当前位置:文档之家› 几种典型的焊接方法的简单比较

几种典型的焊接方法的简单比较

几种典型的焊接方法的简单比较

各种焊接方法的比较

各种焊接方法的比较 2012-02-21 21:50 从原理、特点,冶金反应,熔滴过渡,电弧控制,焊接材料,从原理、特点,冶金反应,熔滴过渡,电弧控制,焊接材料,适用范围等方面比较各种焊接方法。 一、埋弧焊Submerged Metal Arc Welding (SMAW) 埋弧焊是以颗粒状焊剂为保护介质,电弧掩藏在焊剂层下的一种熔化极电焊接方法。埋弧焊的施焊过程由三个环节组成:1 在焊件待焊接缝处均匀堆敷足够的颗粒状焊剂;2 导电嘴和焊件分别接通焊接电源两级以产生焊接电弧;3 自动送进焊丝并移动电弧实施焊接。 埋弧焊的主要特点如下:1、电弧性能独特(1)焊缝质量高熔渣隔绝空气保护效果好,电弧区主要成分为CO2,焊缝金属中含氮量、含氧量大大降低,焊接参数自动调节,电弧行走机械化,熔池存在时间长,冶金反应充分,抗风能力强,所以焊缝成分稳定,力学性能好;(2)劳动条件好熔渣隔离弧光有利于焊接操作;机械化行走,劳动强度较低。2、弧柱电场强度较高比之熔化极气体保护焊有如下特点:(1)设备调节性能好,由于电场强度较高,自动调节系统的灵敏度较高,使焊接过程的稳定性提高;(2)焊接电流下限较高。3、生产效率高由于焊丝导电长度缩短,电流和电流密度显著提高,使电弧的熔透能力和焊丝的熔敷速率大大提高;又由于焊剂和熔渣的隔热作用,总的热效率大大增加,使焊接速度大大提高。 冶金反应:焊剂参与冶金反应,Si 、Mn被还原,C 部分烧毁,限制杂质S、P 去H,防止产生氢气孔。 熔滴过渡:渣壁过渡 电源:直流电源用于小电流情况,等速送丝,自身电弧调节;大电流一般用交流电源,变速送丝(SAW 焊丝一般较粗),弧压反馈电弧调节焊接材料:焊丝和焊剂。焊丝和焊剂的选配必须保证获得高质量的焊接接头,同时又要尽可能减低成本,还要注意适用的电流种类和极性。 适用范围:由于埋弧焊熔深大、生产率高、机械操作的程度高,因而适于焊接中厚板结构的长焊缝。在造船、锅炉与压力容器、桥梁、超重机械、核电站结构、海洋结构、武器等制造部门有着广泛的应用,是当今焊接生产中最普遍使用的焊接方法之一。埋弧焊除了用于金属结构中构件的连接外,还可在基体金属表面堆焊耐磨或耐腐蚀的合金层。随着焊接冶金技术与焊接材料生产技术的发展,埋弧焊能焊的材料已从碳素结构钢发展到低合金结构钢、不锈钢、耐热钢等以及某些有色金属,如镍基合金、钛合金、铜合金等。

一步步教你画焊接图、识焊接图

精心整理 画焊接图、识焊接图 焊接图是图示焊接加工要求的一种图样,它应将焊接件的结构、与焊接的有关内容表示清楚。下面我们一起来看看下面这些图,在图样中简易地绘制焊缝时,可用视图、剖视图和断面图表示, 也可用轴测图示意地表示,通常还应同时标注焊缝符号。 (1)在视图中焊缝的画法 在视图中,焊缝可用一组细实线圆弧或直线段(允许徒手画)表示,如图15-1a 、b 、c 所示, 也可采用粗实线(线宽为2b ~3b )表示,如图15-1d 、e 、f 所示。 (2)在剖视图或断面图中焊缝的画法 在剖视图或断面图中,焊缝的金属熔焊区通常应涂黑表示,若同时需要表示坡口等的形状时, 如表15-1 (2) 表15-2辅助符号 (3)补充符号 补充符号是为了补充说明焊缝的某些特征而采用的符号,见表15-3。 表15-3补充符号 (4)尺寸符号

基本符号必要时可附带有尺寸符号及数据,这些尺寸符号见表15-4 a、b。 表15-4尺寸符号 (1)箭头线的位置 箭头线相对焊缝的位置一般没有特殊要求,可以指在焊缝的正面或反面。但在标注单边V形焊缝、带钝边的单边V形焊缝、带钝边J形焊缝时,箭头线应指向带有坡口一侧的工件,如图15-4 所示。 (2)基准线的位置 基准线一般应与图样的底边平行,但在特殊条件下也可与底边垂直。 (2)弯管焊接图示例 图示弯管由3部分焊接而成,即2个法兰和1个1/4弯管。焊缝型式为角焊缝,焊缝环绕管头一圈。 图15-7弯管焊接图 (3)支架焊接图示例 图示支架由5部分焊接而成,从主视图上看,有三条焊缝,一处是件1和件2之间,沿件1周围用角焊缝焊接;另两处是件4和件3,角焊缝现场焊接。从A视图上看,有两处焊缝,用角焊缝三面 焊接。

六大焊接工艺的焊接技巧,总结的很到位

六大焊接工艺的焊接技巧,总结的很到位 MIG焊接 1. 保持1/4—3/8英寸的焊丝杆伸长(从焊枪头伸出的焊丝长度). 2. 焊接薄板时使用小直径的焊丝;焊接厚板时使用大直径焊丝和大电流焊机。查看焊机推荐介绍的具体性能。 3. 使用正确的焊丝焊接工件。不锈钢焊丝焊接不锈钢、铝焊丝焊接铝、钢焊丝接钢。 4. 使用正确的保护气体。二氧化碳非常适合焊接钢材,但是用来焊接薄板则可能温度过高,应使用75%氩气和25%二氧化碳的混合气体焊接较薄的材料。焊接铝则只能使用氩气。焊接钢时,你也可使用3种气体组合成的混合气体(氦气+氩气+二氧化碳)。 5. 要达到控制焊道最佳的效果,应保持焊丝直接对准熔池的结合边缘。 6. 当焊接操作处于一个非正常位置的时候(立焊、横焊、仰焊),应保持较小的熔池来达到对焊道的最佳控制,并且尽可能的使用直径最小的焊丝。 7. 确保你所使用的焊丝尺寸与套电嘴、衬管、驱动滚轮相匹配。 8. 经常清理焊枪衬管和驱动滚轮,以保持焊枪口没有飞溅。如果焊枪口堵塞或者送丝不顺,则将其更换。 9. 焊接时尽量保持焊枪笔直,以避免送丝问题。

