数学规划模型解析
- 格式:ppt
- 大小:1.50 MB
- 文档页数:83
整体规划数学模型一、问题重述与提出某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千克,工人20名,可获利9万元.今工厂共有原料60千克,工人150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何安排生产计划,即两种饮料各生产多少使获利最大.进一步讨论:1)若投资0.8万元可增加原料1千克,问应否作这项投资.2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划.分析:问题的关键在于在对甲乙两种饮料的生产的限制的条件下,对两种饮料进行合理的分配以达到获利最多的效果。
基本假设与符号说明基本假设:1两种饮料的生产原料分配是相互制约的。
2两种饮料的生产工人数量分配是相互制约的。
3甲饮料的产量不超过8百箱。
符号规定:x1---甲饮料的生产百箱数x2---乙饮料的生产百箱数三、问题分析与建立模型1.甲乙两种饮料的所用的原料总和不能超过60千克。
2.生产甲乙两种饮料的工人数量总和不能超过150人。
3.甲饮料的生产数量不能超过8百箱。
4.要使获利最大,这是一个目标规划模型目标函数MAX Z0=10x1+9x2约束函数s.t 6x1+5x2≤6010x1+20x2≤1500≤x1≤8, x2≥0若增加原料1千克,则建立线性目标规划函数如下:目标函数MAX Z1=10x1+9x2-0.8约束函数s.t 6x1+5x2≤6110x1+20x2≤1500≤x1≤8, x2≥0比较z0与Z1的大小若每百箱甲饮料获利可增加1万元,则建立线性目标规划函数如下:目标函数MAX Z2=11x1+9x2约束函数s.t 6x1+5x2≤6010x1+20x2≤1500≤x1≤8, x2≥0比较Z0与Z2的大小求解的Matlab程序代码:c=[-10 -9];A=[6 5; 10 20;1 0];b=[60;150;8];Aeq=[];beq=[];vlb=[0;0];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub) 问题一:c=[-10 -9];A=[6 5;10 20;1 0];b=[61;150;800];Aeq=[];beq=[];vlb=[0;0];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub) 问题二:c=[-11 -9];A=[6 5; 10 20;1 0];b=[60;150;8];Aeq=[];beq=[];vlb=[0;0];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub) 四、计算结果与问题分析讨论:计算结果:x =6.42864.2857fval =-102.8571问题一结果:x =6.71434.1429fval =-104.4286问题二结果:x =8.00002.4000fval =-109.6000问题结果分析:由于生产的甲、乙饮料箱数应为整数,故应生产甲饮料6.42百箱,乙饮料4.28百箱时,获利最大为102.72万元。
整数规划的数学模型及解的特点整数规划IP (integer programming):在许多规划问题中,如果要求一部分或全部决策变量必须取整数。
例如,所求的解是机器的台数、人数、车辆船只数等,这样的规划问题称为整数规划,简记IP 。
松弛问题(slack problem):不考虑整数条件,由余下的目标函数和约束条件构成的规划问题称为该整数规划问题的松弛问题。
若松弛问题是一个线性规化问题,则该整数规划为整数线性规划(integer linear programming)。
一、整数线性规划数学模型的一般形式∑==nj jj x c Z 1min)max(或中部分或全部取整数n j nj i jij x x x mj ni x b xa ts ,...,,...2,1,...,2,10),(.211==≥=≥≤∑=整数线性规划问题可以分为以下几种类型1、纯整数线性规划(pure integer linear programming):指全部决策变量都必须取整数值的整数线性规划。
有时,也称为全整数规划。
2、混合整数线性规划(mixed integer liner programming):指决策变量中有一部分必须取整数值,另一部分可以不取整数值的整数线性规划。
3、0—1型整数线性规划(zero —one integer liner programming):指决策变量只能取值0或1的整数线性规划。
