的变化会产生磁场,而通过磁场的变化会产生电场。
这种相互作用是电磁波传播的基础。
3.电磁波的传播:根据麦克斯韦方程组的解,电磁波以光速在真空中传播,它是由电场和磁场相互耦合而成的波动现象。
电磁波的传播速度不同于物质中的电磁波传播速度,它是真空中的最大可能速度。
4.电磁感应现象:根据法拉第电磁感应定律,当一个导体中的磁场发生变化时,会在导体中产生感应电流。
这个现象被广泛应用于发电机、变压器等电磁设备中。
5.静电场和静磁场:当电荷和电流都不随时间变化时,产生的电场和磁场称为静电场和静磁场。
在静电场中,电场符合高斯定律;在静磁场中,磁场符合安培环路定律。
静电场和静磁场的研究对于理解电磁场的基本性质和应用具有重要意义。
6.电磁辐射和辐射场:根据麦克斯韦方程组的解,加速的电荷会辐射出电磁波。
这种辐射就是电磁辐射,它是电磁波传播的一种形式。
辐射场是指由电磁辐射产生的电场和磁场。
7.电磁波的频率和波长:电磁波的频率和波长是描述电磁波特性的两个重要参数。
频率指的是电磁波单位时间内振动的次数,单位是赫兹;波长指的是电磁波的一个完整振动周期所对应的空间距离,单位是米。
8.电磁场的能量和动量:根据电磁场的能量密度和动量密度的定义,可以推导出电磁场的能量和动量公式。
电磁场携带能量和动量,可以与物质相互作用,这是实现无线通信、光学传输等现代科技的基础。
9.电磁场的边界条件:电磁场在介质边界上的反射和折射现象可以通过电磁场的边界条件来描述。
边界条件包括麦克斯韦方程组的边界条件和介质的边界条件,它们确定了电磁场在边界上的行为和传播规律。
电磁场复习纲要《电磁场理论》知识点第⼀章⽮量分析⼀、基本概念、规律⽮量微分算⼦在不同坐标系中的表达,标量场的梯度、⽮量场的散度和旋度在不同坐标系中的计算公式,常⽤的⽮量恒等式(见附录⼀1.和2.)、⽮量积分定理(⾼斯散度定理、斯托克斯旋度定理及亥姆霍兹定理)。
⼆、基本技能练习1、已知位置⽮量z y x e z e y ex r ++=,r 是它的模。
在直⾓坐标系中证明(1)r r r =? (2)3=??r (3)?×0=r (4)?×(0)=?r (5)03=??r r2、已知⽮量z y e xy e x eA z y x 2++=,求出其散度和旋度。
3、在直⾓坐标系证明0A =4、已知⽮量y x e e A ?2?+= ,z x e e B ?3?-=,分别求出⽮量A 和B 的⼤⼩及B A ?5、证明位置⽮量x y z r e x e y e z =++ 的散度,并由此说明⽮量场的散度与坐标的选择⽆关。
6、⽮量函数z y x e x e y ex A 2++-=,试求(1)A(2)若在xy 平⾯上有⼀边长为2的正⽅形,且正⽅形的中⼼在坐标原点,试求该⽮量A穿过此正⽅形的通量。
第⼆章静电场⼀、基本常数真空中介电常数0ε⼆、基本概念、规律静电场、库仑定律、电场强度、电位及其微分⽅程、电荷密度、电偶极⼦模型、⾼斯定理、环路定理、极化强度⽮量、电位移⽮量、场⽅程(真空中和电介质中)、介质性能⽅程,边界条件,场能及场能密度。
三、基本技能练习1、设⾮均匀介质中的⾃由电荷密度为ρ,试证明其中的束缚电荷密度为)(00εεερεεερ-??---=D b 。
2、证明极化介质中,极化电荷体密度b ρ与⾃由电荷体密度ρ的关系为:ρεεερ0--=b 。
3、⼀半径为a 内部均匀分布着体密度为0ρ的电荷的球体。
求任意点的电场强度及电位。
4、设0=z 为两种媒质的分界⾯,0>z 为空⽓,其介电常数为01εε=,0媒质2。
电磁场与电磁波知识点要求第一章 矢量分析和场论基础1、理解标量场与矢量场的概念;场是描述物理量在空间区域的分布和变化规律的函数。
2、理解矢量场的散度和旋度、标量场的梯度的概念,熟练掌握散度、旋度和梯度的计算公式和方法(限直角坐标系)。
梯度:x y z u u uu x y z∂∂∂∇=++∂∂∂e e e , 物理意义:梯度的方向是标量u 随空间坐标变化最快的方向; 梯度的大小:表示标量u 的空间变化率的最大值。
