杂散电流的排流_2019
- 格式:pdf
- 大小:69.07 KB
- 文档页数:2
目次1概述 (3)2设计原则 (3)3设计遵循的标准规范 (3)4设计基本参数 (4)5保护对象和保护方法 (4)6排流方案设计内容 (4)7施工技术要求 (8)8排流保护准则 (8)9系统的管理和维护 (8)10卫生、安全和环境 (9)11材料表 (10)1.概述铁路与埋地管道交叉或平行时,会对埋地管道形成电磁干扰,从而使管道电位升高或降低,导致管道腐蚀加剧。
所以,在铁路和管道交叉或平行时,必须对管道进行固态去耦合器排流处理,以消除或降低铁路对管道的干扰。
铁路干扰的相关参数: (1)、铁路为单回路供电,供电电压一般为27.5kV;(2)、铁路对管道主要产生交流干扰,但也有相当大的直流分量;(3)、干扰电压呈波动状态,最高可达到100V;(4)、交叉多处,交叉斜角为70--90度;(5)、设计排流防雷系统寿命为25年。
2.设计原则2.1 严格遵守埋地钢质管道排流有关的设计规范、技术标准和技术规定;2.2 采用成熟技术、材料,做到安全可靠、经济合理;3.设计遵循的标准规范3.1 《埋地钢质管道强制电流阴极保护设计规范》(SY/T0036-2000)3.2 《钢制管道及储罐腐蚀控制工程设计规范》(SY0007-1999)3.3 《长输管道阴极保护施工及验收规范》(SY/J4006-90)3.4 《埋地钢质管道阴极保护参数测量方法》(GB/T 21246-2007)3.5 《钢质管道外腐蚀控制规范》(GB/T 21447-2008)3.6 《埋地钢质管道阴极保护技术规范》(GB/T 21448-2008)3.7 《埋地钢质管道直流排流保护技术标准》(SY/T 0017-2006)3.8 《埋地钢质管道交流干扰防护技术标准》(GB/T 50698—2011)3.9 《减轻交流电和雷电对金属构筑物和腐蚀控制系统影响的措施》(NACE SP0177-2007)3.10 《阴极保护管道的电绝缘标准》(SY/T 0086-2003)3.11 《埋地钢质管道交流排流保护技术标准》(中华人民共和国石油天然气行业标准SY/T0032-2000)3.12 《埋地钢质管道牺牲阳极阴极保护设计规范》(中华人民共和国石油天然气行业标准SY/T 0019-97)。
直流杂散电流的排流方法根据排流回路中电连接的电路方式不同,直流杂散电流的排流方法可分为直流排流、极性排流、强制排流和接地排流四种。
(1)直接排流法对于直流电气铁路附近的管道而言,用电缆将管道与电气化铁路的铁轨或负回归线实现电连接,这是一种常用的、有效的排流法。
直接排流法适合管道上存在着稳定不变的阳极区的情况。
在直接连接的电缆中可串联可调电阻、控制开关及断路系统,据此可控制排流量的大小及管道的相对电位,以防止排流量过大造成管道防腐层发生老化和剥离。
(2)极性排流法极性排流法是目前广泛应用的排流方式之一,它具有单向导电性,只允许杂散电流从管道排出,而不允许杂散电流进入管道,能防止逆流。
这种方法结构简单,比较安全,效率高。
(3)强制排流法当埋地管道位于杂散电流干扰极性交变区,用于直接排流和极性排流都无法将杂散电流排出,这时可选用强制电流法。
强制电流法的原理类似于阴极保护技术。
它在管道与铁轨(或接地阳极)之间安装一个整流器,可起到电位控制器的作用。
在外部存在电位差的条件下强制进行排流,其功能兼具排流和阴极保护的双重作用,比较经济、有效,所以应用比较广泛。
(4)接地排流电缆并不连接到铁轨上,而是连接到一个埋地辅助阳极上。
