基于故障树最小割集的故障诊断方法
- 格式:pdf
- 大小:85.81 KB
- 文档页数:2
船舶电力推进系统故障分析摘要;在船舶正常运行过程中最需要重视的问题是安全问题,同时也是运行过程中最基本的问题。
在科学技术和理论研究都日渐完善今日,一种全新的推进技术成为了船舶上的主要推进技术,这种全新的推进技术就是船舶电力推进技术。
也正是由于船舶电力推进系统在船舶上得到广泛的使用,所以船舶电力推进系统的正常运行对于船舶的安全运行来说十分的重要。
因此,如何迅速准确地识别船舶电推进系统的故障就显得尤为重要。
船舶电力推进系统是由船舶推进系统和电力系统两部分结合而成的一种全新系统,所以当系统发生的问题时往往是十分复杂且相互关联的。
若是在船舶运营期间,船舶电力推进系统发生故障要专业人员维修的话,会增加船舶的运营成本降低利润,而且当船舶运行在海上时可能出现无法准确诊断故障发生位置和缺少专业维修工具的情况。
而在如今船舶上大部分故障都是由船员进行诊断和维修的,但他们往往对于一些故障无法进行有效的诊断和修复,如果建立出一个可以简单有效的可以用来分析系统中所有故障的系统,就可以轻松解决这一问题,保障船舶运行的安全。
[关键词] 船舶电力推进系统;故障树;故障分析1引言船舶电力推进从19世纪初就被发行和使用,但却没用船舶上得到大量使用,因为由于历史原因的限制,当时在电力推进技术方面的理论和科技水平都阻碍了它的发展。
如今,在电力推进技术方面的理论和科学技术已经得到了飞速发展,比如大功率电力技术、集成电路技术及自动控制技术方面的科技已经十分成熟,使得船舶大规模采用电力推进技术设想的变成现实。
此外,随着第三代稀土永久磁体材料的成功开发,永久磁体电机已经正式许多领域得到实用。
与此同时,世界各地的研究人员和机构都在研究燃料电池和超导技术。
因此,现如今船舶电力推进技术在各种商业船舶和军用船舶上都得到广泛应用。
船舶的安全问题是船舶在运行过程中最为重要的问题,也是对船舶在运行过程中的最基本要求。
在科学技术和理论研究都日渐完善今日,一种全新的推进技术在船舶上大量的使用,这种全新的推进技术就是船舶电力推进技术。
故障树分析法(FTA)判断液泵故障分析研究作者:刘晓国来源:《中国新技术新产品》2013年第06期摘要:为减少液泵故障率,提高安全性,减少处理液泵故障时间,文章利用故障树分析法对液泵的日常修理、维护等方面进行排查,减少了机电事故率,提高了安全性能。
供同行参考。
关键词:分析法;故障判断;提高可靠性中图分类号:U47 文献标识码:A1南京产BRW400/31.5、BRW200/31.5液泵故障分析1.1泵的某一吸液阀或排液阀卡住由于长时间使用疲劳过度或锈蚀严重都可能导致弹簧断裂。
吸排液阀的弹簧软或短及卸载阀坏都可以导致冲击过大使阀锥断裂。
其次由于阀锥质量问题,热处理时硬度超过规定硬度也容易造成阀锥断裂。
1.2自动卸载阀主阀阀芯卡住不能动作这一原因和人为因素有很大关系,由于没有定期更换易损件如滑套内的密封圈用的过久不更换,阀芯使用的太久磨损严重都能导致主阀阀芯卡住不动作。
1.3高压过滤器阻塞主要原因是吸排液阀上破损的密封圈进入过滤器内。
或由于长时间没有使用滤芯导致虑芯锈蚀严重,高压过滤器阻塞。
1.4自动卸载阀下部推动活塞卡住不动作其原因是复位弹簧折断或没有复位弹簧,推力活塞磨损严重,组装不得当或导向套密封脱落导致导向套有毛刺。
1.5自动卸载阀主阀不起作用,先导阀出液小孔堵住由于看泵人员不细心,液箱盖没有随时关闭,掉入杂物使液箱内液体变脏,堵住出液小孔。
由于质量问题如开胶掉底。
或没有定期更换清洗吸液过滤网,使小杂物进入先导阀堵住先导阀出液小孔。
1.6液箱内液位低液箱内液位低泵不能吸进工作液导致不能排出高压液。
由于泵箱内没有及时加入乳化液或由于泵箱开焊漏液。
1.7卸载阀未关闭在有手动卸载阀的泵上如果手动卸载阀未关紧,导致自动卸载阀不工作,在压紧螺套未压紧的情况下卸载阀也不关闭。
1.8吸液管截止阀未打开这一原因主要是截止阀损坏根本打不开或截止阀在打开的位置上实际是关闭的。
