《算法设计与分析》
- 格式:ppt
- 大小:2.06 MB
- 文档页数:356
《算法设计与分析》课程实验教学大纲Design and Analysis of Computer Algorithm总学时 16 总学分 0.5 实验学时 16一、基本情况1. 课程性质:专业实践2. 设课方式:独立设课3. 适用专业:计算机科学与技术专业4. 开课学期:第5学期5. 实验教材:《算法设计与分析》实验指导书6. 先修课程:高级语言程序设计、离散数学、数据结构二、课程简介算法设计与分析实验将覆盖计算机软件实现中的大部分算法,具有一定的深度和广度,目的是让学生掌握递归与分治策略、动态规划、贪心算法、回溯法、分支限界法等算法思想;能独立运用相关算法策略来分析、解决实际问题并编程实现。
同时,算法设计与分析实验是对学生在软件设计方面的综合训练,包括问题分析,总体结构设计,程序设计基本技能和技巧等,以培养良好的编程风格和科学作风。
通过理论联系实际,最终提高学生动手操作的能力以及分析问题和解决问题的能力,培养对算法的复杂性进行分析的逻辑思维能力。
三、实验目的与任务实验是教学内容的重要一环,其目的一方面是为了让学生掌握算法设计与分析中的一些常用的典型的算法设计思想和方法;另一方面是为了让学生切实掌握各种算法的具体实现方法,培养学生的实际动手能力,加强学生创新思维能力的培养。
四、课程的基本要求(1)了解实验目的,熟悉实验环境。
(2)预习实验,准备好实验题目和操作步骤。
(3)能编译调试源程序,分析错误原因并加以修改,得出正确结果。
(4)能运用所学的知识正确分析程序得出的结果,并能给出改进的方案。
(5)将上述各项要求及实验结果编写成实验报告。
实验前学生要认真预习实验内容,按要求编写源程序及准备测试数据。
实验中,要按操作规程操作计算机,集中精力调试程序,并认真测试实验数据。
对实验程序的故障应自行分析解决,不拷贝其它人的成果。
对实验得出的结果能加以分析,提出改进的具体措施。
掌握递归与分治策略、动态规划、贪心算法、回溯法、分支限界法等算法思想;能独立运用相关算法策略分析问题、解决实际问题并编程实现。
算法设计与分析算法在计算机科学和信息技术领域中起着至关重要的作用。
算法设计与分析是指通过研究和设计不同的算法,以解决特定的计算问题。
在本文中,我们将探讨算法设计与分析的重要性,介绍常见的算法设计策略,并讨论算法性能分析的方法。
一、算法设计的重要性算法是计算机程序的核心,好的算法能够提高程序的执行效率和性能。
在实际应用中,优秀的算法设计所带来的性能改进往往是显著的。
通过深入理解并掌握各种算法设计策略,我们可以更好地解决问题,提高程序的运行效率和响应速度。
二、常见的算法设计策略1.分而治之(Divide and Conquer):将一个复杂问题分解成若干个相似的子问题,逐个解决,最后合并子问题的解得到原问题的解。
典型的应用包括快速排序和归并排序等。
2.贪心算法(Greedy Algorithm):在每一步选择中都采取当前状态下最优的选择,以期望达到全局最优解。
例如,霍夫曼编码和最小生成树算法(Prim算法和Kruskal算法)。
3.动态规划(Dynamic Programming):通过将原问题分解为相互重叠的子问题,将每个子问题的解存储起来,避免重复计算,从而得到最终问题的解。
经典的应用有背包问题和最短路径问题等。
4.回溯法(Backtracking):通过不断尝试所有可能的解,并在不满足条件时进行回溯,直到找到满足条件的解。
典型的应用有八皇后问题和0-1背包问题等。
5.分支限界法(Branch and Bound):通过扩展搜索树并设置界限函数来减少搜索空间,从而有效地找到最优解。
典型的应用有旅行商问题和迷宫求解问题等。
三、算法性能分析的方法算法性能分析是评估算法效率的重要手段,常用的方法有以下几种:1.时间复杂度分析:衡量算法的运行时间随着问题规模的增加而增长的趋势。
通常使用大O记法表示时间复杂度,如O(n)、O(nlogn)等。