将杂散电流从管道排除到阳极上,经过土壤再返回铁轨。
接地排流地床的接地电阻应尽可能地小,以提高排流效果。
采用牺牲阳极时也需要使用填包料。
对于同一埋地结构物,应根据实际环境情况和工况,根据排流需要,采用一种或几种排流方法,选择一点或多点进行排流处理。
在电气化铁路邻近的埋地结构物上,采用排流法应注意它自身可能产生的干扰性。
即它在工作过程中可能对铁路控制系统的传输信号造成干扰,从而对铁路运行安全造成威胁。
交直流杂散电流综合干扰时的排流措施技术说明书河南汇龙合金材料有限公司2019年正版考虑到排流地床接地体既要保证将杂散电流排走,又要保证阴极保护电流不被排走,当管道所受的直流干扰为正电流干扰的情况下,通常接地体一般选择牺牲阳极接地体如镁阳极或者锌接地体,牺牲阳极既可以作为接地将杂散电流排入地下,还可以提供足够的阴极保护电流来抵消直流杂散电流的干扰;当管道所受的直流干扰为负电流干扰的情况下,接地体一般可选择铜接地体,因为锌接地体等牺牲阳极自身开路电位较高,加上钳位式排流器0.5V的电压差,无法将多余电流排走。
该工程正是受直流杂散电流负干扰较为严重的情况,不能选择牺牲阳极作为接地体或者牺牲阳极阴极保护系统,容易产生过保护。
高压输电线路与地下金属管道平行分布且相互距离较近时,由于磁性耦合的作用,管道上会产生交流电压,在测量上表现为管地交流电位,即由输电线路引起的交流干扰。
新大管道沿线高压输电线路较多,有些管段与高压线近距离平行,易受交流干扰。
为此,对管道交流电位进行了24 h连续测试,实测结果表明,新大管道存在强直流和弱交流干扰,需要采取排流保护措施。
管道上施加的强制电流阴极保护对直流干扰有明显的抑制作用。
与轻轨平行的新大管道管段应采用排流保护,以降低杂散电流对该管段的干扰;在管道两端利用阴极保护对杂散电流的抑制作用来降低对管道的干扰,并使该管段得到有效的阴极保护,具体设计方案如下。
(1) 在管道末端增设1座阴极保护站,以减轻轻轨穿越点处至七厂段管道直流的干扰,解决该管段的阴极保护电位不足的问题。
(2) 在管道与轻轨平行段预设6〜8处排流设施,既可消除该管段的直流干扰,又可同时减弱其交流干扰。
(3) 排流装置采用接地式排流方式,该方式位置选择灵活,对其它设施干扰小。
对于轻轨铁路引起的干扰,由于管道电位波动较大,且存在正负交变现象,为防止杂散电流倒流人管道,排流器需增设防逆流装置,即极性排流器。
排流接地极材料选用镁合金阳极,不仅可以提高排流驱动电压,而且还可为管道提供阴极保护。
管道杂散电流的检测及处理2019-09-09【摘 要】本⽂通过对江西天然⽓管⽹昌北区块⽯埠联合站—西⼭联合站之间天然⽓管道的研究,证明了区块内管道杂散电流的存在,并且杂散电流使⾦属管道阴极保护系统的保护效果明显减弱。
通过计算,本⽂在两站之间合适区域增设了⼀座阴极保护站并调整了起始电压,实现了两站之间的管道全部受到保护,从⽽减缓了杂散电流对管道的腐蚀危害。
【关键词】杂散电流检测;站间增设;阴极保护站1.杂散电流的定义杂散电流,是指在规定的电路或意图电路之外流动的电流。
杂散电流会加速⾦属的腐蚀,对于阴极保护系统效果具有抑制作⽤,必须加以检测和排除。
2.杂散电流的检测由于管线是全线连通的,杂散电流⼜是⽆规律地⼤幅度变化,因此对管线上的杂散电流进⾏直接检测是很困难的。
针对杂散电流的⽆规律、快变化的特性,我们采⽤SCM-200a杂散电流测量仪对其进⾏检测。
2.1测量⽅法SCM-200a杂散电流测量仪的检测原理是当有电流流过时,管线上就有电压降,通过测量管线上的电压降,就可以获得杂散电流的⼤⼩。