1 解整数规划问题0—1型整数规划0—1型整数规划是整数规划中的特殊情形,它的变量仅可取值0或1,这时的⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≥+≤-+=且为整数0,5210453233max 2121212121x x x x x x x x x x z变量xi 称为0—1变量,或称为二进制变量。
0—1型整数规划中0—1变量作为逻辑变量(logical variable),常被用来表示系统是否处于某一特定状态,或者决策时是否取某个方案。
线性规划的数学模型引言线性规划(Linear Programming, LP)是数学规划的一种方法,用于解决一类特殊的优化问题。
线性规划的数学模型可以表示为一个线性的目标函数和一系列线性约束条件。
本文将介绍线性规划的数学模型及其应用。
数学模型线性规划的数学模型可以用以下形式表示:最大化:$$ \\max_{x_1,x_2,...,x_n} Z=c_1x_1+c_2x_2+...+c_nx_n $$约束条件:$$ \\begin{align*} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n&\\leq b_1 \\\\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n &\\leq b_2 \\\\ &\\vdots \\\\ a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n&\\leq b_m \\\\ x_1,x_2,...,x_n &\\geq 0 \\end{align*} $$其中,Z为目标函数的值,Z1,Z2,...,Z Z为目标函数的系数,Z1,Z2,...,Z Z为决策变量,Z ZZ为约束条件的系数,Z1,Z2,...,Z Z为约束条件的右侧常数。
线性规划的应用线性规划在实际问题中有广泛的应用,其应用领域包括但不限于以下几个方面:生产计划线性规划在生产计划中的应用是最为常见的。
通过建立适当的数学模型,可以最大化生产线的产能,同时满足客户需求和资源限制。
例如,一个工厂需要决定每个月生产的产品数量,以最大化利润。
这个问题可以通过线性规划来解决。
运输问题线性规划在运输问题中的应用也非常广泛。
运输问题涉及到将特定产品从供应地点运送到需求地点,以满足需求并尽量降低运输成本。
线性规划可以用来决定每个供应地点到每个需求地点的运输量,以最小化总运输成本。
资源分配在资源有限的情况下,线性规划可以用于优化资源的分配。
线性规划的数学模型线性规划是一种数学模型,被广泛应用于许多领域。
本文将介绍线性规划的数学模型的重要性和应用领域,并简要说明线性规划的定义和基本概念。
线性规划是一种优化问题的数学表述,其目的是在给定的约束条件下,找到使目标函数达到最大或最小的变量值。
线性规划的主要特点是目标函数和约束条件均为线性关系。
线性规划在工程、经济、物流、运输等领域都有广泛的应用。
它可以用来解决资源分配、生产计划、成本最小化、效益最大化等问题。
线性规划的数学模型可以通过建立目标函数和约束条件的数学表达式来表示。
这篇文档将深入探讨线性规划的数学模型,并介绍一些常见的线性规划应用案例。
通过了解线性规划的数学模型,读者可以更好地理解其背后的原理和应用。
希望本文能对读者在研究和实践中解决实际问题时提供帮助和指导。
本文将讨论如何构建线性规划模型,包括确定决策变量、目标函数和约束条件,以及如何将实际问题转化为数学模型。
决策变量在构建线性规划模型时,首先需要确定决策变量。
决策变量是用来表示决策问题中需要决定的未知量。
它们的取值将影响函数的输出结果。
在确定决策变量时,需要考虑问题的具体情况,并确保决策变量具有明确的定义和可行的取值范围。
目标函数确定决策变量后,下一步是确定目标函数。
目标函数是线性规划模型中需要最大化或最小化的函数。
它通常与问题的目标密切相关,并且能够量化问题的目标。
在确定目标函数时,需要考虑问题的特点和要求,确保目标函数能够准确地度量问题的目标。
约束条件除了目标函数,线性规划模型还包括一系列约束条件。
约束条件是对决策变量的限制和要求,用于限定决策变量的取值范围。
约束条件可以是等式或不等式,它们对问题的解产生了限制和约束。
在确定约束条件时,需要将问题的限制条件转化为数学形式,并确保约束条件与实际问题相符合。
实际问题转化为数学模型最后,将实际问题转化为数学模型是构建线性规划模型的关键步骤。
这需要理解问题的要求和限制,并将其转化为决策变量、目标函数和约束条件的数学表达式。
