最优算法的高精度数控直流电源设计
- 格式:pdf
- 大小:368.85 KB
- 文档页数:6
(数控加工)数控直流电流源设计报告数控直流电流源一、设计任务和技术要求1.设计壹个数控直流电流源。
2.输出电流0~99mA,手动步进1mA增、减可调,误差不大于0.01mA。
3.具有输出电流大小的数码显示。
4.负载供电电压+12V,负载等效阻值100Ω。
5.电路应具有对负载驱动电流较好的线性控制特性。
6.设计电路工作的直流供电电源电路。
二、系统原理概述本设计要求设计出壹个数控的直流电源,且且输出电流为0~99mA,能够手动控制增减。
在此采用数模转换的原理,只要产生和0~99mA电流相对应的数字量(我们取数字量为0~99),再使用D/A转换器转换为模拟电压量,最后再用V/I转换器将电压量转换为和电压量相对应的电流量即可。
为控制输出电流手动步进为1mA增、减可调,我们只要保证数字量(0~99)——电压量(0~9.9V)——电流量(0~99mA)相对应,通过控制数字量手动增减步进为1可调即可。
综上,整个系统的原理框图如图壹所示:图一系统原理框图三、方案论证1.直流稳压电源电路单元小功率稳压电源由电源变压器、整流电路、滤波电路和稳压电路四个部分组成。
如图二所示:图二稳压电源组成示意图方案壹:输出可调的开关电源开关电源的功能元件工作在开关状态,因而效率高,输出功率大;且容易实现短路保护和过流保护,可是电路比较复杂,设计繁琐,在低输出电压时开关频率低,纹波大,稳定度极差,因此在本设计中不适合此方案。
方案二:由固定式三端稳压器组成由固定式三端稳压器(7805、7812、7912)输出脚V0、输入脚V i和接地脚GND组成,它们的输入端接电容能够进壹步滤波,输出端接电容能够改善负载的瞬间影响,且且此电路也比较稳定,实现简单。
因此在此采用方案二,电路原理图如图三所示:图三固定三端式直流稳压电源电路2.手动增减数字量产生单元方案壹:74LS163为可预置的4位二进制同步加法计数器。
采用俩片74LS163运用反馈清零或者反馈置数法构成十进制计数器,再将俩片73LS163构成2位十进制加法计数器。
f) 电抗器的参数设计四.具体的计算和选择过程〈一〉.主电路的选择根据实验要求的原始数据,直流电机的功率P=7.5kW<10KW,根据下表,从变压器利用率、直流侧脉动情况、元件利用率、直流磁化、波形畸变及各整流电路应用场合分析,选择单相全控桥式整流电路作为本数控机床可控直流电源设计的主电路。
〈二〉.整流变压器的设计及计算相关参数见下表相关参数表<1>变压器二次侧电压有效值2U 的计算在不考虑最小控制角,电网电压波动,晶闸管管压降和变压器漏感等因素的理想情况时,直流端输出电压d U 为:222122U 2sin()()cos 0.9cos d U t d t U U πααωωααππ+===⎰所以20.9cos d U U α=<2>然而,由于整流器负载回路的电感足够大,所以变压器内阻及晶闸管通态压降可忽略不计。
在计算整流变压器的参数时,还应考虑以下因素: 1)最小触发延迟角min α。
在直流输出电压保持恒定的装置中,α应能自动调节补偿。
一般可逆系统的min α取3050,不可逆系统min α取1015。
2)电网电压波动。
根据规定,电网电压允许波动范围+5% 1.2)N UVU bK 变压器二次相电压电动机的额定电压3)U=2.5TM晶闸管可能承受的电压最大值当整流器的输入电压和整流器的连接方式确定后,的输入电压和晶闸管可能承受的最大电压有固定关系,23)UT K U --------晶闸管的电压计算系数--------整流变压器二次相电压()T I AV 的选择2倍的安全裕量。
(1.52)1.57T I 流过晶闸管的最大电流有效值实际计算中,常常是负载的平均电压已知,整流器连接方式即流经晶闸管的最大电流有效值和负载平均电流有固这样通过查对应系数可使计算过程简化。
max 2)IT d K I --------晶闸管电流计算系数-------整流器输出最大平均电流串联平波电抗器,电流近似恒定,故额定电流N I 50A额定电压N U100-2400V 触发电流TM I150mA〈四〉.触发电路的设计(1).触发电路的选择:TCA785是德国西门子(Siemens)公司于1988年前后开发的第三代晶闸管单片移相触发集成电路,它是取代TCA780及TCA780D 的更新换代产品,其引脚排列与TCA780、TCA780D 和国产的KJ785完全相同,因此可以互换。
数控直流电流源的设计1.设计思路本设计以ATmega16L为核心,通过A/D、D/A转换、V/I转换及独特的算法实现高精度的,电流输出范围为20mA~2000mA的数控直流电流源。