2.空间复杂度分析:衡量算法所需的额外空间随着问题规模的增加而增长的趋势。
黄宇《算法设计与分析》课后习题解析(⼆)第2章:从算法的视⾓重新审视数学的概念2.1:(向下取整)题⽬:请计算满⾜下⾯两个条件的实数的区间解析:根据向下取整的含义,令,讨论a的取值范围即可解答:令,则可得:即:故的取值区间为:2.2: (取整函数)题⽬:证明:对于任意整数,(提⽰:将n划分为)。
解析:根据提⽰将n进⾏划分,根据取整函数的定义⽤k表⽰取整函数,即可证明;证明如下:因为对于任意整数,可划分为,则:① ;② ;综上:对于任意整数,, 得证;2.3: (斐波拉契数列)对于斐波拉契数列,请证明:1)题⽬:是偶数当且仅当n能被3整除解析:由斐波拉契数列的递归定义式,容易联想到数学归纳法;证明如下:(采⽤数学归纳法)i)当n = 1,2,3时,依次为1,1,2,符合命题;ii)假设当(k>=1)时命题均成⽴,则:① 当n = 3k+1时,是奇数,成⽴;② 当n = 3k+2时,是奇数,成⽴;③ 当 n = 3(k+1)时,是偶数,成⽴;综上:归纳可得为偶数当且仅当,得证;2)题⽬:x x =1+a (0<a <1)x =1+a (0<a <1)⌊x ⌋=1⇒⌊x ⌋=21⌊x ⌋=2⌊1+a +22a ⌋=1a +22a <1⇒0<a <−21⇒1<a +1<⇒21<x <2x (1,)2n ≥1⌈log (n +1)⌉=⌊logn ⌋+12≤k n ≤2−k +11n ≥12≤k n ≤2−k +11k +1=⌈log (2+k 1)⌉≤⌈log (n +1)⌉≤⌈log (2)⌉=k +1k +1=>⌈log (n +1)⌉=k +1k =⌊log (2)⌋≤k ⌊logn ⌋≤⌊log (2−k +11)⌋=k =>⌊logn ⌋=k n ≥1⌈log (n +1)⌉=k +1=⌊logn ⌋+1F n F n n ≤3k F =n F +n −1F =n −2F +3k F =3k −1>F 3k +1F =n F +3k +1F =3k >F 3k +2F =n F +3k +2F =3k +1>F 3k +3F n 3∣n F −n 2F F =n +1n −1(−1)n +1解析:同1)理,容易联想到数学归纳法证明如下:(采⽤数学归纳法)i)当n = 2时,, 易知成⽴;ii)假设当 n = k 时命题成⽴,① 若k = 2m, 则,当n = k+1 = 2m+1时,要证命题成⽴,即证: => ,代⼊递推式, 得:, 易知是恒等式,故命题成⽴;②当 k=2m+1时,同①理可证命题成⽴;综上:归纳可得,得证;2.4:(完美⼆叉树)给定⼀棵完美⼆叉树,记其节点数为,⾼度为,叶节点数为,内部节点数为1)题⽬:给定上述4个量中的任意⼀个,请推导出其他3个量解析:根据完美⼆叉树的结构特点易得解答:(仅以已知⾼度h推导其他三个量为例,其余同理)已知⾼度为h,可得:节点数:叶节点数:内部节点数:2)题⽬:请计算完美⼆叉树任意⼀层的节点个数:① 如果任意指定深度为的⼀层节点,请计算该层节点个数;② 如果任意指定⾼度为的⼀层节点,请计算该层节点个数;解析:根据完美⼆叉树的结构特点易得(注意节点深度和节点⾼度是互补的,相加为树⾼)解答:① ; ② ;2.5: (⼆叉树的性质)对于⼀棵⾮空的⼆叉树T,记其中叶节点的个数为,有1个⼦节点的节点个数为,有两个⼦节点的节点个数为1)题⽬:如果T是⼀棵2-tree,请证明。
算法设计与分析 课程设计一、课程目标知识目标:1. 让学生掌握基本的算法设计原理,包括贪心算法、分治算法、动态规划等,并能够运用这些原理解决实际问题。
2. 使学生了解不同算法的时间复杂度和空间复杂度分析方法,能够评估算法的效率。
3. 引导学生理解算法的优缺点,并能针对具体问题选择合适的算法进行解决。
技能目标:1. 培养学生运用所学算法原理设计解决实际问题的算法,提高编程实现能力。
