数学规划方法建模(2)
- 格式:ppt
- 大小:1.97 MB
- 文档页数:54
中国人口增长预测数学建模引言中国作为世界上人口最多的国家之一,人口增长一直是一个备受关注的问题。
人口数量的增长对于国家的经济、社会、环境等方面都有着重要的影响。
因此,预测中国人口的增长趋势对于未来的发展规划具有重要意义。
本文将介绍一种基于数学建模的方法,用于预测中国人口的增长情况。
方法数据收集为了进行人口增长预测的数学建模,我们需要收集一系列历史人口数据。
这些数据可以从各种统计年鉴、人口普查、政府发布的数据等渠道获取。
通常,我们需要收集的数据包括中国的总人口数量、出生率、死亡率、迁入率和迁出率等。
建立数学模型基于收集到的数据,我们可以建立一个数学模型来描述中国人口的增长情况。
常用的数学模型包括指数增长模型、Logistic增长模型等。
在本文中,我们以Logistic增长模型为例。
Logistic增长模型基于以下假设: 1. 人口增长率与当前人口数量成正比; 2. 当人口数量接近一定的上限时,人口增长率会逐渐减小。
Logistic增长模型的公式可以表示为:dP/dt = r*P*(1-P/K)其中,P表示人口数量,t表示时间,r表示人口增长率,K表示人口的上限。
参数估计为了应用Logistic增长模型进行人口预测,我们需要估计模型中的参数。
参数估计可以通过拟合历史数据来完成。
常用的参数估计方法包括最小二乘法、最大似然估计等。
模型验证一旦完成参数估计,我们可以使用模型预测未来的人口变化情况。
为了验证模型的准确性,我们可以将预测结果与实际观测数据进行比较。
如果预测结果与实际观测数据较为接近,说明模型具有较好的预测能力。
预测未来人口增长利用建立的数学模型和参数估计,我们可以进行未来人口增长的预测。
通过不同的假设和参数值,我们可以探讨不同因素对人口增长的影响。
例如,我们可以考虑不同的出生率和死亡率情况下的人口增长,或者研究不同人口政策下的人口增长趋势。
结论本文介绍了一种基于数学建模的方法,用于预测中国人口的增长情况。
数学建模线性规划与整数规划数学建模是一门将实际问题转化为数学问题,并利用数学方法解决的学科。
线性规划和整数规划是数学建模中常用的两种模型,它们在实际问题中有着广泛的应用。
本文将重点介绍线性规划和整数规划的概念、模型形式以及求解方法。
一、线性规划(Linear Programming)线性规划是一种在约束条件下求解线性目标函数最优解的数学模型,它的基本形式可以表示为:Min(或Max):C₁X₁ + C₂X₂ + ... + CₙXₙSubject to:A₁₁X₁ + A₁₂X₂ + ... + A₁ₙXₙ ≤ b₁A₂₁X₁ + A₂₂X₂ + ... + A₂ₙXₙ ≤ b₂...Aₙ₁X₁ + Aₙ₂X₂ + ... + AₙₙXₙ ≤ bₙX₁, X₂, ... , Xₙ ≥ 0在上述模型中,C₁,C₂,...,Cₙ为目标函数的系数,Aᵢₙ为不等式约束条件的系数,bᵢ为不等式约束条件的右端常数,X₁,X₂,...,Xₙ为决策变量。
线性规划的求解可以通过单纯形法或内点法等算法实现。
通过逐步优化决策变量的取值,可以得到满足约束条件并使目标函数达到最优的解。
二、整数规划(Integer Programming)整数规划是在线性规划基础上增加了决策变量必须取整的要求,其模型形式为:Min(或Max):C₁X₁ + C₂X₂ + ... + CₙXₙSubject to:A₁₁X₁ + A₁₂X₂ + ... + A₁ₙXₙ ≤ b₁A₂₁X₁ + A₂₂X₂ + ... + A₂ₙXₙ ≤ b₂...Aₙ₁X₁ + Aₙ₂X₂ + ... + AₙₙXₙ ≤ bₙX₁, X₂, ... , Xₙ ≥ 0X₁,X₂,...,Xₙ为整数整数规划在实际问题中常用于需要求解离散决策问题的情况,如装配线平衡、旅行商问题等。
然而,由于整数规划问题的整数约束,其求解难度大大增加。
求解整数规划问题的方法主要有分支定界法、割平面法、遗传算法等。
第一章 线性规划§1 线性规划在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。
此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。
自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。
特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。