10. 焊接操作时双手同时使用以确保焊枪的稳定,且尽可能这样做。(这同样适用于焊条焊、TIG焊和等离子切割) 11. 将送丝机的焊丝盘和驱动滚轮松紧度调节在刚好足够送丝,不要过紧。 12. 焊丝不用时,将其保存在干净和干燥的地点,避免受到污染而影响焊接效果。 13. 使用直流反极性DCEP电源。 14. 拖(拉)焊枪技法能获得较深的熔透和较窄的焊缝。推枪技法则能获得较浅的熔透和较宽的焊缝。 铝材焊接 1. 最适合焊接铝材的是拉丝式焊枪,如果你无法使用这种焊枪的话,尽量使用最短的焊枪以便保持焊枪的笔直;只能使用氩气作为保护气体;在焊接铝材的时候只能使用推枪手法。 2. 如果你发现有送丝问题,可以试一试尺寸比焊丝大一号的导电头。 3. 焊铝时最常用的焊丝是较软的标准焊丝。而另一种则要硬一些(较容易送丝),它主要用于硬度和强度要求更高的焊接操作中。 4. 在焊接开始前要做好铝材表面氧化层的清除工作,使用专用的不锈钢刷来清除氧化层。 5. 焊接结束时填充好弧坑以防止裂缝。一个办法就是在焊后将焊枪在熔池中停留数秒。 自保护药心焊丝焊接

几种焊接的优缺点

钨极氩弧焊得优缺点 1钨极氩弧焊得优点: ①氩气能有效得隔绝空气,本身又不溶于金属,不与金属反应,施焊过程中 电弧还能自动清除熔池表面氧化膜得作用,因此,可成功得焊接易氧化、 氮化、化学活泼性得有色金属,不锈钢与各种合金。 ②钨极电弧稳定,几十在很小得焊接电流(小于10A)下仍可稳定得燃烧,特 别适合用于薄板,超薄材料得焊接。 ③热源与填充焊丝可分别控制,因而热输入容易调节,可进行各种位置得焊 接,也就是实现单面焊双面成型得理想方法。 ④由于填充焊丝熔滴不通过电弧,所以不会产生飞溅,焊缝成型美观。 2钨极氩弧焊得缺点 ①焊缝熔深浅,熔敷速度小,生产率较低。 ②钨极承载电流较差,过大得电流会引起钨极融化与蒸发,其微粒有可能进 入熔池,造成污染(夹钨)。 ③惰性气体(氩气、氮气)较贵,与其她电弧焊方法(如手弧焊、埋弧焊、二氧 化碳气体保护焊等)相比,生产成本较高。 注:脉冲钨极氩弧焊适宜于焊接薄板,特别就是全位置对接焊。钨极氩弧焊一般只适用于焊接厚度小于6mm得焊件。 二:熔化极氩弧焊得特点: ①与TIG焊一样,几乎可焊接所有得金属,尤其适合于焊接铝及铝合金、铜 及铜合金以及不锈钢等材料。 ②由于焊丝作电极,可采用高密度电流,因而母材熔深大,填充金属熔敷速 度快,用于焊接厚铝板,铜等金属时生产率比TIG焊高,焊接变形比TIG 小。 ③熔化极氩弧焊可直流反接,焊接铝及其合金有着很好得阴极雾化作用。 ④熔化极氩弧焊焊接铝及其合金时,亚射流电弧得固有调节作用比较显 著。 三:MIG焊得特点:(MIG焊通常采用惰性气体(氩、氦或其混合气体))作焊接 区得保护气体。 MIG焊得优点: ①惰性气体几乎不与任何金属产生化学作用,也不溶于金属中,所以几乎 可以焊接所有金属。 ②焊丝外表没有涂料层,焊接电流可提高,因而母材熔深较大,焊丝熔化速 度快,熔敷率高,与TIG(Tungsten Inert Gas Arc Welding )焊相比,其生产 效率高。 ③熔滴过渡主要采用射流过渡。短路过渡仅限于薄板焊接时采用,而滴状 过渡在生产中很少采用。焊接铝、镁及其合金时,通常就是采用亚射流 过渡,因阴极雾化区大,熔池保护效果好,且焊缝成形好、缺陷少。 ④若采用短路过渡或脉冲焊接方法,可以进行全位置焊接,但其焊接效率 不及平焊与横焊。 ⑤一般都采用直流反接,这样电弧稳定、熔滴过渡均匀与飞溅少,焊缝成形

接缝焊接方法和技巧

接缝焊接方法和技巧:形成焊接工件接口加热至熔融状态,没有压力焊在焊接过程中完成的。将焊,热焊两工件接口迅速加热熔化,熔池。 焊接,热焊接工件接口迅速加热和熔化,形成熔池。洗澡前进热源,冷却,形成两个工件成为一个连续的焊缝。沐浴着热,制冷和两个工件的形成是一个连续的焊缝。焊接过程中,空气热水澡,与大气中的氧直接接触,将金属氧化物和各种合金元素。焊接过程中,空气中的热水澡,与大气中的氧气,金属氧化物和各种合金元素的直接接触。大气中的氮和水蒸汽,进入熔化池,而且在the1000在随后的冷却过程中形成虚焊,夹渣,裂纹等缺陷,在质量的恶化和焊接大气中的氮和水蒸气的性能毛孔进入熔池,并在随后的冷却过程中形成焊渣,裂缝和其他缺陷,焊接质量和性能恶化的毛孔。 为了提高焊接质量,它已经开发出多种保护方法,以提高焊接质量,它已经开发出了各种保护方法。例如,气体保护焊是孤立的大气气体,如氩气,二氧化碳,以保护电弧和熔池率;IF钢铝焊条药皮钛铁矿粉电极脱氧氧的亲和力有益元素锰,硅等可免受氧化成浴和冷却后的高品质焊接。例如,气体保护焊是孤立的,如氩气,二氧化碳,这些对焊接大桥焊丝和大桥焊条比较有利,大气中的气体保护电弧和熔池率;中频钛铁矿粉药皮电极脱氧的钢和铝焊条有益的元素氧的亲和力锰,硅等。从洗澡到氧化物和冷却后的高品质焊接。在高压下粘合,使之间的两个原子在固体状态来实现的,又称固态焊接工件的组合。高原的孩子粘接,使两者之间在固体状态下的高压力来实现的,又称固态焊接工件的结合。 粘接工艺是电阻对焊,当通过两工件的连接端的cu1000rrent,部门成为一个因电阻非常大,在温度上升,当加热至塑性状态,轴向压力作用连接。粘接工艺是电阻对焊,当电流通过连接两个工人和部门,要成为一个非常大的,由于温度上升电阻加热至塑性状态时,轴向压力连接。对各种无填充材料在焊接过程中施加压力的粘接方法的共同特点。 本文出自:https://www.doczj.com/doc/627111513.html,/shownews.asp?id=253