2. 培养学生通过分析算法的时间复杂度和空间复杂度,对算法进行优化和改进的能力。
3. 提高学生运用算法思维解决问题的能力,培养逻辑思维和创新能力。
情感态度价值观目标:1. 激发学生对算法学习的兴趣,培养主动探索、积极思考的学习态度。
2. 培养学生团队协作精神,学会与他人分享算法设计心得,共同解决问题。
3. 使学生认识到算法在现实生活中的重要性,提高对计算机科学的认识和兴趣。
课程性质:本课程为计算机科学领域的一门核心课程,旨在培养学生的算法设计与分析能力。
学生特点:学生已经具备一定的编程基础和逻辑思维能力,但对复杂算法的设计与分析仍需加强。
教学要求:结合实际案例,注重理论与实践相结合,引导学生通过自主探究、团队合作等方式,达到课程目标。
在教学过程中,注重分解目标,将目标具体化为可衡量的学习成果,以便于教学设计和评估。
二、教学内容1. 算法基本原理:- 贪心算法:介绍贪心算法原理及其应用场景,结合实际案例进行分析。
- 分治算法:阐述分治算法的设计思想及其应用,举例说明。
- 动态规划:讲解动态规划的基本概念、原理和应用,分析典型问题。
2. 算法分析:- 时间复杂度分析:介绍大O表示法,分析常见算法的时间复杂度。
- 空间复杂度分析:阐述空间复杂度的概念,分析常见算法的空间复杂度。
3. 算法优化与改进:- 针对典型问题,分析现有算法的优缺点,探讨优化方向。
- 引导学生通过算法分析,提出改进方案,并进行实现。
4. 教学大纲安排:- 第一章:算法基本原理(贪心算法、分治算法、动态规划)- 第二章:算法分析(时间复杂度、空间复杂度)- 第三章:算法优化与改进5. 教材章节和内容列举:- 教材第3章:贪心算法及其应用- 教材第4章:分治算法及其应用- 教材第5章:动态规划及其应用- 教材第6章:算法分析(时间复杂度、空间复杂度)- 教材第7章:算法优化与改进教学内容确保科学性和系统性,结合实际案例进行讲解,使学生能够逐步掌握算法设计与分析的方法。
1.算法的定义:算法是解某一特定问题的一组有穷规则的集合。
2.算法的性质:有限性、确定性、输入、输出、能行性4.算法的时间复杂性越高,算法的执行时间越长;反之,执行时间越短。
算法的空间复杂性越高,算法所需的存储空间越多;反之越少。
5.初等操作:所有的操作都具有相同的固定字长;所有操作的时间花费都是一个常数时间间隔。
6. 算法分析的目的:分析算法占用计算机资源的情况,对算法做出比较和评价,设计出额更好的算法7.算法的时间复杂性与问题的规模相关,是问题大小n 的函数。
8.因此可以用T(n)的数量级(阶)评价算法。
时间复杂度T(n)的数量级(阶)称为渐进时间复杂性。
设算法执行时间为T (n ),如果存在)(*n T ,使得:0)()()(lim*=-∞→n T n T n T n就称)(*n T 为算法的渐进时间复杂性。
9.运行时间的上界:令N 为自然数集合,R+为正实数集合。
函数f :N →R+,函数g :N →R+。
若存在自然数n 0和正常数c ,使得对所有的n ≥n 0,都有,f (n )≤cg (n ),就称函数f (n )的阶至多是O (g (n ))f (n )的增长最多像g (n )的增长那样快。
这时称O (g (n ))是f (n )的上界。
第二章堆可以看做一课完全二叉树,假设高度为d ,具有如下性质: 1.所有叶节点不是处于第d 层,就是处于d-1层 2.当d ≥1时,第d-1层上有2d-1个结点3.第d-1层上如果有分支节点,则这些分支节点都集中在树的最左边4.每个结点所存放元素的关键字,都大于或者小于它的孩子结点的关键字 第四章1.对于一个规模为n 的问题p(n),归纳法的思想方法是: a )基础步:a1是问题p(1)的解。
b )归纳步:对所有的k ,1<k <n ,若b 是问题p(k)的解,则p(b)是问题p(k+1)的解。
其中, p(b)是对问题的某种运算或处理。
