蒸汽温度压力补偿
- 格式:doc
- 大小:21.50 KB
- 文档页数:2
蒸汽流量计量温度、压力补偿的数学模型4.1 热蒸汽计量的补偿在蒸汽的计量上,密度虽然也是温度、压力的函数,但不再遵循理想气体状态方程,且在不同压力、温度区间,函数关系不同,很难用一个简单的函数关系式表示,因此着重论述一下常用水蒸气密度的确定方法4.1.1. 密度的确定:工程上应用的水蒸气大多处于刚刚脱离液态或离液态较近,它的性质与理想气体大不相同,应视为实际气体。
水蒸气的物理性质较理想气体要复杂的多,故不能用简单的数学式加以描述;所以,在以往的工程计算中,凡涉及水蒸气的状态参数数值,大都从水蒸气表中查出。
把水蒸汽状态参数表装入仪表内存中,数据量很大。
随着电子技术的发展,计算机(或单片机)已广泛应用于流量测量仪表中,其存储能力、快速计算能力为准确、快速的确定水蒸气的密度提供了有力的手段。
现在介绍在二次仪表中常用的水蒸气密度的确定方法。
4.1.1.1. 查表法:把水蒸气密度表装入计算机中,根据工况的温度、压力,从表中查出相应的密度值。
4.1.1.2. 计算法:◆自己拟合公式(或者出版物给出的公式)◆乌卡诺维奇公式◆ IFC1967公式而目前,我们在用的拟合公式为:(1)式中:t-温度,℃;P-表压,Mpa;蒸汽实际工况条件为:工作压力变化范围:0.1~1.1MPa672工作温度变化范围:160~410℃取特殊点对公式(1)验证1) p=0.2 MPa、t=160℃查表得ρ=1.01626kg/m32) p=0.5Mpa、t=200℃查表得ρ=2.35294kg/m33) p=0.8 MPa、t=250℃查表得ρ=3.41064kg/m34) p=1.1 MPa、t=400℃查表得ρ=3.59454kg/m3通过以上计算,我们目前采用的密度补偿公式的计算误差太大,不能满足计量仪表的要求。
如果在计算过程中将温度单位按热力学温度K来计算,就无从谈起其精度了。
我部的能源计量绝大部分已进入微机网络,因此,理想的是采用“IFC1967公式”(见附录)。
蒸汽计量温压补偿方式的探讨【摘要】蒸汽计量是工业生产中非常重要的测量手段,而温压补偿是确保蒸汽计量准确性的关键技术之一。
本文首先介绍了蒸汽计量的重要性,然后详细分析了目前存在的温压补偿方式及其优缺点。
接着对改进方案进行了探讨,并对实施效果进行评估。
在指出了蒸汽计量温压补偿技术的未来发展方向,同时对全文进行了总结。
该研究旨在为提高蒸汽计量的准确性和可靠性提供参考。
通过不断地改进和探讨,可以更好地应对实际生产中的各种复杂情况,提高蒸汽计量的精度和稳定性。
【关键词】蒸汽计量、温压补偿、重要性、存在方式、优缺点、改进方案、实施效果评估、发展方向、总结1. 引言1.1 背景介绍蒸汽计量温压补偿方式是工业生产中的关键技术之一,它能够有效地提高蒸汽计量的准确性和稳定性。
随着工业生产技术的不断发展,蒸汽计量在工业生产中发挥着越来越重要的作用。
由于蒸汽的温度和压力在不同条件下会发生变化,传统的蒸汽计量方式往往难以准确反映蒸汽的实际使用情况。
研究蒸汽计量温压补偿方式成为迫在眉睫的任务。
目前,关于蒸汽计量温压补偿方式的研究已经取得了一定的进展,但仍然存在许多问题亟待解决。
在这种情况下,对蒸汽计量温压补偿方式进行进一步探讨是非常必要的。
本文将对蒸汽计量温压补偿方式的优缺点进行分析,探讨改进方案,并对实施效果进行评估,旨在为蒸汽计量技术的进一步发展提供参考。
1.2 研究目的研究目的是通过对蒸汽计量温压补偿方式的探讨,深入了解这一领域的现状和存在的问题,为今后的改进提供有效的参考和指导。
通过对目前存在的温压补偿方式及其优缺点的分析,探讨可能的改进方案,进一步提高蒸汽计量的准确性和可靠性。
通过实施效果评估,验证改进方案的有效性,并为未来的研究和发展提供经验和启示。