1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。
生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。
若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足(目标函数)2134max x x z += (1)s.t.(约束条件)⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,781022122121x x x x x x x (2)这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。
由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。
总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。
在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。
而选适当的决策变量,是我们建立有效模型的关键之一。
1.2 线性规划的Matlab 标准形式线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。
数学建模方法总结通过学习数学建模训练,对我的收益不逊于以前所学的文化知识,使我终生难忘。
而且,我觉得数学建模活动本身就是教学方法改革的一种探索,它打破常规的那种老师台上讲,学生听,一味钻研课本的传统模式,而采取提出问题,课堂讨论,带着问题去学习、不固定于基本教材,不拘泥于某种方法,激发学生的多种思维,增强其学习主动性,培养学生独立思考,积极思维的特性,这样有利于学生根据自己的特点把握所学知识,形成自己的学习机制,逐步培养很强的自学能力和分析、解决新问题的能力。
这对于我们以后所从事的教育工作也是一个很好的启发。
总之,“一份耕耘,一份收获”。
作为一名对数学有着浓厚兴趣的学生,我深刻地感到了自己在程序的编制和软件应用以及自学能力,有了很大的提高,并将对我今后的专业学习有很大的帮助。
想到这里,我不由得被老师的良苦用心所感动,为我们创造了如此优越的学习条件,处处为学子着想。
因此,在今后的学习中,我会保持这种学习的劲头,刻苦努力,争取以更优异的成绩。
随着科学技术的飞速发展,人们越来越认识到数学科学的重要性:数学的思考方式具有根本的重要性,数学为组织和构造知识提供了方法,将它用于技术时能使科学家和工程师生产出系统的、能复制的、且可以传播的知识?数学科学对于经济竞争是必不可少的,数学科学是一种关键性的、普遍的、可实行的技术.在当今高科技与计算机技术日新月异且日益普及的社会里,高新技术的发展离不开数学的支持,没有良好的数学素养已无法实现工程技术的创新与突破。
因此,如何在数学教育的过程中培养人们的数学素养,让人们学会用数学的知识与方法去处理实际问题,值得数学工作者的思考。
大学生数学建模活动及全国大学生数学建模竞赛正是在这种形势下开展并发展起来的,其目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,拓宽学生的知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和教学方法的改革.这项极富意义的活动,大学组队参加了全国大学生数学建模竞赛。
数学规划模型
数学规划模型是一种数学建模方法,它使用数学方法来解决决策问题。
数学规划模型可以用来优化资源的利用,最大化或最小化某个目标函数。
首先,数学规划模型需要明确目标函数和约束条件。
目标函数是我们希望优化的指标,约束条件则是限制我们优化的条件。
例如,如果我们要找到一种最佳的生产计划,那么目标函数可以是产量的最大化,约束条件可以是原料的限制、生产设备的限制等。
接下来,数学规划模型需要定义决策变量。
决策变量是我们可以调整的变量,通过调整决策变量的值,我们可以达到最优解。
例如,对于生产计划问题,决策变量可以是每种产品的生产数量。
然后,将目标函数和约束条件用数学公式表示出来。
例如,如果我们的目标是最大化产量,那么目标函数可以表示为一个关于决策变量的函数。
同时,约束条件也可以用一组不等式来表示。
接下来,我们需要使用数学方法来求解这个数学规划模型。
常用的数学方法包括线性规划、整数规划、非线性规划等。
具体的求解方法取决于模型的特点和目标函数的形式。
最后,我们需要把数学模型的结果解释给决策者,帮助他们做出更明智的决策。
