(完整版)不变子空间、若当、最小多项式(简介)
- 格式:doc
- 大小:368.01 KB
- 文档页数:9
不变子空间.若当.最小多项式(简介)§7 不变子空间◎ 本节重点:不变子空间的定义与“限制”.已知可对角化对应于对角矩阵,但是并不是每个都能对角化的.退一步,对应于准对角形也好;虽然比对角形复杂,但也算简单.这个问题的研究需要用到不变子空间的概念.一、定义与例子1.定义:σ∈L(Vn),W是σ的不变子空间⇔W是V的子空间,且∀ξ∈W,有σ(ξ)∈W.简称σ-子空间. (注意:与线性变换有关)2.例子:设σ∈L(Vn),则下列子空间W都是σ的不变子空间: 1)W={0} 2)W=V 3)W=σ-1(0) 4)W=σ(V) 5)W=Vλ0={ξ∈V|σ(ξ)=λ0ξ}A与B是可交换的,则B的核与值域都是A-子空间. 二、线性变换在不变子空间上的“限制”1.定义:设W是σ∈L(Vn)的不变子空间,可只在W中考虑σ,记为σ|W.【意义】缩小了线性变换的范围,从而简化线性变换.因此,如果V可分解为若干σ-子空间Wi的直和,那么对V的线性变换σ的研究就归结为对各个子空间Wi的直和研究.2.区别:σ|W与σ的作用结果一样,但作用范围不同.即ξ∈W⇒(σ|W)ξ=σξ;ξ∉W⇒(σ|W)ξ无意义.三、不变子空间与线性变换矩阵化简之间的关系(意义)V=W1⊕W2⊕ ⊕Ws,设V可分解为若干个σ-子空间的直和:在每个不变子空间Wi中取基εi,εi, ,εi,i=1,2, s,并把他们合并为V的一组基,则在这组基下,σ的矩阵具有12k⎛A1准对角形⎝⎫⎪⎪,其中Ai,i=1,2, s是A|Wi在对应基下的矩阵. As⎪⎭进一步的,我们有: *四、不变子空间的直和分解定理12:设线性变换σ∈L(Vn)的特征多项式f(λ)可分解成一次因式:f(λ)=(λ-λ1)r(λ-λ2)r (λ-λS)r,则V可以分解成不变子空间的直和: 12SV=V1⊕V2⊕⊕Vs,其中Vi={ξ∈V|(σ-λiE)iξ=0}.r§8 若当(Jordan)标准形介绍若当(Jordan)标准形是一类特殊的准对角矩阵. 一、基本定义 1. 若当块⎛λ 1J(λ,t)=0 ⎝000 1000λ 00λ10⎫⎪0⎪⎪(λ是复数;注意对角元相同)⎪0⎪⎪λ⎭2. 若当形矩阵=由若干个若当块(阶数未必相同、λ未必相同)组成(不计顺序)的准对角矩阵. (若当形矩阵中包括对角矩阵)【问题】若当形矩阵的特征值=?.(若当块不计排列顺序)二、主要结论定理13:∀σ∈L(Vn(C)),在V中必定存在一组基,使σ在这组基下的矩阵式若当形矩阵. (这个若当形矩阵除去其中若当块的排列次序外,是被σ唯一决定的,它称为σ的若当标准形)若用矩阵来描述,即定理14:复数域上,每个方阵都相似于某个若当形矩阵.(好用的结论)三、若当标准形的求法(第八章介绍)【特例】若A可对角化,则若当标准形就是相似的对角矩阵.⎛0【第二届中国大学生数学竞赛预赛2019】设B= 00⎝100030⎫⎪2019⎪, 0⎪⎭证明X2=B无解,这里X为三阶复数矩阵.[证法]对复数矩阵,优先考虑它相似于某个Jordan矩阵这个性质,并联系特征值.§9 最小多项式介绍最小多项式有着良好的理论意义,特别是适用于对角化问题.已知Hamilton-Cayley定理:方阵A的特征多项式是A的零化多项式.