研究的目的是为了推动蒸汽计量领域的发展,提高蒸汽计量的准确性和可靠性,为工业生产和能源管理提供更为科学和有效的数据支持。
2. 正文2.1 蒸汽计量的重要性蒸汽计量作为工业生产中重要的流体测量手段,扮演着至关重要的角色。
当蒸汽流量测量使用温度压力补偿,这七点不容忽略!蒸汽流量测量的温度压力自动补偿(以下简称温压补偿),国内20世纪六七十年代就已开展这一工作,当时得益于气动、电动单元组合仪表中计算单元的发展和完善。
随着计算机技术的发展,这一工作更是有了长足的进步。
但其基本的原则及应用中的一些问题并没有变。
以下七点不容忽视!压力补偿:将压力设定为规定值进行的自动控制叫做压力补偿。
大多数流体(尤其是气体)的密度会随着工况条件的变化而变化,所以流体的密度要进行压力补偿。
温度补偿:电子元器件通常都有一定的温度系数,其输出信号会随温度变化而漂移,称为“温漂”,为了减小温漂,采用一些补偿措施在一定程度上抵消或减小其输出的温漂,这就是温度补偿。
差压补偿:将差压等被测工艺参数转换成相应的电气统一标准信号,然后将此信号送至其他单元以实现对上述工艺参数的自动检测或自动调节,叫做差压补偿。
测量蒸汽流量时为什么要进行温度或压力补偿?按照测量原理来说,我们的流量计实际上只能测量当前工况下流体流过的体积,所以这个情况对我们不适用。
我们实际上使用的时候,是想测量流过多少质量的流体。
而蒸汽在不同的压力和温度下,密度变化很大,所以就要在测量蒸汽流过多少体积的同时要测量压力和温度。
只有时刻了解蒸汽的密度才可以,准确测量出蒸汽的质量。
所谓补偿,就是根据流体的温度和压力数据来计算出流体的密度,从而根据测量出来的流体体积,计算出流体质量。
至于水蒸汽的补偿,如果水蒸汽是饱和蒸汽就要进行压力或者温度补偿(温度补偿和压力补偿各选其一)。
如果是过热蒸汽则要进行温压补偿(温度补偿和压力补偿同时进行)。
注意一点,在水蒸汽的分类中,饱和蒸汽和过热蒸汽,千万不能弄错,因为饱和蒸汽的密度是高于过热蒸汽的,在仪表的选择和设置时一定要注意。
一旦在这个地方搞错,会造成严重的经济损失。
当然也有一些仪表,不必区分水蒸汽是饱和蒸汽还是过热蒸汽,因为它们除了接测量流量的装置外,同时也接有测量温度和压力的装置。
温压补偿公式:实际流量=P3*SQRT(C1/(273+P2)*(P1+101)/C2) 参数: C1:设计温度(K) C2:设计压力(KPa) P1:实际压力(Kpa) P2:实际温度(℃) P3:未补偿前流量实际上不同厂家,温压补偿公式可能也有差别由差压信号换算流量时,是跟流体密度有关的 Q=K*SQRT(ΔP/ρ),(K是一个综合的系数)四楼的意思是说根据设计时的温度、压力下的差压-流量换算公式,采用理想气体状态方程来计算流体密度,就是那个PV=nRT,这样的方法只能应用于那种可以当作理想气体的流体,比如氮气、氧气等,而水蒸气因为不能当作理想气体,同时水蒸气性质有很多试验数据,所以水蒸气的温压补偿有另外的算式。
另外上面说的补偿只针对气体,对液体显然要另外想办法,但是原则都是计算工况下的流体密度。
根据热力学方程P0V0/T0=P1V1/T1进行温压补偿,V0=P1V1T0/T1P0,单位统一后:V0=(P1*1000+101)*V1(T0+273)/(T1+273)(P0+101)可是有的资料上介绍F0=F1*SQRT{((P1*1000+101)*(T0+273)/[(T1+273)(P0*1000+101)]} 请教这里的开方是如何推倒出来的?对于蒸汽流量,其质量流量M=k*SQRT(ΔP*ρ) (1)k-常数;ΔP-孔板两侧差压值;ρ为蒸汽密度。
如果在孔板上只装有差压变送器,则密度ρ取管道中温度和压力变化范围内某一固定点上的密度ρ0,这样一来流量公式就变为M=k*SQRT(ΔP*ρ0)=K*SQRT(ΔP) (2)式中K=k*SQRT(ρ0)。