该仪器可对模拟电位信号进⾏处理,将数值绘制成杂散电流变化曲线,为掌握杂散电流分布情况及采取相应的防护措施提供可靠的测量⼿段和依据。
我们选取从西⼭联—⽯埠联之间全长10.2km的管道作为被测管段。
该段管道已经采⽤了阴极保护对管道防护,从西⼭联作为测试的起始点,到⽯埠联为终点,全线有26个测试桩位。
2.2数据的处理由于杂散电流的⼲扰,管地电位不断发⽣变化,因此可以将管地电位看作⼀随机变量,可以应⽤数理统计的⽅法分析这个随机变量。
⾸先,将管地电位按照⼀定的步长,分析在每个电位值(取步长中间值)上的频率分布,取概率分布最⼤值从Vave作为管地电位的平均值。
在频率分布曲线的两端分别去除≤2.5%(电位点数)作为测试的散点值,在剩余曲线的两端的值作为管地电位出现的最⼤值和最⼩值。
做距离与Vmax.、Vave,、Vmin的曲线,从曲线上可以分析管线沿线的杂散电流⼲扰的阴极区和阳极区,从⽽为下⼀步的排流⽅案的制定提供可靠的数理依据。
河南汇龙合金材料有限公司刘珍为大家讲解杂散电流的排流措施杂散电流的排流措施可分为直接排流法、极性排流法、强制排流法和接地排流法四种。
河南汇龙合金材料有限公司刘珍为大家讲解①直接排流法。
这种方法不需要排流设备,简单,造价低,排流效果好。
但当管道的对地电位(以下简称管地电位)低于行走轨对地电位(以下简称轨地电位)时,行走轨电流将流入管道内而产生逆流。
因此这种排流方法只适合管地电位永远高于轨地电位、不会产生逆流的场所,而这种情况不多,限制了该方法的应用。
②极性排流法。
由于电负荷的变动和变电所负荷分配的变化等,管地电位低于轨地电位而产生逆流的现象比较普遍。
为防止逆流,使杂散电流只能由管道流入行走轨,必须在排流线路中设置单向导通的二极管整流器、逆电压继电器等装置,这种装置称为排流器,这种防止逆流的排流法称为极性排流法。
极性排流法装置安装方便,应用广泛。
③强制排流法。
就是在石油、天然气管道和行走轨的电气接线中加入直流电流,促进排流的方法。
在管地电位正负极性交变,电位差小,且环境腐蚀性较强时,可以采用此方法。
通过强制排流器将管道和行走轨连通,杂散电流通过强河南汇龙合金材料有限公司刘珍为大家讲解制排流器的整流环排放到行走轨上,当无杂散电流时,强制排流器给管道提供一个阴极保护电流,使管道处于阴极保护状态。
强制排流法防护范围大,铁路停运时可对油气管道提供阴极保护,但对行走轨的电位分布有影响,需要外加电源。
④接地排流法。
管道上的排流电缆并不是直接连接到行走轨上,而是连接到一个埋地辅助阳极上,将杂散电流从管道上排出至辅助阳极上,经过土壤再返回到行走轨上。
接地排流法使用方便,但效果不显著,需要辅助阳极,还要定期更换辅助阳极。
河南汇龙合金材料有限公司刘珍为大家讲解。
轨道杂散电流排流轨道杂散电流排流在针对轨道的杂散电流强制排流时,特别是防腐层质量很差的旧管网实施阴极保护时,尽量保持十分低的所需的输出电压,也能发生最大100A的电流。
该电流量取决于轨道与管子之间的电压,也取决于该回路的电阻。
当在接到上铺设轨道时,钢轨是嵌埋在地里的,这是的电压大多数为5~10V。
因此,该装置的直流电源较正常的辅助阳极站小得多。
轨道杂散电流排流在针对轨道的杂散电流强制排流时,特别是防腐层质量很差的旧管网实施阴极保护时,尽量保持十分低的所需的输出电压,也能发生最大100A的电流。
该电流量取决于轨道与管子之间的电压,也取决于该回路的电阻。
当在接到上铺设轨道时,钢轨是嵌埋在地里的,这是的电压大多数为5~10V。
因此,该装置的直流电源较正常的辅助阳极站小得多。