y x zA A A x y z∂∂∂∇⋅=++∂∂∂A散度:单位空间体积中的的通量源,有时也简称为源通量密度, 高斯定理: ()()V S dV d ∇⋅=⋅⎰⎰⎰⎰⎰A A S ,x y zy y x x z zx y z xy zA A A A A A x y z y z z x xy A A A ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫∇⨯==-+-+- ⎪⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭e e e A e e e旋度:其数值为某点的环流量面密度的最大值,其方向为取得环量密度最大值时面积元的法线方向。
斯托克斯定理:()()S L d d ∇⨯⋅=⋅⎰⎰⎰A S A l数学恒等式:()0u ∇⨯∇=,()0∇⋅∇⨯=A 3、理解亥姆霍兹定理的重要意义:若矢量场 A 在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则矢量场由其散度和旋度唯一地确定,并且矢量场 A 可表示为一个标量函数的梯度和一个矢量函数的旋度之和。
u =∇⨯-∇A F第二、三、四章 电磁场基本理论1、 理解静电场与电位的关系,QPu d =⋅⎰E l ,()()u =-∇E r r2、 理解静电场的通量和散度的意义,d d d 0V SV SVρ⎧⋅=⎪⎨⋅=⎪⎩⎰⎰⎰D S E l ,0V ρ∇⋅=⎧⎨∇⨯=⎩D E 静电场是有散无旋场,电荷分布是静电场的散度源。
3、 理解静电场边值问题的唯一性定理,能用平面镜像法解简单问题;唯一性定理表明:对任意的静电场,当电荷分布和求解区域边界上的边界条件确定时,空间区域的场分布就唯一地确定的镜像法:利用唯一性定理解静电场的间接方法。
电磁场理论复习提纲一、矢量分析与场论基础主要内容与问题:①矢量及矢量的基本运算;②场的概念、矢量场和标量场;③源的概念、场与源的关系;④标量函数的梯度,梯度的意义;⑤正交曲线坐标系的变换,拉梅系数;⑥矢量场的散度,散度的意义与性质;⑦矢量函数的旋度,旋度的意义与性质⑧正交曲线坐标系中散度的计算公式;⑨矢量场的构成,Helmholtz定理;⑩正交曲线坐标系中散度的计算公式。
二、宏观电磁场实验定律主要内容与问题:①库仑定律,电场的定义,电场的力线;②静电场的性质(静电场的散度、旋度及电位概念);③Ampere定律;磁感应强度矢量的定义,磁场的力线;④恒定电流磁场的性质(磁场的散度、旋度和矢势概念);⑤Faraday电磁感应定律,电磁感应定律的意义;⑥电流连续原理(或称为电荷守恒定律)⑦电磁场与带电粒子的相互作用力,Lorentz力公式。
三、介质的电磁性质主要内容与问题:①电磁场与介质的相互作用的物理过程;②介质极化,磁化、传导的宏观现象及其特点;③介质的极化现象及其描述方法,电位移矢量;④介质的磁化现象及其描述方法,磁场矢量;⑤介质的传导现象及其描述方法,欧姆定律;⑥介质的基本分类方法及电磁特性参数与物质本构方程;⑦极化电流、磁化电流与传导电流产生原因及其异同点;⑧介质的色散及其产生的原因,色散在通信中带来的问题;四、宏观Maxwell方程组主要内容与问题:①静态电磁场与电流连续性原理的矛盾;②位移电流概念及其意义;③宏观电磁场运动的Maxwell方程组;④Maxwell方程组的物理意义;⑤宏观Maxwell的微分形式、积分形式、边界条件;⑥宏观Maxwell方程组的完备性;⑦电磁波方程、基本解及其基本性质。
五、静态电磁场主要内容与问题:①电位(势)函数与电场的关系,静电场方程;②磁矢势与恒定电流磁场,磁矢势的方程;③磁场的标量位函数,磁标位及其方程;④静态电磁场的边界条件;⑤导体系统的电容;⑥载流线圈的电感;⑦静态电磁场的能量;⑧静态电磁场中导体系受力。