第八章典型船体结构的焊接工艺

第八章典型船体结构的焊 接工艺 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第八章典型船体结构的焊接工艺第一节船体钢材的焊接性 焊接性的试验目的:为了评定焊接结构的可靠性,是否存在气孔、夹渣、裂纹等;焊缝及焊接接头强度、塑性、冲击韧性等力学性能和抗腐蚀性、时效、耐磨、耐热及耐酸性等耐久性。 一、船用碳素钢的焊接性 船体外板用钢材一般使用优质低合金钢,内结构可用普通低合金碳素钢。内河船舶普遍采用优质碳素钢因含碳量较低,焊接性能较好。无需采取特殊措施。 二、船用低合金钢的焊接 船用低合金钢的焊接性能也较好,不需采取特殊措施。但选用高强度低合金钢,焊接时可能出现焊接缺陷,可用工艺措施控制焊接缺陷的产生。 第二节船体结构焊接工艺基本原则一、焊接程序的一般原则 选择并严格执行焊接程序可减小结构变形和内应力。一般原则:

1、外板、甲板对接缝: ○1错开板缝:先横向焊,后纵向焊; ○2平列板缝:先纵向焊,后横向焊。 2、同时存在对接缝和角焊缝:先焊对接缝,后焊角焊缝。 3、整体或分段建造时:从结构中央向左右、前后对称焊接。 4、有对称中心线的构件:双数焊工对称焊。 5、手工电弧焊长缝:分段退焊或分中分段退焊。 6、同时存在单层焊缝和多层焊缝:先焊多层,后焊单层。多层焊各层方向相反,接头错开。 7、分段或总段外板纵缝及纵向构件与外板的角焊缝两端200-300mm:先不焊,以利于船台装配时对接。 8、内结构靠近总段大接缝一边的角焊缝:在大接缝焊接后再焊。

9、应力较大的大接缝:焊接过程不能中断,应连续完成。 10、分段中的焊接缺陷应在上船台前修补,不应在船台上进行。 二、焊接材料使用范围的规定 重要船体构件和部件应采用碱性低氢焊条(使用直流焊机): ○1用低合金钢建造的所有船体焊缝; ○2用碳素钢建造的船体大合拢环形对接焊缝和桁材对接焊缝; ○3船壳冰带区的端接缝和边接缝; ○4船长大于90m的舷顶列板与强力甲板在船中0.5L区域内的角接焊缝; ○5桅杆、吊杆、吊艇架及其受力构件;○6拖钩架; ○7主机座及其相连接的构件; ○8艏柱、艉柱、艉轴架。 三、角接焊缝端部加强焊的规定 间断焊和单面连续焊的角焊缝:应在端部一定长度进行双面连续焊。 ○1组合桁材、强横梁、强肋骨的腹板与面板在肋板区域内应为双面连续焊。

焊接方法有哪几种

●闪光焊,钢轨形成对接接头,通电并使其端面逐渐移近,达到局 部接触,利用电阻热加热这些接触点(产生闪光),使端面全部熔化,直至端部在一定深度范围内达到预定温度时,迅速施加顶锻力完成焊接。 优点:闪光焊自动化程度高,工艺稳定,焊接质量优良,焊接接头为致密锻造组织,接头韧性好,力学性能接近钢轨母材,生产效率高,主要用于厂焊或基地焊,部分用于单元轨节焊接。缺点:焊机价格昂贵,一次性投资大,设备复杂且需配备大功率电源、柴油发电机组,焊接工艺参数较多,调节繁琐;同时闪光焊焊接过程中钢轨烧损严重,每个接头消耗钢轨25.1-50mm。 ●气压焊,是利用气体燃料产生的热能将钢轨端部加热到熔化状态 或塑性状态,再施加一定的顶锻压力,完成钢轨焊接。 优点:气压焊的一次性投资少,焊接时间短,焊接质量好,焊接接头也为致密锻造组织,主要用于现场联合接头焊接。钢轨烧损较少,焊接后钢轨缩短约30mm。缺点:焊接时对接头断面的处理要求十分严格,焊接工艺受诸多人为因素影响,接头质量波动较大,不易控制。 ●铝热焊,是利用铝和氧化铁(含添加剂),在一定温度下进行氧化 还原反应,形成高温液态金属注入特制的铸模内,将两个被焊钢轨端部熔化而实现连接的一种焊接方法。 优点:设备简单、操作方便,生产成本较低,且没有顶锻过程,接头外观平顺性好,占用封锁时间短,尤其适用于断轨修复、跨区间无缝线路道岔联焊和运输任务繁忙的线上联焊。缺点:强度低、质量欠稳

定,断头率高,综合性能差,是无缝线路最薄弱环节。 电弧焊,接头间隙,并利用铜挡块强迫成型,冷却后形成焊接接头,属于熔化焊方法。 优点:采用合适的焊条和焊丝成分,电弧焊接头可以得到性能优异的贝氏体组织,综合性能可达到母材水平,抗拉强度和耐磨性能等有时甚至超过钢轨母材。缺点:目前推广较少,此外对焊接工艺、技术水平要求严格。

