07-08(2)概率论与数理统计试卷(B)
- 格式:doc
- 大小:137.00 KB
- 文档页数:2
华中农业大学本科课程考试参考答案与评分标准考试课程:概率论与数理统计 学年学期: 试卷类型:B 考试日期:一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【 】内。
答案错选或未选者,该题不得分。
每小题2分,共10分。
)1. 设随机变量X 的概率密度)1(1)(2x x p +=π,则X Y 2=的分布密度为 . 【 b 】 (a))41(12x +π; (b) )4(22x +π; (c) )1(12x +π; (d) x arctan 1π.2. 设随机变量序列x 1, x 2,…, x n …相互独立,并且都服从参数为1/2的指数分布,则当n 充分大时,随机变量Y n =∑=ni i x n 11的概率分布近似服从 . 【 b 】(a) N(2,4) (b) N(2,4/n) (c) N(1/2,1/4n) (d) N(2n,4n) 3. 设总体X 服从正态分布),(N 2σμ,其中μ已知,2σ未知,321X ,X ,X 是总体X 的一个 简单随机样本,则下列表达式中不是统计量的是 . 【 C 】(a )321X X X ++; (b ))X ,X ,X min(321; (c )∑=σ31i 22i X ; (d )μ+2X .4.在假设检验问题中,检验水平α意义是 . 【 a 】 (a )原假设H 0成立,经检验被拒绝的概率; (b )原假设H 0成立,经检验不能拒绝的概率; (c )原假设H 0不成立,经检验被拒绝的概率; (d )原假设H 0不成立,经检验不能拒绝的概率.5.在线性回归分析中,以下命题中,错误的是 . 【 d 】(a )SSR 越大,SSE 越小; (b )SSE 越小,回归效果越好; (c )r 越大,回归效果越好; (d )r 越小,SSR 越大.二、填空题(将答案写在该题横线上。
答案错选或未选者,该题不得分。
每小题2分,共10分。
第一章 随机事件及其概率练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。
(B )(2)事件的发生与否取决于它所包含的全部样本点是否同时出现。
(B )(3)事件的对立与互不相容是等价的。
(B ) (4)若()0,P A = 则A =∅。
(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。
(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P{}1=3两个女孩。
(B )(8)若P(A)P(B)≤,则⊂A B 。
(B ) (9)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。
(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。
(A ) 2. 选择题(1)设A, B 两事件满足P(AB)=0,则©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A) A. P(A ∪B)=P(A) B. P(AB)=P(A) C. P(B|A)=P(B) D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D)A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。
1全国2018年7月高等教育自学考试概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设事件A 与B 互不相容,且P(A)>0,P(B)>0,则有( )A.P(A ⋃B)=P(A)+P(B)B.P(AB)=P(A)P(B)C.A=BD.P(A|B)=P(A)2.某人独立射击三次,其命中率为0.8,则三次中至多击中一次的概率为( )A.0.002B.0.008C.0.08D.0.1043.设事件{X=K}表示在n 次独立重复试验中恰好成功K 次,则称随机变量X 服从( )A.两点分布B.二项分布C.泊松分布D.均匀分布4.设随机变量X 的概率密度为f(x)=⎩⎨⎧<<-其它,02x 1),x 2x 4(K 2 则K=( ) A.165B.21C.43D.545.则F(1,1) =( )A.0.2B.0.3C.0.6D.0.76.设随机向量(X ,Y )的联合概率密度为f(x,y)=⎪⎩⎪⎨⎧<<<<--;,0,4y 2,2x 0),y x 6(81其它则P (X<1,Y<3)=( )2 A.83 B.84 C.85 D.87 7.