2乳化液泵站故障树的定性分析对乳化液泵站进行定性分析的主要目的就是找出导致顶事件发生的所有可能的故障模式,即弄清系统(或设备)出现最不希望发生的事件(故障)有多少种可能性。
什么是故障树分析法故障树分析(FTA)技术是美国贝尔电报公司的电话实验室于1962年开发的,它采用逻辑的方法,形象地进行危险的分析工作,特点是直观、明了,思路清晰,逻辑性强,可以做定性分析,也可以做定量分析。
体现了以系统工程方法研究安全问题的系统性、准确性和预测性,它是安全系统工程的主要分析方法之一。
一般来讲,安全系统工程的发展也是以故障树分析为主要标志的。
1974年美国原子能委员会发表了关于核电站危险性评价报告,即“拉姆森报告”,大量、有效地应用了FTA,从而迅速推动了它的发展。
什么是故障树图(FTD)故障树图 ( 或者负分析树)是一种逻辑因果关系图,它根据元部件状态(基本事件)来显示系统的状态(顶事件)。
就像可靠性框图(RBDs),故障树图也是一种图形化设计方法,并且作为可靠性框图的一种可替代的方法。
一个故障树图是从上到下逐级建树并且根据事件而联系,它用图形化"模型"路径的方法,使一个系统能导致一个可预知的,不可预知的故障事件(失效),路径的交叉处的事件和状态,用标准的逻辑符号(与,或等等)表示。
在故障树图中最基础的构造单元为门和事件,这些事件与在可靠性框图中有相同的意义并且门是条件。
故障树和可靠性框图(RBD)FTD和RBD最基本的区别在于RBD工作在"成功的空间",从而系统看上去是成功的集合,然而,故障树图工作在"故障空间"并且系统看起来是故障的集合。
传统上,故障树已经习惯使用固定概率(也就是,组成树的每一个事件都有一个发生的固定概率)然而可靠性框图对于成功(可靠度公式)来说可以包括以时间而变化的分布,并且其他特点。
故障树分析中常用符号故障树分析中常用符号见下表:故障树分析法的数学基础1.数学基础(1)基本概念集:从最普遍的意义上说,集就是具有某种共同可识别特点的项(事件)的集合。
这些共同特点使之能够区别于他类事物。
并集:把集合A的元素和集合B的元素合并在一起,这些元素的全体构成的集合叫做A与B的并集,记为A∪B或A+B。
基于故障树的船舶导航雷达发射系统故障诊断与应急处理研究余枫杨晓李邵喜陈海力(大连海事大学航海学院辽宁大连116026)基金项目:中央高校基本科研业务费(3132019400);大连海事大学教学改革项目(2020Y16)摘要:在航行中船舶导航雷达发生故障,只能通过雷达操作和回波观测对故障做出初步诊断,维修雷达存在极大困难。
文章基于故障树分析方法构建了船舶导航雷达发射系统故障树,通过定性分析得出最小割集和底事件结构重要度排序,并通过定量分析得出发射系统故障树顶事件发生概率和底事件重要度系数。
最终制定了船舶导航雷达发射系统无发射脉冲的诊断检查方案,并提出了异常雷达运行状态,回波及显示对雷达故障判断的最佳识别方法及应急措施。
研究结果可为船舶导航雷达发射系统故障的诊断和应急处理提供理论依据。
关键字:船舶导航雷达故障诊断故障树回波应急处理0 引言雷达作为国际海事组织认定的用于避碰的重要航海仪器,装载于船舶上执行观测、避碰、导航、定位功能。
驾驶员通过对雷达回波图像的观测,捕获最近会遇距离小于安全门限的目标进行跟踪,亦可选择与海图对应的参照物导航,通过对参照物的测距测方位操作确定本船船位。
雷达回波图像的正常显示对这些船载雷达的应用有重要影响,只有稳定的、最佳的雷达图像显示,才能够保证雷达跟踪目标数据的可靠性,满足各种应用要求。
在海上航行的封闭环境中,雷达故障面临检修困难的现状,及早发现雷达异常以及妥当的应急处理,是保证航行安全的极大保障。
现有的雷达故障诊断方法包括三类,基于信号处理的雷达故障诊断方法,基于解析模型的方法和基于知识的诊断方法。
基于信号处理的方法对船舶导航雷达故障诊断有地域性限制和数据传输受限的问题。
人工神经网络和模糊推理[1~3,11]较多用于基于知识的雷达故障诊断,可提高雷达故障诊断效率和诊断精度。