常用不锈钢焊接方法对不锈钢最常用的焊接方法是手工焊

常用不锈钢焊接方法对不锈钢最常用的焊接方法是手工焊(MMA),其次是金属极气体保护焊(MIG/MAG)和钨极惰性气体保护焊(TIG).虽然这些焊接方法对不锈钢工业的大多数人而言是熟悉的,但是我们认为这个领域值得深入探讨. 1、手工焊(MMA):手工焊是一种非常普遍的、易于使用的焊接方法.电弧的长度靠人的手进行调节,它决定于电焊条和工件之间缝隙的大小.同时,当作为电弧载体时,电焊条也是焊缝填充材料. 这种焊接方法很简单,可以用来焊接几乎所有材料.对于室外使用,它有很好的适应性,即使在水下使用也没问题.大多数电焊机可以TIG焊接.在电极焊中,电弧长度决定于人的手:当你改变电极与工件的缝隙时,你也改变了电弧的长度.在大多数情况下,焊接采用直流电,电极既作为电弧载体,同时也作为焊缝填充材料.电极由合金或非合金金属芯丝和焊条药皮组成.这层药皮保护焊缝不受空气的侵害,同时稳定电弧.它还引起渣层的形成,保护焊缝使它成型.电焊条即可是钛型焊条,也可是缄性的,这决定于药皮的厚度和成分.钛型焊条易于焊接,焊缝扁平美观.此外,焊渣易于去除.如果焊条贮存时间长,必须重新烘烤.因为来自空气的潮气会很快在焊条中积聚. 2、MIG/MAG焊接:这是一种自动气体保护电弧焊接方法.在这种方法中,电弧在保护气体屏蔽下在电流载体金属丝和工件之间烧接.机器送入的金属丝作为焊条,在自身电弧下融化.由于MIG/MAG焊接法的通用性和特殊性的优点,至今她仍然是世界上最为广泛的焊接方法.它使用于钢、非合金钢、低合金钢和高合金为基的材料.这使得它成为理想的生产和修复的焊接方法.当焊接钢时,MAG可以满足只有0.6mm厚的薄规格钢板的要求.这里使用的保护气体是活性气体,如二氧化碳或混合气体.唯一的限制是当进行室外焊接时,必须保护工件不受潮,以保持气体的效果. 3、TIG焊接:电弧在难熔的钨电焊丝和工件之间产生.这里使用的保护气体是纯氩气,送入的焊丝不带电.焊丝既可以手送,也可以机械送.也有一些特定用途不需要送入焊丝.被焊接的材料决定了是采用直流电还是交流电.采用直流电时,钨电焊丝设定为负极.因为它有很深的焊透能力,对于不同种类的钢是很合适的,但对焊缝熔池没有任何“清洁作用”. TIG焊接法的主要优点是可以焊接大材料范围广.包括厚度在0.6mm及其以上的工件,材质包括合金钢、铝、镁、铜及其合金、灰口铸铁、普通干、各种青铜、镍、银、钛和铅.主要的应用领域是焊接薄的和中等厚度的工件,在较厚的

常用焊接方法办法

常用焊接方法手册 一、什么是钎焊?钎焊是如何分类的?钎焊的接头形式有何特点? 钎焊是利用熔点比母材低的金属作为钎料,加热后,钎料熔化,焊件不熔化,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散,将焊件牢固的连接在一起。 依照钎料熔点的不同,将钎焊分为软钎焊和硬钎焊。 (1)软钎焊:软钎焊的钎料熔点低于450°C,接头强度较低(小于70 MPa)。 (2)硬钎焊:硬钎焊的钎料熔点高于450°C,接头强度较高(大于200 MPa)。 钎焊接头的承载能力与接头连接面大小有关。因此,钎焊一般采纳搭接接头和套件镶接,以弥补钎焊强度的不足。 二、电弧焊的分类有哪些,有什么优点?

利用电弧作为热源的熔焊方法,称为电弧焊。可分为手工电弧焊、埋弧自动焊和气体爱护焊等三种。手工自动焊的最大优点是设备简单,应用灵活、方便,适用面广,可焊接各种焊接位置和直缝、环缝及各种曲线焊缝。尤其适用于操作不变的场合和短小焊缝的焊接;埋弧自动焊具有生产率高、焊缝质量好、劳动条件好等特点;气体爱护焊具有爱护效果好、电弧稳定、热量集中等特点。 三、焊条电弧焊时,低碳钢焊接接头的组成、各区域金属的组织与性能有何特点? (1)焊接接头由焊缝金属和热阻碍区组成。 1)焊缝金属:焊接加热时,焊缝处的温度在液相线以上,母材与填充金属形成共同熔池,冷凝后成为铸态组织。在冷却过程中,液态金属自熔合区向焊缝的中心方向结晶,形成柱状晶组织。由于焊条芯及药皮在焊接过程中具有合金化作用,焊缝金属的化学成分往往优于母材,只要焊条和焊接工艺参数选择合理,焊缝金属的强度一般不低于母材强度。 2)热阻碍区:在焊接过程中,焊缝两侧金属因焊接热作用而产生组织和性能变化的区域。

电焊焊接技术的技巧

电焊焊接技术1、掌握一定的焊接理论知识 焊接理论来源于实践操作,总结的理论又指导操作,只有技能操作和理论紧密结合,才能干好“电焊工”。焊接的理论知识非常丰富而广泛,很多电焊工在起初的工作中,对焊接知识了解太少,大部分焊工只是从一些老师傅传艺过程中了解的皮毛而已,只掌握了比较单一的操作技术,遇到焊接难题时不知如何解决。如采用碳钢焊条焊手法焊接不锈钢材料时,就会造成焊缝成形非常不良,这是由于不锈钢材料比较碳钢材料导热性较差,电弧形成的熔池不容易凝固造成的。随着科技的发展以及材料、工艺、方法的发展,非常需要焊工学习和掌握更多的理论知识。 2、学习掌握焊接材料的知识 焊接过程中会接触到很多金属材料,每一种材料都有它的特性,如金属材料的力学性能有强度、塑性、硬度、韧性等;金属物理性能有密度、熔点、热膨胀性、导热性、导电性和磁性等。这些都和焊接过程息息相关。如奥氏体不锈钢在焊接时,由于其物理特性是热膨胀系数大、变形大;导热性差,焊缝外观成形较难控制。所以不锈钢焊接时就要采用采用小线能量,小电流短弧快速焊,加快冷却速度,使其在敏化温度区停留时间短,严格控制层间温度,防止晶间腐蚀,降低焊接应力和变形。 避免焊接缺陷也可以从宏观到微观结合理论知识进行分析,如施工现场的焊接气孔从理论上分为氢气孔、氮气孔、CO气孔三种,通过三种气孔的宏观特点,对现场焊缝气孔进行鉴别、定性,结合定性的气孔的理论产生原因对现场和焊接条件进行分析,找到产生原因和克服措施,从而避免气孔的产生。如此种种,很多现场焊接现象都可以通过理论知识的研究分析得到答案。同时,现在焊接材料的发展层出不穷,需要电焊工认真学习,才能成为一名“高级电焊工”。 3、学习掌握焊接“法规” 焊接“法规”就是焊接标准规范、焊工考核细则等,也就是执行焊接工艺的依据,就像人在社会上要遵守法律、法规一样,每一种材料的焊接工艺方法,都是经过几代人反复研究、实验、探索出来的,经过反复验证,只有遵循这个工艺焊接出来的产品,才能满足使用要求。 焊接工艺标准是焊接过程中的一整套技术规定。包括焊接方法、焊前准备、焊接材料、焊接设备、焊接顺序、焊接操作、工艺参数以及焊后热处理等。不同的焊接方法有不同的焊接工艺。焊接工艺根据被焊工件的材质、牌号、化学成分、焊件结构类型、焊接性能要求来确定。电焊工工作之余,也要加强相关焊接规范标准的学习掌握。 同时,国际、国家、行业、地方都出台了很多相关的焊接规范标准,作为一名电焊工,都应该经常查阅、查询。 、焊接环境因素4. 就是环境因素、环保、劳保意识以及环境对焊接过程中的影响。如要注意下雨天、潮湿天气对焊接工艺、焊接缺陷的影响。还有焊接环境的污染、安全对人的影响。三是烟尘、飞溅等对人的伤害,不良习惯对人身体的影响。 5、锻炼过硬的操作技能 很多焊工在工作中只知道快速的完成工作,不去寻求良好的操作技巧,以致工作后感觉较累,同时在技术上提升较慢。 怎样才能有过硬的技能操作水平呢?首先,除了掌握一定的焊接理论知识外,还要了解金属材料、焊接熔池特性等有关知识,焊接中注意观察熔池形状,及时选择正确的焊接运条方法及焊接