设随机变量X 与Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E (XY )=( )A.1B.2C.3D.48.设X 1, X 2, …,X n ,…为独立同分布的随机变量序列,且都服从参数为21的指数分布,则当n 充分大时,随机变量Y n =∑=n 1i i Xn 1的概率分布近似服从( )A.N (2,4)B.N (2,n4) C.N (n 41,21) D.N (2n,4n )9.设X 1,X 2,…,X n (n ≥2)为来自正态总体N (0,1)的简单随机样本,X 为样本均值,S 2为样本方差,则有( ) A.)1,0(N ~X nB.nS 2~χ2(n)C.)1n (t ~S X )1n (--D.)1n ,1(F ~XX )1n (n 2i 2i21--∑= 10.若θ 为未知参数θ的估计量,且满足E (θ )=θ,则称θ 是θ的( )A.无偏估计量B.有偏估计量C.渐近无偏估计量D.一致估计量二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
概率论与数理统计B一.单项选择题(每小题3分,共15分) 1.设事件A 和B 的概率为12(),()23P A P B == 则()P AB 可能为()(A) 0; (B) 1; (C) 0.6; (D) 1/6 2. 从1、2、3、4、5 这五个数字中等可能地、有放回地接连抽取两个数字,则这两个数字不相同的概率为() (A)12; (B) 225; (C) 425; (D)以上都不对 3.投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( )(A)518; (B) 13; (C) 12; (D)以上都不对4.某一随机变量的分布函数为()3xxa be F x e +=+,(a=0,b=1)则F (0)的值为( )(A) 0.1; (B) 0.5; (C) 0.25; (D)以上都不对5.一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为( ) (A) 2.5; (B) 3.5; (C) 3.8; (D)以上都不对 二.填空题(每小题3分,共15分)1.设A 、B 是相互独立的随机事件,P (A )=0.5, P (B )=0.7, 则()P A B = .2.设随机变量~(,), ()3, () 1.2B n p E D ξξξ==,则n =______.3.随机变量ξ的期望为()5E ξ=,标准差为()2σξ=,则2()E ξ=_______.4.甲、乙两射手射击一个目标,他们射中目标的概率分别是0.7和0.8.先由甲射击,若甲未射中再由乙射击。
设两人的射击是相互独立的,则目标被射中的概率为_________. 5.设连续型随机变量ξ的概率分布密度为2()22af x x x =++,a 为常数,则P (ξ≥0)=_______. 三.(本题10分)将4个球随机地放在5个盒子里,求下列事件的概率 (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球.四.(本题10分) 设随机变量ξ的分布密度为, 03()10, x<0x>3Ax f x x⎧⎪=+⎨⎪⎩当≤≤当或 (1) 求常数A ; (2) 求P (ξ<1); (3) 求ξ的数学期望. 五.(本题10分) 设二维随机变量(ξ,η)的联合分布是(1) ξ与η是否相互独立? (2) 求ξη⋅的分布及()E ξη⋅;六.(本题10分)有10盒种子,其中1盒发芽率为90%,其他9盒为20%.随机选取其中1盒,从中取出1粒种子,该种子能发芽的概率为多少?若该种子能发芽,则它来自发芽率高的1盒的概率是多少?七.(本题12分) 某射手参加一种游戏,他有4次机会射击一个目标.每射击一次须付费10元. 若他射中目标,则得奖金100元,且游戏停止. 若4次都未射中目标,则游戏停止且他要付罚款100元. 若他每次击中目标的概率为0.3,求他在此游戏中的收益的期望.八.(本题12分)某工厂生产的零件废品率为5%,某人要采购一批零件,他希望以95%的概率保证其中有2000个合格品.问他至少应购买多少零件?(注:(1.28)0.90Φ=,(1.65)0.95Φ=) 九.(本题6分)设事件A 、B 、C 相互独立,试证明AB 与C 相互独立.某班有50名学生,其中17岁5人,18岁15人,19岁22人,20岁8人,则该班学生年龄的样本均值为________. 十.测量某冶炼炉内的温度,重复测量5次,数据如下(单位:℃):1820,1834,1831,1816,1824假定重复测量所得温度2~(,)N ξμσ.