雷达故障诊断专家系统[4~5]不依赖于系统数学模型,以使用者的实践经验和大量故障收稿日期:2020-07-08作者简介:余枫(1982-),女,云南省通人,讲师,主要从事航海科学技术、计算机仿真技术和航海仪器等方面的研究。
基于故障树的智能故障诊断方法.故障树理论基础故障树分析法(fault tree analysis, FTA)是分析系统可靠性和安全性的一种重 要方法,现己广泛应用于故障诊断。
基于故障的层次特性, 其故障成因和后果的 关系往往具有很多层次并形成一连串的因果链, 就构成故障树。
故障树(FT)模型是一个基于被诊断对象结构、功能特征的行为模 型,是一种定性的因果模型, 以系统最不希望事件为顶事件, 以可能导致顶事件 发生的其他事件为中间事件和底事件, 并用逻辑门表示事件之间联系的一种倒树状结构。
它反映了特征向量与故障向量 (故障原因 )之间的全部逻辑关系。
故障树法对故障源的搜寻直观简单,它是建立在正确故障树结构的基础上 的。
因此建造正确合理的故障树是诊断的核心与关键。
但在实际诊断中这一条件 并非都能得到满足,一旦故障树建立不全面或不正确, 则此诊断方法将失去作用。
二.基于故障树的故障诊断方法故障树分析法(Fault Tree Analysis , FTA)又叫因果树分析法.它是目前国际 上公认的一种简单、有效的可靠性分析和故障诊断方法, 是指导系统最优化设计、 薄弱环节分析和运行维修的有力工具。
故障树分析法首先要在一定环境与工作条件下, 找到一个系统最不希望发生 的事件,通常以人们所关心的影响人员、 装备使用安全和任务完成的系统故障为 分析目标,再按照系统的组成、结构及功能关系,由上而下,逐层分析导致该系 统故障发生的所有直接原因,并用一个逻辑门的形式将这些故障和相应的原因事 件连接起来, 建立分析系统的故障树模型, 从而, 形象地表达出系统各功能单元 故障和系统故障之间的内在逻辑因果关系。
这种方法既能分析硬件本身的故障影响,又能分析人为因素、 环境以及软件的影响. 不仅能对故障产生的原因进行定 性分析,找出导致系统故障的原因和原因组合, 确定最小割集和最小路集, 出系统的薄弱环节及所有可能失效模式, 还能进行相关评价指标的定量计算。
设备状态监测与故障诊断作业标题:故障树分析在故障诊断中的应用概述故障树分析在故障诊断中的应用概述摘要:在介绍故障树分析基本理论的基础上,分析和总结了故障树分析方法在故障诊断的应用现状,提出了目前故障树分析的主要发展方向。
关键词:故障树分析,故障诊断,模糊故障树ABSTRACT:Based on the introduction of the basic theory of fault tree analysis, the present situation of fault tree analysis in fault diagnosis is analyzed and summarized; the main developing direction of fault tree analysis is given.KEYWORDS:fault tree analysis(FTA), fault diagnosis, fuzzy fault tree前言故障树分析(Fault Tree Analysis,简称FTA)方法,利用故障树将系统故障原因自顶向下逐级进行分析,估计顶事件的发生概率和底事件重要度,是系统可靠性分析、故障检测与诊断常用的一种分析方法。
这种方法通过把系统可能发生或已经发生的事故(即顶事件)作为分析起点,将导致事故的原因事件按因果关系逐层列出,用树形图表示出来,构成一种逻辑模型。
找出事件发生的各种可能途径及发生概率,找出避免事故发生的各种方案并优选出最佳安全对策[1]。
故障树分析既可用定性模型也可以用定量模型。
故障树的果因关系清晰、形象,对导致事故的各种原因及逻辑关系能做出全面、简洁、形象地描述,因而在各行业故障诊断中得到广泛而重要的应用。
1故障树分析的基本理论1.1故障树分析的原理及步骤故障树(FT)模型是一个基于被诊断对象结构、功能特征的行为模型,是一种定性的因果模型,以系统最不希望事件为顶事件,以可能导致顶事件发生的其他事件为中间事件和底事件,并用逻辑门表示事件之间联系的一种倒树状结构。