典型焊接切割事故案例

焊割典型事故 在焊割作业过程中所发生的触电、火灾、爆炸、高空坠落及其他事故,其主要原因是人的安全意识淡薄、工作责任心不强,在工作中往往带有侥幸心理,如:违章作业、无证操作、不使用防护用品等。许多事故,只要操作者稍有安全意识,就能避免发生。我们应该认真吸取事故教训,通过安全学习,不断提高焊割作业人员的安全意识和自我保护意识,预防和减少事故,确保安全。现将事故实例提供给学 一、触电事故 实例1:焊工擅自接通焊机电源,遭电击 ⑴事故经过 某厂有位焊工到室外临时施工点焊接,焊机接线时因无电源闸盒,便自己将电缆每股导线头部的胶皮去掉,分别接在露天的电网线上,由于错接零线在火线上,当他调节焊接电流用手触及外壳时,即遭电击身亡。 ⑵主要原因分析 由于焊工不熟悉有关电气安全知识,将零线和火线错接,导致焊机外壳带电,酿成触电死亡事故。 ⑶主要预防措施 焊接设备接线必须由专业电工进行,其他人员不得擅自进、拆线。 实例2:要换焊条时手触焊钳口,遭电击 ⑴事故经过 某船厂有一位年轻的女电焊工正在船舱内焊接,因舱内温度高加之通风不

良,身上大量出汗将工作服和皮手套湿透。在更换焊条时触及焊钳口因痉挛后仰跌倒,焊钳落在颈部未能摆脱,造成电击。事故发生后经抢救无效而死亡。 ⑵主要原因分析 ①焊机的空载电压较高超过了安全电压。 ②船舱内温度高,焊工大量出汗,人体电阻降低,触电危险性增大。 ③触电后未能及时发现,电流通过人体的持续时间较长,使心脏、肺部等重要器官受到严重破坏,抢救无效。 ⑶主要预防措施 ①船舱内焊接时,要设通风装置,使空气对流。 ②舱内工作时要设监护人,随时注意焊工动态,遇到危险征兆时,立即拉闸进行抢救。 实例3:接线板烧损,焊机外壳带电,造成事故 ⑴事故经过 某厂点焊工甲和乙进行铁壳点焊时,发现焊机一段引线圈已断,电工只找了一段软线交乙自己更换。乙换线时,发现一次线接线板螺栓松动,使用板手拧紧(此时甲不在现场),然后试焊几下就离开现场,甲返回后不了解情况,便开始点焊,只焊了一下就大叫一声倒在地上。工人丙立即拉闸,但由于抢救不及时而死亡。 ⑵主要原因分析 ①因接线板烧损,线圈与焊机外壳相碰,因而引起短路。 ②焊机外壳未接地。 ⑶主要预防措施

常用焊接规范要点

常用焊接规范要点

常规平焊的焊接方法 平焊 平焊时,由于焊缝处在水平位置,熔滴主要靠自重自然过渡,所以操作比较容易,允许用较大直径的焊条和较大的电流,故生产率高。如果参数选择及操作不当,容易在根部形成未焊透或焊瘤。运条及焊条角度不正确时,熔渣和铁水易出现混在一起分不清的现象,或熔渣超前形成夹渣。 平焊又分为平对接焊和平角接焊。 1.平对接焊 (1)不开坡口的平对接焊 当焊件厚度小于6mm时,一般采用不开坡口对接。 焊接正面焊缝时,宜用直径为3~4mm的焊条,采用短弧焊接,并应使熔深达到板厚的2/3,焊缝宽度为5~8mm,余高应小于1.5mm,如图2-1所示。 对不重要的焊件,在焊接反面的封底焊缝前,可不必铲除焊根,但应将正面 焊缝下面的熔渣彻底清除干净,然后用3mm焊条进行焊接,电流可以稍大些。 焊接时所用的运条方法均为直线形,焊条角度如图2-2所示。 在焊接正面焊缝时,运条速度应慢些,以获得较大的熔深和宽度;焊反面封 底焊缝时,则运条速度要稍快些,以获得较小的焊缝宽度。

9 65°~80° ° 图2-2平面对接焊的焊条角度 运条时,若发现熔渣和铁水混合不清,即可把电弧稍微拉长一些,同时将焊条向前 倾斜,并往熔池后面推送熔渣,随着这个动作,熔渣就被推送到熔池后面去了,如 图2-3所示。 图2-3 推送熔渣的方法 3 2 1 4 图2-4 对接多层焊 (2)开坡口的平对接焊 当焊件厚度等于或大于6mm时,因为电弧的热量很难使焊缝的根部焊透,所以应开坡口。开坡口对接接头的焊接,可采用多层焊法(图2-4)或多层多道焊法(图2-5)。