估计10σ=,求总体温度真值μ的0.95的置信区间. (注:(1.96)0.975Φ=,(1.65)0.95Φ=)概率论与数理统计B 答案一.1.(D )、2.(D )、3.(A )、4.(C )、5.(C ) 二.1.0.85、2. n =5、3. 2()E ξ=29、4. 0.94、5. 3/4三.把4个球随机放入5个盒子中共有54=625种等可能结果--------------3分 (1)A={4个球全在一个盒子里}共有5种等可能结果,故P (A )=5/625=1/125------------------------------------------------------5分(2) 5个盒子中选一个放两个球,再选两个各放一球有302415=C C 种方法----------------------------------------------------7分4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法 因此,B={恰有一个盒子有2个球}共有4×3=360种等可能结果.故12572625360)(==B P --------------------------------------------------10分 四.解:(1)⎰⎰∞∞-==+=34ln 1,4ln 1)(A A dx x A dx x f ---------------------3分 (2)⎰==+=<1212ln 1)1(A dx x A P ξ-------------------------------6分 (3)3300()()[ln(1)]1AxE xf x dx dx A x x x ξ∞-∞===-++⎰⎰13(3ln 4)1ln 4ln 4=-=-------------------------------------10分 五.解:(1)ξ的边缘分布为⎪⎪⎭⎫ ⎝⎛29.032.039.02 10--------------------------------2分 η的边缘分布为⎪⎪⎭⎫ ⎝⎛28.034.023.015.05 4 2 1---------------------------4分 因)1()0(05.0)1,0(==≠===ηξηξP P P ,故ξ与η不相互独立-------5分 (2)ξη⋅的分布列为因此,16.310.01011.0811.0509.0417.0203.0139.00)(=⨯+⨯+⨯+⨯+⨯+⨯+⨯=⋅ηξE-------10分另解:若ξ与η相互独立,则应有P(ξ=0,η=1)=P(ξ=0)P(η=1); P(ξ=0,η=2)=P(ξ=0)P(η=2); P(ξ=1,η=1)=P(ξ=1)P(η=1); P(ξ=1,η=2)=P(ξ=1)P(η=2);因此,)1()0()2,1()2,0()1,1()1,0(============ξξηξηξηξηξP P P P P P但10.012.003.005.0≠,故ξ与η不相互独立。
华中农业大学本科课程期末考试试卷B 卷答案考试课程:概率论与数理统计 学年学期: 考试日期:一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【 】内。
答案错选或未选者,该题不得分。
每小题2分,共10分。
) 1. 设A 和B 是任意两个概率不为0的互不相容事件,则下列结论中肯定正确的是 【(d)】.(a) A 与B 不相容; (b) A 与B 相容; (c) P(AB)=P(A)P(B); (d) P(AB)=P(A). 2. 设随机变量序列X 服从N(,16), Y 服从 N(,25),记p 1=P{X<-4},p 2=P{X>+5},则下列结论正确的是 【(a) 】 .(a)对任何实数,都有p 1= p 2; (b) 对任何实数,都有p 1< p 2; (c) 对个别实数,才有p 1= p 2; (d) 对任何实数,都有p 1> p 2.3. 设总体X 服从正态分布),(N 2σμ,其中μ未知,2σ已知,321X ,X ,X 是总体X 的 一个简单随机样本,则下列表达式中不是统计量的是 【(d )】 . (a )321X X X ++; (b ))X ,X ,X min(321; (c )∑=σ31i 22i X ; (d )μ+2X .4.在线性回归分析中,以下命题中,错误的是 【(d )】 .(a )SSR 越大,SSE 越小; (b )SSE 越小,回归效果越好; (c )r 越大,回归效果越好; (d )r 越小,SSR 越大.5.设随机变量X~F(n,m),欲使P{1<X<2}=1,则2的值可为 【(d )】 ;1的值可为【(a )】 .(a )),(2m n F α; (b )),(2n m F α; (c )12),(-α⎥⎦⎤⎢⎣⎡m n F ;(d )12),(-α⎥⎦⎤⎢⎣⎡n m F ;二、填空题(将答案写在该题横线上。