该电流源具有电流可预置,1mA步进,同时显示给定值和实测值等功能。
2.方案设计2.1控制器模块方案利用ATmega16L单片机将电流步进值或设定值通过换算由D/A转换,驱动压控恒流源电路实现电流输出。
输出电流经处理电路,作A/D转换反馈到单片机系统,通过补偿算法调整电流的输出,以此提高输出的精度和稳定性。
D/A转换器选用12位优质D/A转换芯片 TLC5618,直接输出电压值,且其输出电压能达到参考电压的两倍,A/D转换器选用高精度16位模数转换芯片AD7705。
2.2显示器模块方案采用19264D汉字图形点阵液晶显示模块同时显示电流给定值和实测值。
使用LCD显示。
LCD具有轻薄短小,可视面积大,方便的显示汉字数字,分辨率高,抗干扰能力强,功耗小,且设计简单等特点。
2.3键盘模块方案采用标准4X4键盘,此类键盘采用矩阵式行列扫描方式,优点是当按键较多时可降低占用单片机的I/O口数目,而且可以做到直接输入电流值而不必步进。
2.4压控电流源模块方案精密压控电流源是本数控电流源的关键之所在,针对设计要求和使用需求、结合设计思路,精密电流源模块必须具备以下指标:纹波小于2mA,误差小于0.1%,具有低的输出失调。
基于稳定性要求和以上考虑,电流源电路选择了经典的压控电流源电路,它负责与后级扩流模块连接,用电压控制后者,而使用电流反馈,这样可以保证有足够高的精度。
该部分采用了高性能、低温漂、低失调的运算放大器OP77和精密元件组成,保证性能指标的良好发挥。
2.5扩流模块方案为了克服传统扩流电路在高精度、高稳定性要求下的缺陷,追求一种精度高、稳定性好、对前级影响小的扩流电路,受到S类功率放大器的启发,本设计率先把S类放大器优秀的电压跟随器原理引入电流源电路之中。
基于LPC938的高精度数控直流电流源的设计
总体方案选择与设计1 方案论证与比较①主电路及调整方式的选择
方案一开关稳压调整开关稳压调整方式效率高,普遍应用于计算机等现代数字仪器中,但一般纹波较大,难以控制,很有可能造成设计的失败和技术参数的超标。
方案二串联反馈调整该方案采用负反馈网络,从输出电压取样与基准电压比较,并将误差经放大器放大后反馈至调整管,使输出电压在电网电压变动的情况下仍能保持稳定。
该电路输出电压稳定性好,负载调整率高,引入的负反馈使纹波电压大大减小,且电路简单、容易调试。
但其属于线性稳压源,即调整管工作在放大区,因而功耗比较大。
方案三综合以上两种方案结合开关稳压调整与串联反馈调整的优点,在串联反馈调整的基础上增加一级预稳压,构成智能恒压差系统,在保证调节范围的基础上减少功耗。
②控制方案的论证比较方案一计数式数字电路控制此方案使用计数器来来控制输出电流的步进,是一种采用小规模数字电路的控制方法。
其优点是不需要软件支持,但元件多、硬件电路复杂、控制呆板、步进难以改变,且精度不高,难以达到设计要求。
方案二CPLD 控制采用大规模数字逻辑电路CPLD,能够实现高精度控制,功耗也不大,但其成本高、设计复杂。
方案三单片机控制单片机控制系统具有成本低、控制灵活的特点,通过软件的编制能够实现多种控制算法,且控制精度高、功耗低;特别是现代的增强型单片机,具有D/A、A/D、PWM、ICP 等多种功能,能够单片完成较复杂的控制要求,所以选择单片机控制方式。
数控直流稳压电源设计[摘要]本设计以直流电压源为核心,STC89C52RC单片机为主控制器,单片机系统是数控电源的核心。
它通过软件的运行来控制整个仪器的工作,从而完成设定的功能。
通过数字键盘来设置直流电源的输出电压,输出电压围为0—9.9V,最大电流为300mA,并可由液晶屏LCD1602显示实际输出电压值。
本设计由单片机程控输出数字信号,经过D/A转换器(DAC0832)输出模拟量,再经过运算放大器LM324隔离放大,最后输出各种设备所需要的电压。
实际测试结果表明,本系统实际应用于需要高稳定度小功率恒压源的领域。
[关键字]直流稳压电源;单片机;数控;DAC08321.概述1.1课题背景电源技术特别是稳压电源技术在工程技术方面使用性很强,在各个行业里得到了广泛的应用。
直流稳压电源的电路形式有很多种,有串联型、开关型、集成电路、稳压管直流稳压电源等等。
目前使用的直流稳压电源大部分是线性电源,利用分立元件组成,体积大,效率低,可靠性差,操作使用不便,自我保护功能不完善,故障率高(长期工作在大电流和大电压下,电子元器件很容易损坏)但在直流稳压电源中,通过整流、滤波电路所获得的直流电源的电压往往是不稳定的[1]。
当在外在电压波动或负载电流变化的时侯也会使输出电压有所改变。
供给电子设备的电压源的不稳定,会使设备产生很多问题。
所以,设计出质量优良的直流稳压电源,才能满足各种电子线路的要求。
