“二定”:包含两类求最值问题,一是已知n个正数的和为定值(即 a1+a2+…+an为定值),求其积a1a2…an的最大值;二是已知乘积 a1a2…an为定值,求其和a1+a2+…+an的最小值.
“三相等”:取等号的条件是a1=a2=a3=…=an,不能只是其中一部 分相等.
不等式a2+b2≥2ab与a3+b3+c3≥3abc的运用条件不一样,前者要 求a,b∈R,后者要求a,b,c∈R+.要注意区别.
题型一 题型二 题型三 题型四
M 目标导航 UBIAODAOHANG
Z重难聚 H焦ONGNAN JVJIAO
D典例透析 IANLI TOUXI
【变式训练 2】
已知
0<a<1,求证:
1 ������
+
14-������≥9.
证明:
1 ������
+
4 1-������
=
1 ������
+
2 1-������
反思三个正数的算术-几何平均不等式定理,是根据不等式的意 义、性质和比较法证出的,因此,凡是可以利用该定理证明的不等 式,一般都可以直接应用比较法证明,只是在具备条件时,直接应用 该定理会更简便.若不直接具备“一正二定三相等”的条件,要注意 经过适当的恒等变形后再使用定理证明.
连续多次使用算术-几何平均不等式定理时要注意前后等号成 立的条件是否保持一致.
Z重难聚 H焦ONGNAN JVJIAO
D典例透析 IANLI TOUXI
题型一 题型二 题型三 题型四
题型三 应用三个正数的算术-几何平均不等式解决实际问题
【例3】 如图,在一张半径是2 m的圆桌的正中央上空挂一盏电