显然,由于密度取为固定值,因而当蒸汽的温度和压力波动引起密度变化时,必然会引起测量误差。
假如在管道上再装一个压力变送器和一个温度变送器,在测取差压信号的同时,测取管道内的压力和温度信号。
这样,假设原设计工作温度和压力分别为T0和P0,相应密度ρ0,现在实际工作温度和压力分别为T1和P1,密度为ρ1。
蒸汽计量温压补偿方式的探讨【摘要】本文通过对蒸汽计量温压补偿方式的探讨,分析了三种不同的方法:方法一、方法二和方法三,同时进行了案例分析和优缺点对比。
在方法一中,采用了XXX技术进行蒸汽计量温压补偿;方法二则利用了XXX装置来实现温压补偿;而方法三是通过XXX系统进行温压补偿。
通过案例分析可以看出,在不同的工程环境下,各种方法都有其适用的场景并具有一定的优点和缺点。
结论指出蒸汽计量温压补偿是提高蒸汽计量准确性和稳定性的重要手段,各种方法都有其独特之处,需要根据实际情况选择合适的方式来进行应用。
本文将有助于深入理解蒸汽计量温压补偿方式及其应用价值。
【关键词】蒸汽计量、温压补偿、方法一、方法二、方法三、案例分析、优缺点对比、结论。
1. 引言1.1 蒸汽计量温压补偿方式的探讨蒸汽计量是工业生产中常用的一种计量方式,而蒸汽计量温压补偿方式则是在蒸汽计量中的一个重要内容。
在实际工程中,蒸汽的温度和压力都是不稳定的,因此需要对蒸汽的流量进行温压补偿以确保计量的准确性。
蒸汽计量温压补偿方式的探讨就是对这种补偿方式的研究和分析。
在蒸汽计量温压补偿方式的探讨中,通常会涉及到不同的方法和技术。
这些方法包括基于理论模型的计算方法、基于实测数据的修正方法以及基于数学模型的仿真方法等。
通过这些方式,可以更好地理解蒸汽的温压特性,进而实现更精确的蒸汽计量。
本文将系统地探讨蒸汽计量温压补偿方式的相关内容,包括不同的方法、案例分析以及优缺点对比。
通过对这些内容的研究和分析,可以为工程领域中蒸汽计量温压补偿方式的实际应用提供有效的参考和指导。
最终目的是为改进蒸汽计量系统提供技术支持,提高计量的准确性和可靠性,从而推动工业生产的发展和进步。
2. 正文2.1 蒸汽计量温压补偿方式的探讨-方法一在蒸汽计量中,温度和压力对蒸汽密度和体积的影响是必须考虑的因素。
方法一是通过使用温度和压力传感器来实时监测蒸汽的温度和压力,进而进行补偿计算。
蒸汽流量测量中温压补偿实施方案的讨论汪里迈(上海巴斯夫染料化工有限公司200137)纪纲(上海宝科自动化仪表研究所200940)摘要:用查表法求取蒸汽密度,进行温压补偿,能得到较高精度。
蒸汽的相变对温压补偿有一定的影响,应区别情况,逐一解决。
关键词:蒸汽流量温压补偿实施方案相变影响一、前言蒸汽流量测量是企业中量大面广的测量任务。
在蒸汽流量测量中进行温压补偿,也已经是老的话题了,但是,越讨论认识越深化,越能启发人们去开发价格低、精度高、功能强的仪表,越能启发自动化专业人员选好仪表用好仪表。
蒸汽流量测量中的温压补偿的目的,是在蒸汽的工况偏离设计工况时,将蒸汽的密度对测量结果的影响予以修正。
因为蒸汽是处于气体状态,在其温度、压力变化时,其密度有很大的变化,如果不进行补偿,引起的误差是很大的。
例如设计压力为1MPa(表压)的饱和水蒸气,当压力下跌到0.8MPa时,密度下降到设计值的82%,若不进行温压补偿,对差压式流量计的影响是使示值升高10.4%,而对涡街流量计的影响是使示值升高21.9%。
显然,对温度、压力变化的流量测量对象,除直接法质量流量计外,必须进行温压补偿。
但是自控设计人员在实施温压补偿时遇到了一些问题,因为水蒸气在输送过程中难免要发生相变,例如过热蒸汽在经过长距离输送后,往往因沿途损失热量而脱离过热状态,进入饱和状态,甚至变成汽液两相,如果仍按过热蒸汽来处理是否会有问题?饱和水蒸气在送到生产装置后往往要先减压再使用,那么,减压后的蒸汽是否仍然是处于饱和状态等等。
对于这些问题,如果处理不当,就会引起额外的误差。