时代汽车 故障树分析法在汽车液压系统故障诊断中的应用1 引言液压系统以其重量轻、体积小、布置灵活、运动惯性小、反应速度快等优点,在汽车中得到了广泛的应用。
但由于液压系统结构复杂、精度要求高、密封要求严,再加上液压系统故障的隐蔽性、多发性和不确定性,导致液压系统的故障发生率相对较高,故障诊断和排除的难度也就相对较大。
机电维修实践证明,故障树分析法能够将液压系统故障现象和故障原因之间的逻辑关系“树型图”化,直观明了,有利于液压系统的故障诊断和排除。
本文采用故障树分析法对汽车液压式动力转向系统的典型故障“转向沉重”进行了有益的探索,结果表明此法对汽车液压系统故障能够快速、准确地找到故障原因和部位,从而减少维修的盲目性和缩短维修的周期。
2 故障树分析法(FAT)简介2.1 故障树分析法的含义故障树分析法(Fault Tree Analysis,简称FTA)是1961年由美国贝尔实验室的华生(H.A.Watson)和汉塞尔(D.F.Haasl)首先提出[1]。
其后,在宇航、核能、电子、机械、化工、采矿等领域得到了广泛的应用。
故障树分析法是一种需要整体、综合、定量地考虑系统异常行为的系统方法[2],是一种图形演绎方法,是一种由系统到部件再到零件的“下降型”分析方法,是故障事件在一定条件下发生的逻辑规律它是用一种特殊的倒立树状逻辑因果关系图——故障树,清晰地说明系统是怎样失效的[3],即是怎样发生故障的,能将系统的故障树与组成系统的各零部件的故障有机地联系在一起,可以找出系统的全部可能的故障状态,即原因和部位。
具体来说,就是以所研究的系统中最不愿意发生的事情作为故障树的顶事件,并找出造成该顶事件发生的直接全部因素;然后以这些直接因素作为中间事件,再找出造成这些中间事件发生的全部直接因素;如此类推,直到不能展开为止。
这些不能展开的因素为故障树的基本事件或底事件。
故障树分析的步骤一般可表示为:选择顶事件→构建故障树→定性分析→定量分析[4]。
基于故障树的智能故障诊断方法一.故障树理论基础故障树分析法(fault tree analysis,FTA)是分析系统可靠性和安全性的一种重要方法,现己广泛应用于故障诊断。
基于故障的层次特性,其故障成因和后果的关系往往具有很多层次并形成一连串的因果链,加之一因多果或一果多因的情况就构成故障树。
故障树(FT)模型是一个基于被诊断对象结构、功能特征的行为模型,是一种定性的因果模型,以系统最不希望事件为顶事件,以可能导致顶事件发生的其他事件为中间事件和底事件,并用逻辑门表示事件之间联系的一种倒树状结构。
它反映了特征向量与故障向量(故障原因)之间的全部逻辑关系。
故障树法对故障源的搜寻直观简单,它是建立在正确故障树结构的基础上的。
因此建造正确合理的故障树是诊断的核心与关键。
但在实际诊断中这一条件并非都能得到满足,一旦故障树建立不全面或不正确,则此诊断方法将失去作用。
二.基于故障树的故障诊断方法故障树分析法(Fault Tree Analysis,FTA)又叫因果树分析法.它是目前国际上公认的一种简单、有效的可靠性分析和故障诊断方法,是指导系统最优化设计、薄弱环节分析和运行维修的有力工具。
故障树分析法首先要在一定环境与工作条件下,找到一个系统最不希望发生的事件,通常以人们所关心的影响人员、装备使用安全和任务完成的系统故障为分析目标,再按照系统的组成、结构及功能关系,由上而下,逐层分析导致该系统故障发生的所有直接原因,并用一个逻辑门的形式将这些故障和相应的原因事件连接起来,建立分析系统的故障树模型,从而,形象地表达出系统各功能单元故障和系统故障之间的内在逻辑因果关系。
这种方法既能分析硬件本身的故障影响,又能分析人为因素、环境以及软件的影响.不仅能对故障产生的原因进行定性分析,找出导致系统故障的原因和原因组合,确定最小割集和最小路集,识别出系统的薄弱环节及所有可能失效模式,还能进行相关评价指标的定量计算。
根据各已知单元的故障分布及发生概率,求得单元概率重要度,结构重要度、关键重要度和系统失效概率等定量指标。