123456789101112 图2-5 对接多层多道焊 多层焊时, 对第一层的打底焊道应选用直径较小的焊条,运条方法应以间隙大小而定,当间隙小时可用直线形,间隙较大时则采用直线往返形,以免烧穿。当间隙很大而无法一次焊成时,就采用三点焊法(图2-6)。先将坡口两侧各焊上一道焊缝(图2-6中1、2),使间隙变小,然后再进行图2-6中缝3的敷焊,从而形成由焊缝1、2、3共同组成的一个整体焊缝。但是,在一般情况下,不应采用三点焊法。 3 12 图2-6 三点焊法的施焊次序 在焊第二层时,先将第一层熔渣清除干净,随后用直径较大的焊条和较大的焊接电流进行焊接。用直线形、幅度较小的月牙形或锯齿形运条法,并应采用短弧焊接。以后各层焊接,均可采用月牙形或锯齿形运条法,不过其摆动幅度应随焊接层数的增加而逐渐加宽。焊条摆动时,必须在坡口两边稍作停留,否则容易产生边缘熔合不良及夹渣等缺陷。 为了保证质量和防止变形,应使层与层之间的焊接方向相反,焊缝接头也应相互错开。 多层多道焊的焊接方法与多层焊相似,所不同的是因为一道焊缝不能达到所要求的宽度,而必须由数条窄焊道并列组成,以达到较大的焊缝宽度(图2-5)。焊接时采用直线形运条法。 在采用低氢型焊条焊接平面对接焊缝时,除了焊条一定要按规定烘干外,焊件的焊接处必须彻底清除油污、铁锈、水分等,以免产生气孔。

焊接种类和焊接技术

按照焊接过程中金属所处的状态不同,可以把焊接方法分为熔焊、压焊和钎焊三类。 一、熔焊 是焊接过程中,将焊件接头加热至熔化状态,不加压完成焊接的方法。在加热的条件下增强了金属的原子动能,促进原子间的相互扩散,当被焊金属加热至溶化状态形成液体熔池时,原子之间可以充分扩散和紧密接触,因此冷却凝固后,即形成牢固的焊接接头(可用冰作比喻)。常见的有气焊、电弧焊、电渣焊、气体保护焊等都属于熔焊的方法。 二、压焊 是焊接过程中必须对焊件施加压力(加热或不加热),以完成的焊接方法。这类焊接有两种形式,一是将被焊金属接触部分加热至塑性状态或局部熔化状态,然后施加一定的压力,以使金属原子间相互结合形成牢固的焊接接头,如锻焊、接触焊、摩擦焊和气压焊等就是这种压焊方法。二是不进行加热,仅在被焊金属的接触面上施加足够的压力,借助于压力所引起的塑性变形,以使原子间相互接近而获得牢固的接头,这种方法有冷压焊、爆炸焊等(主要用于复合钢板)。 三、钎焊 是采用比母材熔点低的金属材料,将焊件和钎料加热到高于钎料熔点,低于母材熔点的温度,利用液态钎料润湿母材,填充接头之间间隙并与母材相互扩散实现联接焊件的方法。常见的钎焊方法有烙铁焊、火焰钎焊。 常用焊接方法的基本原理及用途 目前的焊接方法的分类 一、熔焊 1、气焊: 利用氧乙炔或其他气体火焰加热母材和填充金属,达到焊接目的。火焰温度为3000℃左右。适用于较薄工件,小口径管道、有色金属铸铁、钎焊。 2、手工电弧焊: 利用电弧作为热源熔化焊条与母材形成焊缝的手工操作焊接方法,电弧温度在6000-8000℃左右。适用于黑色金属及某些有色金属焊接,应用范围广,尤其适用于短焊缝,不规则焊缝。 3、埋弧焊: (分自动、半制动)电弧在焊剂区下燃烧,利用颗粒状焊剂,作为金属熔池的覆盖层,将空气隔绝使其不得进入熔池。焊丝由送丝机构连续送入电弧区,电弧的焊接方向、移动速度用手工或机械完成。 适用于中厚板材料的碳钢、低合金钢、不锈钢、铜等直焊缝及规则焊缝的焊接。 4气电焊: (气体保护焊)利用保护气体来保护焊接区的电弧焊。保护气体作为金属熔池的保护层把空气隔绝。采用的气体有惰性气体、还原性气体、氧化性气体适用于碳钢、合金钢、铜、铝等有色金属及其合金的焊接。氧化性气体适用于碳钢及合金钢的合金 5、离子弧焊: 利用气体在电弧中电离后,再经过热收缩效应、机械收缩效应、磁收缩效应而产生的一种超高温热源进行焊接,温度可达20000℃左右。 二、压焊

氩弧焊的焊接方法与工艺

氩弧焊的焊接方法 ?教学目的:掌握好手工钨极氩弧焊的焊前准备、运焊把、送丝、引弧、焊接、收弧的技巧 ?具体要求: ?1、了解焊弧焊的原理、特点和分类 ?2、掌握好氩弧焊焊前准备和焊接方法 ?3、掌握好氩焊在焊接过程中产的缺陷和解决的办法 ?4、适用于有接焊接基础人员,其焊件需要进行无损检测、内部和外观要求有较高要求的标准焊件。 ?1、氩弧焊的原理: ?氩弧焊是使用惰性气体氩气作为保护气体的一种气电保护焊的焊接方法。?2、氩弧的特点: ?(1)焊缝质量高,由于氩气是一种惰性气体,不与金属起化学反应,合金元素不会被烧损,而氩气也不熔于金属,焊接过程基本上是金属熔化和结晶的过程,因此,保护较果好,能获得较为纯净及高质量的焊缝?(2)焊接变形应力小,由于电弧受氩气流的压缩和冷却作用,电弧热量集中,且氩弧的温度又很高,故热影响区小,故焊接时应力与变形小,特别造用于薄件焊接和管道打底焊。 ?(3)焊接范围广,几乎可以焊接所有金属材料,特别适宜焊接化学成份活泼的金属和合金。 ?3、氩弧焊的分类: ?氩弧焊根据电极材料的不同可分为钨极氩弧焊(不熔化极)和熔化极氩弧焊。根据其操作方法可分为手工、半自动和自动氩弧焊。根据电源又可以分为直流氩弧焊、交流氩弧焊和脉冲氩弧焊。 ?4、焊前准备: ?(1)阅读焊接工艺卡,了解施焊工件的材质、所需要的设备、工具和相关工艺参数,其中包括选用正确的焊机,(如焊接铝合金则需要用交流焊机),正确的选用钨极和气体流量, ?首先,要从焊接工艺卡上得知焊接电流的大小等工艺参数。然后选用钨极(一般来说直径2.4mm用的比较多,它的电流造应范围是150A—250A,铝例外)。