《算法设计与分析》教案张静第1章绪论算法理论的两大论题:1. 算法设计2. 算法分析1.1 算法的基本概念1.1.1 为什么要学习算法理由1:算法——程序的灵魂➢问题的求解过程:分析问题→设计算法→编写程序→整理结果➢程序设计研究的四个层次:算法→方法学→语言→工具理由2:提高分析问题的能力算法的形式化→思维的逻辑性、条理性1.1.2 算法及其重要特性算法(Algorithm):对特定问题求解步骤的一种描述,是指令的有限序列。
算法的五大特性:⑴输入:一个算法有零个或多个输入。
⑵输出:一个算法有一个或多个输出。
⑶有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。
⑷确定性:算法中的每一条指令必须有确切的含义,对于相同的输入只能得到相同的输出。
⑸可行性:算法描述的操作可以通过已经实现的基本操作执行有限次来实现。
1.1.3 算法的描述方法⑴自然语言优点:容易理解缺点:冗长、二义性使用方法:粗线条描述算法思想注意事项:避免写成自然段欧几里德算法⑶程序设计语言优点:能由计算机执行缺点:抽象性差,对语言要求高使用方法:算法需要验证注意事项:将算法写成子函数欧几里德算法#include <iostream.h>int CommonFactor(int m, int n) {int r=m % n;while (r!=0){m=n;n=r;r=m % n;}return n;}void main( ){cout<<CommonFactor(63, 54)<<endl;}⑷伪代码——算法语言伪代码(Pseudocode):介于自然语言和程序设计语言之间的方法,它采用某一程序设计语言的基本语法,操作指令可以结合自然语言来设计。
优点:表达能力强,抽象性强,容易理解使用方法:7 ± 2欧几里德算法1. r = m % n;2. 循环直到 r 等于02.1 m = n;2.2 n = r;2.3 r = m % n;3. 输出 n ;1.1.4 算法设计的一般过程1.理解问题2.预测所有可能的输入3. 在精确解和近似解间做选择4. 确定适当的数据结构5.算法设计技术6.描述算法7.跟踪算法8.分析算法的效率9.根据算法编写代码1.2 算法分析算法分析(Algorithm Analysis):对算法所需要的两种计算机资源——时间和空间进行估算➢时间复杂性(Time Complexity)➢空间复杂性(Space Complexity)算法分析的目的:➢设计算法——设计出复杂性尽可能低的算法➢选择算法——在多种算法中选择其中复杂性最低者时间复杂性分析的关键:➢ 问题规模:输入量的多少;➢ 基本语句:执行次数与整个算法的执行时间成正比的语句for (i=1; i<=n; i++)for (j=1; j<=n; j++)x++;问题规模:n基本语句:x++1.2.1 渐进符号1. 大O 符号定义1.1 若存在两个正的常数c 和n 0,对于任意n ≥n 0,都有T (n )≤c ×f (n ),则称T (n )=O (f (n ))2. 大Ω符号定义1.2 若存在两个正的常数c 和n 0,对于任意n ≥n 0,都有T (n )≥c ×g (n ),则称T (n )=Ω(g (n ))问题规模n 执行次3. Θ符号定义1.3 若存在三个正的常数c 1、c 2和n 0,对于任意n ≥n 0都有c 1×f (n )≥T (n )≥c 2×f (n ),则称T (n )=Θ(f (n ))例: T (n )=5n 2+8n +1当n ≥1时,5n 2+8n +1≤5n 2+8n +n=5n 2+9n ≤5n 2+9n 2≤14n 2=O (n 2)当n ≥1时,5n 2+8n +1≥5n 2=Ω(n 2)∴ 当n ≥1时,14n 2≥5n 2+8n +1≥5n 2则:5n 2+8n +1=Θ(n 2)0问题规模n 执行次数问题规模n 执行次数定理 1.1 若T(n)=amnm +am-1nm-1 + … +a1n+a0(am>0),则有T(n)=O(nm)且T(n)=Ω(n m),因此,有T(n)=Θ(n m)。