轨道杂散电流排流在针对轨道的杂散电流强制排流时,特别是防腐层质量很差的旧管网实施阴极保护时,尽量保持十分低的所需的输出电压,也能发生最大100A的电流。
该电流量取决于轨道与管子之间的电压,也取决于该回路的电阻。
当在接到上铺设轨道时,钢轨是嵌埋在地里的,这是的电压大多数为5~10V。
因此,该装置的直流电源较正常的辅助阳极站小得多。
轨道杂散电流排流在针对轨道的杂散电流强制排流时,特别是防腐层质量很差的旧管网实施阴极保护时,尽量保持十分低的所需的输出电压,也能发生最大100A的电流。
该电流量取决于轨道与管子之间的电压,也取决于该回路的电阻。
当在接到上铺设轨道时,钢轨是嵌埋在地里的,这是的电压大多数为5~10V。
因此,该装置的直流电源较正常的辅助阳极站小得多。
轨道杂散电流排流在针对轨道的杂散电流强制排流时,特别是防腐层质量很差的旧管网实施阴极保护时,尽量保持十分低的所需的输出电压,也能发生最大100A的电流。
该电流量取决于轨道与管子之间的电压,也取决于该回路的电阻。
当在接到上铺设轨道时,钢轨是嵌埋在地里的,这是的电压大多数为5~10V。
因此,该装置的直流电源较正常的辅助阳极站小得多。
杂散电流排流防护高铁、地铁、高压线塔等电气化设施,会对沿线并行、交越处的埋地钢质管道造成杂散电流干扰。
杂散电流会加速管道的外防腐层破损点处的金属腐蚀,在短时间内形成点蚀穿孔。
杂散电流干扰分为交流干扰和直流干扰两类,交流干扰的主要来源包括交流电气化铁路和交流高压输电线路等,直流干扰的主要来源则包括地铁和直流高压输电线路等。
根据GB/T19285-2014《埋地钢质管道腐蚀防护工程检验》的规定,杂散电流的检测方法,包括对管地交直流电位进行30分钟或24小时持续采集,对土壤表面电位梯度进行采样分析,以及对电流密度进行测试等。
常用的检测设备包括智能数据记录仪、SCM检测仪等。
根据对管地电位、土壤环境、轨道电压等数据的采集结果,确定排流点、排流驱动电压、排流量等核心数据,据此来设计排流系统的分布位置、施工工艺和技术规格。
根据铁建设[2007]39号《铁路防雷、电磁兼容及接地工程技术规定》、TBT 2832-1997《交流电气化铁道对油(气)管道(含油库)的影响容许值及防护措施》、GB/T28026.2-2011《轨道交通地面装置第2部分:直流牵引系统杂散电流防护措施》等标准规范的要求,铁路系统的建设单位应当对沿线既有的金属管道进行调查,并采取电磁防护措施。
我公司目前积极与中铁总公司开展电磁防护项目的合作。
我公司可协助进行现场环境调查和数据采样,协助管道产权单位与铁路建设单位之间沟通技术细节,制定防护方案并主持施工,以及验收时的再评价等工作。
已竣工的部分排流项目简介哈齐客专沿线管道排流项目2015年8月于哈尔滨市,我公司承接了中铁二十二局的哈齐铁路沿线管道排流防护工程,共安装了6处排流地床。
竣工后的排流效果非常理想。
牡绥客专电磁防护项目2015年12月于牡丹江市,我公司承接了哈牡铁路客专公司的排流防护工程,共为沿线管道安装9处排流地床。
竣工验收结果达到了设计要求。
山东省天然气管道公司胶日线排流项目2015年9月,我公司为山东省天然气管道公司所属的胶日线安装了9处排流地床,解决了胶日线胶南与日照段的交流干扰问题。
关于杂散电流对燃气管道的干扰腐蚀调查与防护技术的探讨摘要:燃气管道在运行过程中,会受到杂散电流的破坏和腐蚀,对于燃气管道有很大的破坏力,因此,对通过对杂散电流干扰腐蚀的调查和防护技术的调查,针对燃气管道城镇燃气管道受杂散电流干扰影响的现状,提出关于杂散电流对燃气管道的干扰腐蚀调查与防护技术的探讨。