下面就以我们实际工作中所遇到的问题,结合具体的仪表进行分析和讨论,以求收到抛砖引玉之效。
二、蒸汽密度的求取流量测量中温压补偿的主要任务是将蒸汽的温度、压力测量出来并据此求出蒸汽密度。
我们所使用的流量二次表是FC6000型通用流量演算器,在该仪表中,蒸汽温压补偿采用查表和内插相结合的方法求取蒸汽密度,在仪表的EPROM中写入三个蒸汽密度表,1号表是过热蒸汽密度表,另外两个是饱和蒸汽密度表,采用的都是国际蒸汽密度表1976 IFC。
温压补偿蒸汽流量计的安装一、前言温压补偿蒸汽流量计是一种常用于工业领域的流量计,用于测量蒸汽在管道中的流量。
安装流量计是使用它的第一步,本文将详细介绍温压补偿蒸汽流量计的安装方法。
二、工具与材料•温压补偿蒸汽流量计•快速接头•绕线板•扳手•水平仪•排水阀三、安装步骤1.准备工作首先,需要确定流量计的安装位置,具体需考虑管道的直线程度、距离和高度等因素。
管道需清理干净,以保证流量计的准确测量。
2.安装快速接头将快速接头安装在流量计的进口和出口处。
使用扳手将快速接头拧紧,以免泄漏。
3.安装绕线板绕线板需要安装在流量计上面,进行线缆的固定。
使用水平仪调整绕线板的平衡状态,并将绕线板紧密固定,使线缆不易弯曲拉扯。
4.连接线缆将温度传感器线缆、压力传感器线缆和电源线缆分别连接到温度传感器、压力传感器和电源端子。
5.校准连接电源,打开流量计的校准开关,按照说明书进行校准调整。
校准完成后,关闭校准开关。
6.启动测试开启流量计的电源开关,并将蒸汽通过管道流入流量计,进行测试。
需要保证蒸汽流量稳定,以获得准确的读取值。
7.安装排水阀在流量计下方安装排水阀,以方便将管道内部的水气排出。
四、注意事项•安装前应仔细查看流量计的使用说明书,了解细节问题。
•安装时应严格按照说明书操作,切勿违背规定。
•安装前需检查所有零部件是否符合要求,安装中要注意细节问题,以保证安装质量。
•安装完成后应对流量计进行校准,以获得准确的测量数据。
五、总结本文介绍了温压补偿蒸汽流量计的安装方法。
用于测量管道中的蒸汽流量,常用于工业生产中,安装前需仔细查看说明书,安装时需注意细节问题,以确保安装效果。
安装完成后应进行校准,并严格遵守使用规定,以便正确地使用流量计。
温度压力补偿在测量蒸汽流量时的注意事项1、避免补偿后再次出现误差。
温度压力补偿在测量蒸汽流量中的应用本身就是为了减少测量误差,如果在应用过后再次产生测量误差则完全没有应用价值。
因此,在使用温度压力补偿测量蒸汽流量时必须避免补偿后在其出现误差的现象发展。
大气压力是引起补偿后再次出现误差的主要因素之一。
饱和蒸汽的绝对压力参数值会将蒸汽表的压力增加。
因此,在实际工程测量的过程中需要根据当地的大气压力代替0.1MPa的标准大气压力,尤其是高海拔地区实际大气压力与标准大气压力相差较大的地区。
此外,管道内部液柱静压力也是致使补偿后再次出现误差的因素之一。
由于压力变送器取压口与变送器自身的液体高度在实际测量中不可能保持绝对的相同。
因此会造成对变送器输出压力的影响,从而产生附加误差。
因此,在实际工程量时需要注意的该影响因素,必要时采用零点迁移的方式消除再次误差的影响。
2、保障温差补偿的应用条件。
温差补偿在蒸汽流量测量中的应用需要具备必要条件才能够实现误差的补偿作用。
因此,在实际工程测量使用过程中需要保障温差补偿的应用条件。
首先,需要保障蒸汽的温度和压力波动范围小,这样才能够降低工程参数与设计参数偏离较大的发生率,降低对实际测量的影响。
其次,在测量过程中发现工程参数与设计参数存在的差异性较大需要立刻对其进行调整,这样才能满足温差补偿的应用条件。
因为,一定实际工程参数中的温度和压力与设计参数不同,计算中的流量系数α、孔径d,膨胀系数ε等均会产生变化,造成测量精度下降,无法发挥温差补偿在蒸汽流量测量中的实际作用。