概率统计考试试卷B(答案)系(院):专业:年级及班级:姓名:学号: .密封线1、五个考签中有⼀个难签,甲、⼄、丙三个考⽣依次从中抽出⼀张考签,设他们抽到难签的概率分别为1p ,2p ,3p ,则( B ) (A)321p p p (B)1p =2p =3p (C)321p p p (D)不能排⼤⼩解:抽签概率均为51,与顺序⽆关。
故选(B )2、同时掷3枚均匀硬币,恰有两枚正⾯向上的概率为(D )(A)0.5 (B)0.25 (C)0.125 (D)0.375解:375.0832121223==??? ????? ??C ,故选(D )3 、设(),,021Φ=A A B P 则( B )成⽴(A)()01 B A P (B)()[]()()B A P B A P B A A P 2121+=+ (C)()02≠B A A P (D)()121=B A A P解:条件概率具有⼀般概率性质,当A 1A 2互斥时,和的条件概率等于条件概率之和。
故选(B )课程名称:《概率论与数理统计》试卷类别:考试形式:开卷考试时间:120 分钟适⽤层次:本科适⽤专业:阅卷须知:阅卷⽤红⾊墨⽔笔书写,⼩题得分写在相应⼩题题号前,⽤正分表⽰;⼤题得分登录在对应的分数框内;考试课程应集体阅卷,流⽔作业。
系(院):专业:年级及班级:姓名:学号: .密封线4、10张奖券中含有3张中奖的奖券,每⼈购买⼀张,则前3个的购买者中恰有1⼈中奖的概率为(D )(A)3.07.02321 解:310272313A A C C P ?==402189106733=,故选(D ) 5、每次试验成功的概率为p ,独⽴重复进⾏试验直到第n 次才取得()n r r ≤≤1次成功的概率为(B )。
(A)()rn rn p p C --1 (B)()rn rr n p p C ----111(C)()rn r p p --1 (D) ()rn r r n p pC -----1111解:rn r r n r n r r n qp C q p C p ---+-----=?1111111,故选(B )第n 次6、设随机变量X 的概率密度为)1(12x +π,则2X 的概率密度为(B ) (A))1(12x +π (B))4(22x +π (C))41(12x +π (D))x +π解:令()x g x y ==2 ()y h y x ==21 ()21='y h ()214112+=y y P Y π=()21442?+y π=()242y +π,故选(B )7、如果随机变量X 的可能值充满区间( A B ),⽽在此区间外等于零,则x sin 可能成为⼀随机变量的概率密度。
《概率论与数理统计(二)》复习题一、单项选择题1.设A,B 为随机事件,则事件“A ,B 至少有一个发生”可表示为 A.AB B.AB C.A BD.A B2.设随机变量2~(,)X N μσ,Φ()x 为标准正态分布函数,则{}P X x >= A.Φ(x ) B.1-Φ(x ) C.Φx μσ-⎛⎫⎪⎝⎭D.1-Φx μσ-⎛⎫ ⎪⎝⎭3.设二维随机变量221212(,)~(,,,,)X Y N μμσσρ,则X ~A.211(,)N μσB.221()N μσC.212(,)N μσD.222(,)N μσ4.设随机事件A 与B 互不相容,且()0P A >,()0P B >,则A. ()1()P A P B =-B. ()()()P AB P A P B =C. ()1P A B =D. ()1P AB =5.设随机变量~(,)X B n p ,且()E X =2.4,()D X =1.44,则A. n =4, p =0.6B. n =6, p =0.4C. n =8, p =0.3D. n =24, p =0.16.设随机变量2~(,)X N μσ,Y 服从参数为(0)λλ>的指数分布,则下列结论中不正确...的是 A.1()E X Y μλ+= B.221()D X Y σλ+=+C.1(),()E X E Y μλ==D.221(),()D X D Y σλ==7.设总体X 服从[0,θ]上的均匀分布(参数θ未知),12,,,n x x x 为来自X 的样本,则下列随机变量中是统计量的为 A. 11ni i x n =∑B. 11ni i x n θ=-∑C. 11()ni i x E X n =-∑D. 2111()n i x D X n =-∑8.设12,,,n x x x 是来自正态总体2(,)N μσ的样本,其中μ未知,x 为样本均值,则2σ的无偏估计量为 A. 11()1ni i x n μ=--∑2 B. 11()ni i x n μ=-∑2C. 11()1ni i x x n =--∑ 2 D.11()ni i x x n =-∑ 29.