关键词:燃气工程;杂散电流;排流方式;干扰腐蚀调查;防护技术引言:随着我国经济建设速度的加快,燃气管道和交通路线同时运行和施工的现象日益增加。
近年来,我国电气化轨道的投入建设力度在不断加大,然而,这同时以为着很多城镇区域的地下燃气管道结构越来越复杂,地下燃气管道的结构越复杂,周围钢管管道出现腐蚀现象的情况越严重,尤其是遇到大面积的铁路建设时期,就会带来巨大面积的杂散电流,导致加快燃气管道的腐蚀速度。
地下杂散电流在人们社会生活和社会生产方面存在着巨大的安全隐患,给能源管线和交通线路建设的发展带来很多潜在的问题。
由于闲散电流对管道造成的严重腐蚀现象带来的困扰日益凸显,已经引起了当地管道公司的广泛关注[1]。
一、城镇天然气管道受杂散电流干扰影响现状某城市新区成立以后,城市区域内的通讯电缆、城区埋地水管、电车轨道等地下铺设工程数量日益增加。
随着该新区基础设施建筑的增多,铺设天然气管道的空间逐渐狭窄,线路和管道过多,内部管道和线路拥挤不堪,存在交错、平行的混乱状态。
除此之外,受到电气化铁路、工厂内部设备、市政设施等各种电力设备的干预,该新区的管道腐蚀的速度很快,发生了燃气管道穿孔泄漏等一系列困扰,带来了大量的不安定因素。
根据2019年该区的维护抢修可以发现,在抢修的250处燃气管道的维修报告可以看出,在管道故障的维护抢修中,管道外部的被严重腐蚀,受损严重。
由表1中的数据可以看出,没有进行保护措施的管道和安装管道措施的管道相比腐蚀现象差距极大,通过数据我们可以看出:该城市新区的管道损坏次数较多,管道和其他管网纵横交错、相互扰乱,市中心和郊区铁路错综复杂,到处都有着各式各样的电力配置,电流干预情况严重,除了对近10年的管道进行了保护防护以外,其他年久失修的管道没有实施防护措施。
杂散电流在地铁的分布和自动排流分析作者:李建来源:《中国科技纵横》2016年第12期【摘要】随着城市地铁建设脚步的加快,城市地铁的线路长度、线路复杂性程度越来越高,就需要建设更多的变电所来承担高负荷运行,而变电所的增加也使得杂散电流出现的频率也越来越高,很多没有设置相应保护措施的地铁线路都在受到杂散电流的影响,导致地铁使用寿命减少。
本文主要对地铁中杂散电流的分布进行了分析,并对自动排流的实现进行了讨论,以期能够减少杂散电流对于地铁的影响,保证地铁运行安全。
【关键词】杂散电流地铁自动排流杂散电流是在直流供电情况下轨道上遗留下来的电流,这些电流会直接对轨道结构钢筋和电流造成腐蚀,直接影响地铁和轻轨的运行安全,甚至可能会带来严重的安全事故,因而如何有效对杂散电流进行控制,采取有效防护措施进行排流是地铁建设当中的重点。
1 杂散电流的形成与危害现在城市中的地铁交通主要是采用直流牵引供电系统,地铁列车在运行时电流从变电所正极出发,经过接触轨、列车、回流轨等通道流向变电所负极,从而形成一个完整的电流通道。
在理想状态下,从正极出发多少电流那么回到负极的电流也应该是多少,但在实际运行过程中,由于外界环境当中存在有很多非绝缘体,这就使得电流在流通过程中会被外界环境中的其他导体所吸引,且随着地铁列车运行时间的延长,钢轨和地面之间的电阻逐渐减少,这就使得电流在流通过程中有很多流到地面上,并且通过土壤中的一些金属物质传递到大地当中,然后通过地面上的一些金属管线和钢筋结构再回到变电所负极上,这些泄露到地面上的电流就被称为杂散电流。
这些杂散电流对于地铁运营带来的危害是非常明显的,在回到变电所过程中会对经过的钢筋结构、金属部件、车站、金属管线、行走轨等结构都造成电腐蚀作用,这种腐蚀作用日积月累给这些结构会带来很大的影响,导致钢筋断裂、钢轨变形、电缆起火等问题,严重影响地铁的使用寿命,而且还有可能会发生严重安全事故,直接对乘车人的生命安全带来影响。