此时需要重新对工程中的液体质量流量与差压关系表达式进行计算。
3、合理选择温差补偿应用。
根据实际工程应用分析温差补偿并不适用与饱。
流量计示值修正(补偿)公式我公司能源计量的流量计示值单位规定为20℃,101.325kPa 标准状态的流量,如设计选型使用了不同流量计示值单位,则根据设计的流量单位(质量流量kg/h 、0℃,101.325kPa 及20℃,101.325kPa 标准状态或工作状态)选用对应的温度、压力修正(补偿)公式;不同测量原理的流量计,应根据其流量计流量方程(公式)选用对应的温度、压力修正(补偿)公式。
1. 气体流量测量的温度、压力修正(补偿)公式:1.1 差压式流量计的温度、压力修正(补偿)实用公式:一般气体体积流量(标准状态20℃,101.325kPa ),根据差压式流量计流量方程,可得干气体在标准状态(20℃,101.325kPa )的积流流量:)()()()(15.273T 325.101p 15.273T 325.101p q q vNvN +'⋅++⋅+'=' (1)式中: q'vN ——标准状态下气体实际体积流量;q vN ——标准状态下气体设计体积流量;p' ——气体实际压力,kPa ;p ——气体设计压力,kPa ;T'——气体实际温度,℃;T ——气体设计温度,20℃。
1.2 一般气体质量流量的温度、压力修正(补偿)公式:T p Tp q q m m ''=' (2)式中:q'vN ——标准状态下气体实际体积流量;q vN ——标准状态下气体设计体积流量;p' ——气体实际压力,绝对压力;p ——气体设计压力,绝对压力;T'——气体实际温度,绝对温度;T ——气体设计温度,绝对温度。
1.3 蒸汽的温度、压力修正(补偿)公式:根据差压式流量计流量方程,可得蒸汽的质量流量:ρρ'='m m q q (3)式中:q'm ——蒸汽实际质量流量;q m ——蒸汽设计质量流量;ρ' ——蒸汽实测时密度;ρ ——蒸汽设计时密度;依据水和水蒸汽热力性质IAPWS-IF97公式其密度计算模型,工业常用范围内水蒸汽的密度为:)(100010ππγγνρ+==RT πγπ10= i i J 1I i 431i i 50I n )(.-=-=∑τπγπT 540=τ1MPa p =π式中:,ρ 为水蒸汽密度;P 为压力, MPa ;v 为比体积,m 3/ kg ;T 为温度, K ;R 为水物质气体常数, 0. 461526kJ ∙kg -1 ∙K -1;n i 、I i 、J i 为公式系数见“表1”。
温度压力标方体积以及质量补偿公式为:
Q=G*{P(273.15+20)/〔P0* (273.15+T)〕}
Q:标况流量(单位Nm3/h);P:流体的绝对压力
P0:大气压力T:流体温度(单位℃)
G: 工况体积流量(单位m3/h)
工况体积流量计算方法:
G=V*(I-4mA)/(20mA-4mA)
V:流量仪表输出20mA原始信号对应工况体积流量
I:流量仪表现场输出的电流信号(单位mA)
一般系统设置“流量仪表输出20mA原始信号对应工况体积流量”后通过现场采集到的流量计的流量信号(电流),现场温度传感器测量到的温度信号,现场压力仪表测量到的压力信号,在系统内部编译公式:Q=G*{P(273.15+20)/[P0* (273.15+T)]}进行准确计量。
在此如果计算质量流量M,可用公式M=Q* ƍ标其中Q:标况流量(单位Nm3/h), ƍ标为标况密度
蒸汽温度压力密度补偿(过热):
ƍ=10.1972*P/[1.346*(10-4)*P*T+4.71*(10-3)*T-0.0989*P+1.256]
ƍ为蒸汽密度(单位kg/m3); P为蒸汽的绝对压力(单位MPa)T为蒸汽温度(单位℃)
蒸汽压力密度补偿(饱和):
ƍ=0.7608+4.9264*p
ƍ为蒸汽密度(单位kg/m3); P为蒸汽的相对压力(单位MPa)。