印制电路板安装与焊接典型工艺

印制电路板安装与焊接典型工艺 1.印制板和元器件检查 1.1 印制板检查 检查图形、孔位、孔径、印制板尺寸是否符合图纸要求,有无断线、短路、缺孔等现象,丝印是否清淅,表面处理是否合格,有无绝缘层脱落、划伤、污染或变质。印制板是否有严重变形。 1.2 元器件检查 检查元器件品种、规格及外封装是否与图纸吻合,元器件的数量是否与文件相符,元器件的引线有无氧化、锈蚀。自制件(如电感、变压器等)的引线是否已去除氧化层。 2.元器件引线成型 2.1元器件引线的弯曲成型的要求取决于元器件本身的封装外形和印制板上的安装位置,有时也因整个印制板安装空间限定元件安装位置。元器件成型要注意如下几点: 1)所有元器件引线均不得从根部弯曲,一般应留以上的间距。 2 1~2倍,上图中的r 。 3)元器件成型时应尽量将有字符的元器件面置于容易观察的位置。 2.2 常用元器件成型要求 贴板插装的元器件底面与印制板之间的间隙必须小于1mm ,悬空插装的电阻r r

元器件底面与印制板之间的高度以磁珠高为准,小管帽晶体管悬空插装时管帽底面与印制板的垂直间距为4±1mm ,立插元器件的长引线需套热缩套管。如有特殊要求,按相应的文件执行,引线间距按印制板相应插位的孔距要求,引线伸出焊点外的长度为1mm (如手工插装可将长度放宽为5mm ),如下图。 1 元器件插装顺序原则为:从左到右,从上到下,先里后外,先小后大,先轻后重,先低后高,如有特殊要求,按相应的文件执行,插装时应注意字符标记方向一致,容易读出,如下图。 3.2 印制板丝印所表示的方向插装。有标记“1或▲”的插座,插装时标记对准印制板上方焊盘。 DDK 型插座 051A 型插座 3.3 1W 以上电阻插装时应悬空插装,悬空部分的引线需套磁珠,以固定引线。晶体、1500V 以上电解电容插装时应在其底部垫绝缘垫。 3.4 插装时不要用手直接触摸元器件的引线和印制板上的铜箔,以免手上 汗渍腐蚀引线和铜箔,如手工焊接,插装后,可用带手套的手对焊接面的引Y X

各种位置的焊接方法(修)

各种位置的焊接方法 平焊 平焊时,由于焊缝处在水平位置,熔滴主要靠自重自然过渡,所以操作比较容易,允许用较大直径的焊条和较大的电流,故生产率高。如果参数选择及操作不当,容易在根部形成未焊透或焊瘤。运条及焊条角度不正确时,熔渣和铁水易出现混在一起分不清的现象,或熔渣超前形成夹渣。 平焊又分为平对接焊和平角接焊。 1.平对接焊 (1)不开坡口的平对接焊 当焊件厚度小于6mm时,一般采用不开坡口对接。 焊接正面焊缝时,宜用直径为3~4mm的焊条,采用短弧焊接,并应使熔深达到板厚的2/3,焊缝宽度为5~8mm,余高应小于1.5mm,如图2-1所示。 对不重要的焊件,在焊接反面的封底焊缝前,可不必铲除焊根,但应将正面焊缝下面的熔渣彻底清除干净,然后用3mm焊条进行焊接,电流可以稍大些。 焊接时所用的运条方法均为直线形,焊条角度如图2-2所示。 在焊接正面焊缝时,运条速度应慢些,以获得较大的熔深和宽度;焊反面封底焊缝时,则运条速度要稍快些,以获得较小的焊缝宽度。 图2-2平面对接焊的焊条角度 运条时,若发现熔渣和铁水混合不清,即可把电弧稍微拉长一些,同时将焊条向前倾斜,并往熔池后面推送熔渣,随着这个动作,熔渣就被推送到熔池后面去了,如图2-3所示。

图2-3 推送熔渣的方法 3 2 1 4 图2-4 对接多层焊 (2)开坡口的平对接焊 当焊件厚度等于或大于6mm时,因为电弧的热量很难使焊缝的根部焊透,所以应开坡口。开坡口对接接头的焊接,可采用多层焊法(图2-4)或多层多道焊法(图2-5)。 1 2 34 56 789 101112 图2-5 对接多层多道焊 多层焊时,对第一层的打底焊道应选用直径较小的焊条,运条方法应以间隙大小而定,当间隙小时可用直线形,间隙较大时则采用直线往返形,以免烧穿。当间隙很大而无法一次焊成时,就采用三点焊法(图2-6)。先将坡口两侧各焊上一道焊缝(图2-6中1、2),使间隙变小,然后再进行图2-6中缝3的敷焊,从而形成由焊缝1、2、3共同组成的一个整体焊缝。但是,在一般情况下,不应采用三点焊法。 3 12 图2-6 三点焊法的施焊次序

铝焊接方法与技巧

铝焊接方法与技巧 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 铝的焊接方法与技巧单纯从氩弧焊来说做好如下几点: 1、操作的基本功扎实,如果初次使用应该懂得气焊的基本功,和氩弧焊有类似之处。 2、稳定性比较好的铝氩弧焊机。这个是焊接成型好的焊缝的必要条件,并且需要有很好的关于机器的专业指导的供应商,因为好的机器都会配专业的技术指导的。 3、高纯的氩气,需要当地气站配合提供高质量的氩气。 4、高纯度的焊丝,焊丝杂质含量高会严重影响焊接质量。 1、铝焊接的特性:铝及铝合金具有导热性强而热容量大,线胀系数大,熔点低和高温强度小等特点,焊接难度大,应采取一定的措施,才能保证焊接质量。 2、工具/原料:非金属衬管;U型槽驱动滚轮;进口和出口引导装置;接触头 3、注意问题:

(1)定位非常重要 在焊接的时候,尽量保持焊枪电缆的笔直,以最大程度减少对较软铝丝的送丝约束。焊枪电缆线的弯曲会导致焊丝打结,造成很差的送丝。 (2)正确装入铝丝的窍门 对装载铝焊丝、避免焊接时的故障非常重要。用一只手安全的握住焊丝轴确保其不会松开,一但你拆开了玻璃纸包装,就用另一只手握住焊丝松开的一头——在将其放入驱动滚轮之前不要松手。缺少经验的人通常会没握紧松开的一头,而导致整捆焊丝开始松脱散开。如果这样的事发生了,将无法补救,焊接作业也会受很大的影响——你不得不购买另一捆焊丝。 (3)设置焊丝刹车的松紧度 松紧度只需要保证焊丝刚刚不会松脱即可,但是不能太紧,否则会造成对焊丝的拖拽。要正确的设置,先将松紧度调到最低,然后装上焊丝,让其通过驱动滚轮,如果除了装焊丝的滚轴在动,而其他部件都停止了的话,就说明不够紧。操作时要小心,因为过紧会造成加在焊丝上的力过多。另外,焊丝用完的最后几圈无法送丝时不要紧张;通常是因为焊丝太硬而不容易松脱。 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