这个过程通常包括分析和解释模型的结果,
以及提供关于如何操作和调整决策变量的建议。
总结来说,数学规划模型是一种解决决策问题的数学方法。
通过明确目标函数和约束条件,定义决策变量,使用数学方法求解,并将结果解释给决策者,我们可以通过数学规划模型得到最优的决策方案。
这种方法在供应链管理、生产计划、资源分配等领域有着广泛的应用。
数模第二阶段培训(数学规划)例1 油品混合问题一种汽油的特性可用两个指标来描述,其点火性用“辛烷比率”来描述,其挥发性用“蒸汽压”来描述。
某石油炼制厂生产两种汽油,这两种汽油的特性及产量如表1所示表1 某厂炼制的汽油特性辛烷比率蒸汽压(10-2克/cm2)可供数量(万公升)第一种汽油104 4 3第二种汽油94 9 7用这两种汽油可以合成航空汽油与车用汽油两种最终产品,其性能如表2所示表2 航空汽油与车用汽油性能要求辛烷最小比率最大蒸汽压(10-2克/cm2)最大需要量(万公升)售价(万元/万公升)航空汽油102 5 2 1.2车用汽油96 8 不限0.7 根据油品混合工艺知道,当两种汽油混合时,其产品汽油的蒸汽压及辛烷比率与其组成成分的体积及相应指标成正比。
问该厂应如何混合油品才能获得最大收益?例2企业季度生产计划问题某厂甲、乙两种产品,第一季度的最大需求量及单位产品利润和每月的库存成本如表1所示。
表1 产品需求量、利润及库存成本需求量利润(未计库存成本)(元/单位产品)每月库存成本(元/单位产品)一月二月三月甲产品250 540 700 3.0 0.2 乙产品180 150 700 4.5 0.3 生产这两种产品都必须经过由两道工序,分别使用A、B两类机器。
A类机器有4台,B类机器有5台,每台机器每月运转180工时。
生产单位甲产品需机器A0.9工时,机器B1.0工时;生产单位乙产品需机器A0.5工时,机器B0.75工时。
该厂仓库容量为100平方米,存贮每单位甲产品需占面积0.75平方米,每单位乙产品需占面积1.2平方米。
该季度开始时无库存量,计划在本季度结束时甲、乙两种产品各库存40单位。
分别求解以下两个问题:(1)假定一月和二月A、B两类机器各有一台检修,三月份有一台A类机器和两台B 类机器检修,A类机器检修需100工时,B类机器检修需150工时。
该厂应如何安排生产计划,才能使本季度获利最大?(2)规定A、B类机器在本季度内需检修的总台数同(1),确定合理的检修计划,使该厂在本季度获利最大?例3投资问题某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券及其信用等级、到期年限、收益如附表所示。
商业公司订货问题摘要本文根据商业公司订货流程以及附表中的数据,建立了整数非线性规划模型来制定商业公司的订货方案,并对模型进行了灵敏度分析,依据分析结果对模型进行了评价。
问题一是以允许缺货为背景,考虑以最小订货花费组织订货,属于物资配置优化问题,建立了整数非线性规划模型,模型建立大致分为两个步骤:1.确定目标函数。
该模型的目标函数是订货总花费,包括:固定订货费、购买成本费、从工厂到仓库和从仓库到分厂的运输费、仓库存储费以及缺货损失费。
2.确定约束条件。
考虑了订货资金约束、仓库容量约束、工厂产量约束、需求量约束这四个约束条件。
对于模型的求解,首先用经济学中经典的EOQ公式求出了订货次数N=12,再通过lingo软件编程得出了最优的订货量以及运输方案,此时的总花费最少,为11512030元。
分别取了几组数据检验,证明利用EOQ公式求解出订货次数,然后求此模型的解的方法简单准确。
问题二是在问题一的基础上增加A1工厂有优惠活动的条件,与问题一属于同类性质的问题,于是对问题一的模型进行了修改,目标函数变为问题一中的费用减去因A1工厂实行优惠活动减少的物资订购成本,同样建立整数非线性规划模型,通过问题一的方法求解得到订货周期为N=12,最少花费为11501050元。
问题三中,假定工厂在订货后安排生产,公司在库存为零后立即安排订货,其他条件与问题二相同。
此模型仍是一个非线性规划模型,目标函数为订货费、成本费、运输费、仓储费之和。
求解以上模型,得出在订货次数为15次时,总花费S的值为11354830元。
经过对比,匀速供货不允许缺货模型为本文中花费最少的。
论文在最后给出了模型的评价。
由实际经验知,不同体积的物资的运输费用一般不相同,对各阶段运输费用进行合理的改进。
本文的特色是采用了经济学中的EOQ公式对模型进行求解,减少非线性变量的个数,大大地简化了求解过程,增快了求解速度。
匀速供货不允许缺货模型减少了物资的仓储费用,是低库存控制策略的目标。