杂散电流地铁机车在运营时,走行轨流过电流,一部分电流通过过渡电阻(走行轨与排流收集网及排流网与道床之间的电阻)泄露到大地,再从大地流回走行轨至牵引变负极。
这一部分电流称为“杂散电流”。
杂散电流流过金属时会产生电化学腐蚀,地铁运营的时间越长,走行轨与到床之间的绝缘扣件老化或者外表污垢增多,使走行轨与排流网之间的过渡电阻减小,杂散电流则增大,将会造成严重的腐蚀。
杂散电流在从走行轨流回金属体时,金属对地电位形成阴极区;从金属体流回变电所时,金属体对地电位形成阳极区。
在阳极区,杂散电流流出的地方将出现电解现象,正是这种现象造成金属导体被腐蚀。
地铁系统杂散电流的泄漏受轨道电位的影响很大,所以轨道电位的测量监测也是非常重要的。
轨道电位严格意义上表示以无限远大地为基准,而钢轨电位测量以无限远的大地是很难实现的,在测量中测量钢轨对埋地金属结构的电压来代表轨道电位。
轨道电位的瞬时变化很大,实际测量过程中除了测量瞬时轨道电位外,在测量计算金属对地电位平均值的时间内轨道电位的最大值是非常有意义的。
对于杂散电流的处理,我们主要使用“排”的方法,即使用排流柜收集杂散电流,排流柜主要由二极管、分流器、开关、电位监测装置等组成。
地铁杂散电流腐蚀监测参数主要包括极化电位、钢轨电压,其测量原理如下:正常情况下,没有杂散电流的扰动,测量的电位分布呈现一稳定值,此稳定U,当存在杂散电流扰动的情况下,测量电位出电位我们称之为自然本体电位现偏离自然本体电位0U 的情况,所测电位为1U ,其偏移值为U ∆。
一般情况下,我们将测量电压为正的称为正极性电压,测量电压为负称为负极性电压。
如下图所示:u()+u ()-u地铁六号线所用到排流柜由徐州中矿大传动与自动化有限公司提供,对杂散电流的监测装置系统如下图所示:监测装置1监测装置n 传感器1传感器n 传感器1传感器n 监测装置1监测装置n上位机系统··················远程诊断系统局域网对于电压的监测中,其中一个很重要的环节——传感器。
河南汇龙合金材料有限公司编制刘珍技术部
杂散电流的排流
杂散电流主要是指不按照规定途径移动的电流,它存在于土壤中,与需要保护的设备系统没有关联。
这种在土壤中的杂散电流会通过管道某个一部分进入管道,并在管道中移动一段距离后在从管道中离开回到土壤中,这些电流离开管道的地方就会发生腐蚀,也因此被称为杂散电流腐蚀。
杂散电流的输出点有很多包括有外加电流阴极保护系统。
杂散电流有动静态之分,随时间变化大小或方向的为动态杂散电流,不发生改变的为静态杂散电流。
在杂散电流进入管道的部分,管道为因及而得到保护,但是大的电流进入时,这部分管道就会发生过保护。
同时杂散电流离开管道的地方就会因为失去电子而腐蚀。
确定管道是否已经收到杂散电流的干扰,可以通过检测管道电位的变化与历史数据比较来判断。
牺牲阳极排流,在管地电位正向偏移的部位安装牺牲阳极,使杂散电流通过阳极而不是管道防腐层破损点排放,牺牲阳极接地电阻为土壤率P,单位为Ω.cm除以6000cm,不大于5.0Ω,最好小于1.0Ω。
在电流排放位置安装跨接线,杂散电流经过跨接线回到原来的管道,可以用适当长度的电炉丝进行跨接。
该方法简单高效,但因两条管道已经连接在一起。
故任何一条管道调整电源输出,另一条管道也要进行相应调整。
如果需要进行电源同步通断测量管道断电电位,则两条管道的电源也要同步通断。
河南汇龙合金材料有限公司编制刘珍技术部。