各种焊接方法比较

各种焊接方法比较:原理、特点,冶金反应,熔滴过渡,电弧控制,焊接材料, 适用范围等 2011-09-14 13:54 一、埋弧焊 Submerged Metal Arc Welding (SMAW) 埋弧焊是以颗粒状焊剂为保护介质,电弧掩藏在焊剂层下的一种熔化极电 焊接方法。埋弧焊的施焊过程由三个环节组成:1在焊件待焊接缝处均匀堆敷足够的颗粒状焊剂;2 导电嘴和焊件分别接通焊接电源两级以产生焊接电弧;3 自动送进焊丝并移动电弧实施焊接。 埋弧焊的主要特点如下:1、电弧性能独特(1)焊缝质量高熔渣隔绝空气保护效果好,电弧区主要成分为CO 2 ,焊缝金属中含氮量、含氧量大大降低,焊接参数自动调节,电弧行走机械化,熔池存在时间长,冶金反应充分,抗风能力强,所以焊缝成分稳定,力学性能好;(2)劳动条件好熔渣隔离弧光有利于焊接操作;机械化行走,劳动强度较低。2、弧柱电场强度较高比之熔化极气体保护焊有如下特点:(1)设备调节性能好,由于电场强度较高,自动调节系统的灵敏度较高,使焊接过程的稳定性提高;(2)焊接电流下限较高。3、生产效率高由于焊丝导电长度缩短,电流和电流密度显著提高,使电弧的熔透能力和焊丝的熔敷速率大大提高;又由于焊剂和熔渣的隔热作用,总的热效率大大增加,使焊接速度大大提高。 冶金反应:焊剂参与冶金反应,Si 、Mn被还原,C部分烧毁,限制杂质S、P去H,防止产生氢气孔。 熔滴过渡:渣壁过渡 电源:直流电源用于小电流情况,等速送丝,自身电弧调节;大电流一般用交流电源,变速送丝(SAW 焊丝一般较粗),弧压反馈电弧调节 焊接材料:焊丝和焊剂。焊丝和焊剂的选配必须保证获得高质量的焊接接头,同时又要尽可能减低成本,还要注意适用的电流种类和极性。 适用范围:由于埋弧焊熔深大、生产率高、机械操作的程度高,因而适于焊接中厚板结构的长焊缝。在造船、锅炉与压力容器、桥梁、超重机械、核电站结构、海洋结构、武器等制造部门有着广泛的应用,是当今焊接生产中最普遍使用的焊接方法之一。埋弧焊除了用于金属结构中构件的连接外,还可在基体金属表面堆焊耐磨或耐腐蚀的合金层。随着焊接冶金技术与焊接材料生产技术的发展,埋弧焊能焊的材料已从碳素结构钢发展到低合金结构钢、不锈钢、耐热钢等以及某些有色金属,如镍基合金、钛合金、铜合金等。由于自己的特点,其应用也有一定的局限性,主要为:(1)焊接位置的限制,由于焊剂保持的原因,如不采用特殊措施,埋弧焊主要用于水平俯位置焊缝焊接,而不能用于横、立、仰焊;(2)焊接材料的局限,不能焊接铝、钛等氧化性强的金属及其合金,主要用于焊接黑色金属;(3)只适合于长焊缝焊接切,且不能焊接空间位置有限的焊缝;(4)不能直接观察电弧;(5)不适用于薄板、小电流焊。 二、熔化极气体保护焊(GMAG) GMAG属于用电弧作为热源的熔化焊方法,其电弧建立在连续送进的焊丝与熔池之间熔化的焊丝金属与母材金属混合而成的熔池在电弧热源移走后结晶形成焊缝并把分离的母材通过冶金方式连接起来。 CO 2焊接的特点:(1)在焊接电弧高温作用下CO 2 会分解成CO、O 2 和O,对电弧具有叫强烈的压缩作用, 从而导致该焊接方法的电弧形态具有弧柱直径较小,弧跟面积小且往往难于覆盖焊丝端部全部熔滴的特点,

常用焊接方法及特点

一、什么是钎焊?钎焊是如何分类的?钎焊的接头形式有何特点? 钎焊是利用熔点比母材低的金属作为钎料,加热后,钎料熔化,焊件不熔化,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散,将焊件牢固的连接在一起。 根据钎料熔点的不同,将钎焊分为软钎焊和硬钎焊。 (1)软钎焊:软钎焊的钎料熔点低于450°C,接头强度较低(小于70 MPa)。 (2)硬钎焊:硬钎焊的钎料熔点高于450°C,接头强度较高(大于200 MPa)。 钎焊接头的承载能力与接头连接面大小有关。因此,钎焊一般采用搭接接头和套件镶接,以弥补钎焊强度的不足。 二、电弧焊的分类有哪些,有什么优点? 利用电弧作为热源的熔焊方法,称为电弧焊。可分为手工电弧焊、埋弧自动焊和气体保护焊等三种。手工自动焊的最大优点是设备简单,应用灵活、方便,适用面广,可焊接各种焊接位置和直缝、环缝及各种曲线焊缝。尤其适用于操作不变的场合和短小焊缝的焊接;埋弧自动焊具有生产率高、焊缝质量好、劳动条件好等特点;气体保护焊具有保护效果好、电弧稳定、热量集中等特点。 三、焊条电弧焊时,低碳钢焊接接头的组成、各区域金属的组织与性能有何特点? (1)焊接接头由焊缝金属和热影响区组成。 1)焊缝金属:焊接加热时,焊缝处的温度在液相线以上,母材与填充金属形成共同熔池,冷凝后成为铸态组织。在冷却过程中,液态金属自熔合区向焊缝的中心方向结晶,形成柱状晶组织。由于焊条芯及药皮在焊接过程中具有合金化作用,焊缝金属的化学成分往往优于母材,只要焊条和焊接工艺参数选择合理,焊缝金属的强度一般不低于母材强度。 2)热影响区:在焊接过程中,焊缝两侧金属因焊接热作用而产生组织和性能变化的区域。 (2)低碳钢的热影响区分为熔合区、过热区、正火区和部分相变区。 1)熔合区位于焊缝与基本金属之间,部分金属焙化部分未熔,也称半熔化区。加热温度约为1 490~1 530°C,此区成分及组织极不均匀,强度下降,塑性很差,是产生裂纹及局部脆性破坏的发源地。 2)过热区紧靠着熔合区,加热温度约为1 100~1 490°C。由于温度大大超过Ac3,奥氏体晶粒急剧长大,形成过热组织,使塑性大大降低,冲击韧性值下降25%~75%左右。

相关主题
文本预览
相关文档 最新文档