设A,B 为B 为随机事件,且A B ⊂,则AB 等于A.ABB.BC.AD.A10.设A ,B 为随机事件,则()P A B -=A.()()P A P B -B.()()P A P AB -C.()()()P A P B P AB -+D.()()()P A P B P AB +-11.设随机变量X 的概率密度为1,3<x<6,()30,f x ⎧⎪=⎨⎪⎩其他,则{}3<4=P X ≤A.{}1<2P X ≤B.{}4<5P X ≤C.{}3<5P X ≤D.{}2<7P X ≤12.已知随机变量X 服从参数为λ的指数分布,则X 的分布函数为A.e ,0,()0, 0.x x F x x λλ-⎧>=⎨≤⎩B.1e ,0,()0, 0.x x F x x λλ-⎧->=⎨≤⎩C.1e ,0,()0, 0.x x F x x λ-⎧->=⎨≤⎩D.1e ,0,()0, 0.x x F x x λ-⎧+>=⎨≤⎩13.设随机变量X 的分布函数为F(x),则A.()1F -∞=B.(0)0F =C.()0F +∞=D.()1F +∞=14.设随机变量X 与Y 相互独立,它们的概率密度分别为(),()X Y f x f y ,则(X ,Y )的概率密度为 A.[]1()()2X Y f x f y + B.()()X Y f x f y +C.1()()2X Y f x f y D.()()X Y f x f y15.设随机变量~(,)X B n p ,且() 2.4,() 1.44E X D X ==,则参数n,p 的值分别为 A.4和0.6 B.6和0.4 C.8和0.3D.3和0.816.设随机变量X 的方差D(X)存在,且D(X)>0,令Y X =-,则X γρ= A.1- B.0 C.1 D.2二、填空题1. 一口袋中装有3只红球,2只黑球,今从中任意取出2只球,则这2只球恰为一红一黑的概率是____________.2. 设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=0.3,P (B )=0.4,则P (A )=______________.3. 设A,B,C 为三个随机事件,P(A)=P(B)=P(C)=41,P(AB)=P(AC)=P(BC)=61,P(ABC)=0,则P(A B C)=___________. 4. 设X 为连续随机变量,c 为一个常数,则P {X =c }=_____________.5. 已知连续型随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<=.2,1;20),1(31;0,31)(≥≤x x x x e x F x设X 的概率密度为f(x),则当x<0,f(x)= _______________.6. 已知随机变量X 的分布函数为F X (x),则随机变量Y=3X+2的分布函F Y (y)=_________.7. 设随机变量X ~N (2,4),则P {X≤2}=____________.8. 设随机变量X 的概率密度为f(x)=+∞<<-∞-x ex ,2122π,则E(X+1)=___________.9. 设随机变量X 与Y 相互独立,且X ~N (0,5),Y ~X 2(5),则随机变量YX Z =服从自由度为5的_______________分布。
上海金融学院2007 ——2008 学年,第二学期课程代码:1333007502 《概率论与数理统计(理工)》课程期末考试试卷本试卷系B卷,采用闭卷、方式,集中考试,考试时只能使用简单计算器(无存储功能)(请将横线上不需要的文字用红笔划去)交教务处时间: 年月日送印时间: 年月日试题内容分布情况命题教师签字___________ 教研室主任签字___ _______ 院(系、部)领导签字_____ ___上 海 金 融 学 院20 07 ——20 08 学年 第 二 学期 《概率论与数理统计(理工)》课程 代码:1333007502 集中考试 考试形式: 闭卷 考试用时: 120 分钟考试时只能使用简单计算器(无存储功能)试 题 纸 一.选择题(每小题2分,共10分) 1.A.B.是二个随机事件则P(A-B)__________A.P(A)-P(B)B.P(A)-P(AB)C.P(A)+P(B)-P(AB)D.P(A)+P(AB)-P(B) 2.A.B 相互独立 P(A)=0.5,P(AB)=0.25则P(B)= A.0.25 B.0.5 C.0.75 D.0.453.设()()E XY E X EY =⋅则以下结论正确的是 A.,X Y 不相关 B.1X Y ρ⋅= C.1X Y ρ⋅=- D. ,X Y 独立4.