数控电源是从80年代才真正的发展起来的,系统的一些电力电子理论基础在那期间刚刚建立。
这些理论的研究为其后来电源的发展提供了一个较好的基础。
在以后的电力电子发展中,数控电源技术的发展得到了长足的进步。
不过其产品存在数控程度要求达不到、分辨率不够高、功率密度低、可靠性比较差等缺点。
因此稳压电源以后主要的主要发展方向,是针对上述缺点不断的进行改善。
单片机技术与电压转换模块的出现为精确数控电源的发展提供了有利的条件。
新的变换技术和控制理论的不断发展,各种类型专用集成电路、数字信号处理器件的研制应用,到90年代,己出现了数控精度达到0.05V的数控电源,功率密度达到每立方英寸50W 的数控电源[2]。
数控直流电压源设计与实现概要:本数控直流电压源设计方案巧妙、电路及控制原理简单,输出可调且具有不错的带负载能力、很高的转换效率,可应用于供电电压在24V以下的各类电子设备供电。
传统可调电源往往通过电位器来达到目的,虽然这样的电源有很大的输出功率,但很难做到精确调整,效率也不高。
而数控直流电压源输出精确可调,亦有较高的输出功率以及转换效率,且更加轻便。
本文的目的就是研究和实现高效低耗的数控直流电压源。
1数控直流电压源基本组成及工作原理本文所设计的数控直流电压源的基本组成结构框图如图1所示,系统中,MCU选用AVR单片机Atmega16,它内部资源丰富,功耗低,可以保证系统稳定、可靠运行。
DA转换器选用TLC5615,其基准源由基准源芯片REF5020产生。
模拟电路模块包括开关稳压芯片LM2596_ADJ,运放芯片TL082,开关型电压转换芯片LMC7660以及功率电感等器件,共同构成一个BUCK电路。
输出电压、电流经采样电路采入MCU并由液晶LCD5110进行显示。
按键作为输入设备,对输出电压进行设置。
本设计工作原理是将单片机与DA转换器进行SPI通信,使DA输出可调的控制电压,送到运放TL082反相端。
而以开关稳压芯片LM2596_ADJ为核心的BUCK电路上电后即输出电压,经分压后送到运放同相端,此时TL082作为比较器使用以比较上述两个电压。
运放输出信号经二极管IN4148送入LM2596-ADJ 的反馈脚(FB端)控制输出电压,由于LM2596-ADJ内部有1.235V基准电压以及比较器,当FB脚处电压小于基准时,会抬高输出电压;反之,则会降低,最终达到稳定从而达到数控的功能。
接上负载后,输出电压、电流经采样点路送入MCU,就能在LCD5110上显示输出电压与输出电流。
当采得电流值大于额定值,则将软件关闭LM2596_ADJ的使能端,进行过流保护。
2系统硬件电路设计2.1 单片机最小系统电路设计单片机最小系统是利用最少的外围器件而使单片机工作的电路组织形式。
(数控加工)数控直流电源的设计与实现数控直流电源的设计和实现壹、实验目的1.了解数控技术和电源技术。
2.熟悉微机原理及其接口技术。
3.运用微机系统实现壹个数控直流电源。
二、实验内容和要求基于80x86实验箱平台设计且制作数控直流电源。
要求由键盘预置输入直流电压在0~+9.9V之间的任意壹个值,数控直流电源输出,且输出电压和给定值偏差不大于0.1V。
主要技术指标:(1)输出电压:范围0~+9.9V,纹波不大于10mV,电压值由数码管显示;(2)具有“+”、“-”步进调整的功能,步进0.1V;(3)用自动扫描代替人工按键,实现输出电压变化(步进0.1V不变)。
三、实验报告要求1.设计目的和内容2.总体设计3.硬件设计:原理图(接线图)及简要说明4.软件设计框图及程序清单5.设计结果和体会(包括遇到的问题及解决的方法)四、总体设计采用8086处理机构成该系统的核心——数控模块,和基本接口实验板相连,通过软件编译实现设计各种功能的实现,输出部分也不再采用传统的调整管方式,而是在D/A转换后,经过稳定的功率放大电路得到。
由于使用了微处理器,整个系统可编程实现,系统的灵活性大大增加。
系统设计框图如图1所示。
图1方案三系统设计框图为实现数控直流电源的各项功能,系统分为三个组成部分:键盘/显示电路,数控模块,稳压输出电路。
下面介绍系统各部分的基本功能:(1)键盘/显示电路:该电路的显示部分又可分为电压预制值显示电路和电压实际输出值显示电路。
系统利用可编程且行接口8255单元电路构成实验板上4*4小键盘的接口和LED 数码管电路的接口,从而识别键码同时显示电压预置值;在得到实际输出值后,实验板上提供了模数转换ADC0809单元电路,转化成数字量后传递给LED数码管就能够显示实际输出值。
(2)数控模块:该部分主要由8086微处理器和数模转换DAC0832单元电路组成。
其中通过编写汇编语言程序控制8086微处理器快速完成各功能所需的复杂运算,然后数模转换电路DAC0832可将运算所得的数字量转换为模拟量。