数学规划模型
数学规划模型是一种数学建模方法,它使用数学方法来解决决策问题。
数学规划模型可以用来优化资源的利用,最大化或最小化某个目标函数。
首先,数学规划模型需要明确目标函数和约束条件。
目标函数是我们希望优化的指标,约束条件则是限制我们优化的条件。
例如,如果我们要找到一种最佳的生产计划,那么目标函数可以是产量的最大化,约束条件可以是原料的限制、生产设备的限制等。
接下来,数学规划模型需要定义决策变量。
决策变量是我们可以调整的变量,通过调整决策变量的值,我们可以达到最优解。
例如,对于生产计划问题,决策变量可以是每种产品的生产数量。
然后,将目标函数和约束条件用数学公式表示出来。
例如,如果我们的目标是最大化产量,那么目标函数可以表示为一个关于决策变量的函数。
同时,约束条件也可以用一组不等式来表示。
接下来,我们需要使用数学方法来求解这个数学规划模型。
常用的数学方法包括线性规划、整数规划、非线性规划等。
具体的求解方法取决于模型的特点和目标函数的形式。
最后,我们需要把数学模型的结果解释给决策者,帮助他们做出更明智的决策。
这个过程通常包括分析和解释模型的结果,
以及提供关于如何操作和调整决策变量的建议。
总结来说,数学规划模型是一种解决决策问题的数学方法。
通过明确目标函数和约束条件,定义决策变量,使用数学方法求解,并将结果解释给决策者,我们可以通过数学规划模型得到最优的决策方案。
这种方法在供应链管理、生产计划、资源分配等领域有着广泛的应用。
优化问题中的数学规划模型优化问题中的数学规划模型1.优化问题及其一般模型优化问题是人们在工程技术、经济管理和科学研究等领域中最常遇到的问题之一。
例如:设计师要在满足强度要求等条件下选择材料的尺寸,使结构总重量最轻;公司经理要根据生产成本和市场需求确定产品价格,使所获利润最高;调度人员要在满足物质需求和装载条件下安排从各供应点到需求点的运量和路线,使运输总费用最低;投资者要选择一些股票、债券下注,使收益最大,而风险最小等等。
一般地,优化模型可以表述如下:minz?f(x)s.t.gi(x)?0,i=1,2,?,m (1.1)这是一个多元函数的条件极值问题,但是许多实际问题归结出的这种优化模型,其决策变量个数n和约束条件个数m一般较大,并且最优解往往在可行域的边界上取得,这样就不能简单地用微分法求解,数学规划就是解决这类问题的有效方法。
2.数学规划模型分类“数学规划是运筹学和管理科学中应用及其广泛的分支。
在许多情况下,应用数学规划取得的如此成功,以致它的用途已超出了运筹学的范畴,成为人们日常的规划工具。
”[H.P.Williams.数学规划模型的建立]。
数学规划包括线性规划、非线性规划、整数规划、几何规划、多目标规划等,用数学规划方法解决实际问题,就要将实际问题经过抽象、简化、假设,确定变量与参数,建立适当层次上的数学模型,并求解。
3.建立数学规划模型的步骤当你打算用数学建模的方法来处理一个优化问题的时候,首先要确定寻求的决策是什么,优化的目标是什么,决策受到那些条件的限制(如果有限制的话),然后用数学工具(变量、常数、函数等)表示它们,最后用合适的方法求解它们并对结果作出一些定性、定量的分析和必要的检验。
Step 1. 寻求决策,即回答什么?必须清楚,无歧义。
阅读完题目的第一步不是寻找答案或者解法,而是…… Step 2. 确定决策变量第一来源:Step 1的结果,用变量固定需要回答的决策第二来源:由决策导出的变量(具有派生结构)其它来源:辅助变量(联合完成更清楚的回答) Step 3. 确定优化目标用决策变量表示的利润、成本等。
数学建模常用模型及代码
一.规划模型
1.线性规划
线性规划与非线性规划问题一般都是求最大值和最小值,都是利用最小的有限资源来求最大利益等,一般都利用lingo工具进行求解。
点击进入传送门
2.整数规划
求解方式类似于线性规划,但是其决策变量x1,x2等限定都是整数的最优化问题。
传送门
3. 0-1规划
决策变量只能为0或者为1的一类特殊的整数规划。
n个人指派n项工作的问题。
传送门
4.非线性规划
目标函数或者存在约束条件函数是决策变量的非线性函数的最优化问题。
传送门
5.多目标规划
研究多于一个的目标函数在给定区域上的最优化。
把求一个单目标,在此单目标最优的情况下将其作为约束条件再求另外一个目标。
传送门
6.动态规划
运筹学的一个分支。
求解决策过程最优化的过程。
传送门
二. 层次分析法
是一种将定性和定量相结合的,系统化的,层次化的分析方法,主要有机理分析法和统计分析法。
传送门
三.主成分分析
指标之间的相关性比较高,不利于建立指标遵循的独立性原则,指标之间应该互相独立,彼此之间不存在联系。
传送门。