袋中有8个球,其中3个红球5个黄球,任取3球,则1黄2红的概率P= A.23538⋅ B.23538⋅ C.123538C C C⋅ D.213538C C C⋅5.Z ~U(0,5)则t 的二次方程42420t xt x +++=有实根的概率为 A.12B.23C.35D.45二.填空题(每小题3分,共30分) 1.设P(A)=1411() P ()32P B A A B ==则()P A B =2.三次独立试验中事件A 至少出现一次的概率为1927则P (A )=3.X ~b(n,p)且8, 1.6EX D X ==则n= ,p=4.X ~N(3,4)则p(2<X <4)=5.设X ~1001 0()1000 x 0xe xf x -⎧>⎪=⎨⎪≤⎩则P(X ≤)=6.设23x 0x 1~()0 X f x ⎧≤≤=⎨⎩其它则P(X>E X)=7.设X ~N(2μσ,)且EX=3,DX=1则57P ()22X <<=8. 12,θθ∧∧均为总体X 的未知参数θ的无偏估计量,则12θθ∧∧比有效指9.X ~1 0<x<1(,)0 x f x λλλλ-⎧⋅=⎨⎩(>1)其它,12n ,X X X 是X 的样本,则λ的钜估计量λ∧=10.某种新药有效率为0.4,1000人使用此药,应用中心极限定理,有效人数超过420人的概率,P X>420()= 三.计算题(每题12分,共60分)1.盒中有10个零件其中4个一级品,6个二级品,每次取一个,取二次(不放回),设0 X ⎧=⎨⎩第一次取到一级品1 第一次取到二级品0 Y 1 ⎧=⎨⎩第二次取到一级品第二次取到二级品求(1)X Y (,)的联合分布律 (2)求E ,Y D Y (3)求cov X Y (,)2.有三个盒子,甲盒中有2个红球4个白球,乙盒中有4个红球2个白球,丙盒中有3个红球3个白球,任取一盒,任取一球。
山东科技大学2007—2008 学年第二学期
《概率论与数理统计》考试试卷(B 卷)
一、填空题(每题5分,共15分)
1、设B A ,是两个随机事件,7.0)(=A P ,3.0)(=-B A P ,则=)(AB P 。
2、设随机变量()2~2,2N ξ,则()2D ξ= 。
3、设随机变量()~0,1X U ,则根据契比雪夫不等式有估计{}0.51P X -≥≤ 。
二、选择题(每题5分,共15分)
1、设A ,B 是两个对立事件,()0)(,0>>B P A P ,则一定不成立的是( )
(A )())(1B P A P -= (B)0)(=B A P (C) 1)(=B A P (D) 1)(=B A P
2、假设总体X 服从正态分布),(2σμN ,()1,,,21>n X X X n 是来自X 的样本,X 是样本均值,则一定有( )
(A )),(~2σμN X n (B) ),(~2σμN X
(C) ),(~221σμN X X n - (D) 2
1~(,)n i i X N μσ=∑
3、设随机变量X 的概率密度为||)(x ce
x f -=,则常数c 为( ) (A )1
2- (B )0 (C )12 (D )1
三、计算题(每题10分,共40分)
1、装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,结果都是一等品,求丢失的也是一等品的概率。
2、设二维连续型随机变量()Y X ,的概率密度为3,01,0 (,)0,x x y x
f x y <≤<≤⎧=⎨⎩,求
(1)边缘概率密度,并判断随机变量X 与Y 是否相互独立;(2){}1P X Y +≥。
3、设随机变量X 的分布律为
求:(1)2Y X =;(2)1Y X =-的分布律。
4、设总体X 服从参数为λ的泊松分布,分布律为{},0,1,2!m
P X m e m m λλ-===
()0λ>,n X X X ,,,21 是总体X 的简单随机样本,求未知参数λ的矩估计量和最大似然估计量。
四、解答题(共22分)
1、(12分)设随机变量()Y X ,的联合概率密度为()1,01,02(,)30,x y x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其它,试求:(1)
()(),E X D X ;
(2)(),C ov X Y ;(3).X Y ρ
2、(10分)正常人的脉搏平均72次每分钟,现在测得9例中毒患者的脉搏,算得平均次数为67次,均方差为5.929。
已知人的脉搏次数服从正态分布,试问:中毒患者与正常人脉搏有无显著差异。
(显著性水平05.0=α) (附表:0.050.0250.0250.051.645, 1.96,(8) 2.3060,(8) 1.8595z z t t ====)
五、证明题(本题8分)
设125,,,X X X 是来自标准正态总体(0,1)N 的样本,求证:
()123Y X X t =+。