要寻找其中次数最低的,这就是最小多项式的研究思路. 一、基本定义定义:ϕ(x)是方阵A的最小多项式⇔f(A)=0且ϕ(x)次数最低、首项系数为1. 例数量矩阵kE的最小多项式是二、基本性质引理1矩阵A的最小多项式必唯一. 证法带余除法引理2f(x)是A的零化多项式⇔f(x)是A的最小多项式ϕ(x)的倍式,即ϕ(x)|f(x). 【特例】最小多项式是特征多项式的因式. 证法带余除法⎛1例求A=⎝11⎫⎪2⎪的最小多项式. (x-1) 1⎪⎭【问题】相似矩阵有相同的最小多项式?⎛a 1例 k阶若当块J=⎝a1⎫⎪⎪⎪的最小多项式是⎪a⎪⎭k⨯k(直接计算,(x-a)k)三、主要结论定理数域P上矩阵A可对角化的充要条件是A的最小多项式是P上互素的一次因式的乘积. 推论复数域上A可对角化的充要条件是A的最小多项式无重根.例设A是n阶幂等矩阵,且秩为r.试求A的相似标准形,并说明理由;求2E-A. 解法:由A2=A知A有最小多项式g(λ)=λ2-λ=λ(λ-1)且无重根,所以A相似于对角矩阵,且特征值只能是1或0.又r(A)=r,故存在可逆矩阵P使P⎛ErAP= 0⎝02En-r⎛ErAP= 0⎝0⎫⎪. 0⎪⎭从而 P-1(2E-A)P=2E-P-1⎫n-r⎪⇒2E-A=2. ⎪⎭矩阵相似对角化的应用1.利用矩阵相似对角化计算矩阵多项式若矩阵A与B相似,则存在可逆矩阵P使得A=PBP进一步有:当ϕ(x)是多项式时,ϕ(A)=Pϕ(B)P-1.特例:当A相似于对角矩阵时,由Ak=PBkP-1容易计算方幂Ak. 2.求Fibonacci数列通项:an+2=an+1+an(a0=0,a1=1)⎛an+1⎫⎛1解法用矩阵形式表示递推关系式 a⎪⎪=⎝n⎭⎝1⎛1A= 1⎝-1,于是Ak=PBkP-1.1⎫⎛an⎫⎛1⎪ a⎪⎪= 0⎪⎭⎝n-1⎭⎝11⎫⎪0⎪⎭na⎝0⎫⎪⎪⎭'⎛⎫1⎫⎛λ11±51±5-1 ⎪⎪的特征值为λ1,2=,对应的特征向量为,1,PAP=⎪0⎪22⎭⎝⎝⎭⎫⎪λ2⎪⎭nn⎡⎛⎤⎫⎛⎫11+51-5n⎪- ⎪⎥. ⎢由此可求A,即得an=⎪ 2⎭2⎪5⎢⎝⎝⎭⎥⎣⎦3.利用矩阵相似对角化线性方程组【例】(人口流动问题)设某国人口流动状态的统计规律是每年有十分之一的城市人口流向农村,十分之二的农村人口流入城市.假定人口总数不变,则经过许多年以后,全国人口将会集中在城市吗?解设最初城市、农村人口分别为x0,y0,第k年末人口分别为xk,yk,则⎛x1⎫⎛0.9y⎪⎪=⎝1⎭⎝0.1⎛0.9记A= 0.1⎝0.2⎫⎛x0⎪⎪0.8⎭⎝y0⎛xk⎫⎛0.9⎫⎪,⎪ y⎪⎪= ⎝k⎭⎝0.1⎭0.2⎫⎛xk-1⎫⎪⎪⎪⎪0.8⎭⎝yk-1⎭x0.2⎫⎛xk⎫k⎛0⎫⎪⎪,可得⎪=A ⎪⎪⎪. 0.8⎭yy⎝k⎭⎝0⎭为计算Ak,可考虑把A相似对角化.特征多项式λE-A=(λ-1)(λ-0.7). λ=1对应的特征向量为α1=(2,1)';λ=0.7对应的特征向量为α2=(1,-1)'取P=(α1,α2)= 1⎝k⎛21⎫1⎛1-1⎪ P=,得⎪-1⎭3⎝11⎫⎪⎪-2⎭A⎛1=P 0⎝0⎫1⎛2-1⎪P= 0.7⎪3⎝1⎭kk1⎫⎛1⎪ -1⎪⎭⎝00⎫⎛1⎪ k 0.7⎪⎭⎝11⎫⎪ -2⎪⎭1⎫1⎛2⎪= ⎪-2⎭3 ⎝22⎫⎪ 1⎪⎭k令k→∞,有0.7→0,得A1⎛2→3⎝11⎫⎛1⎪⎪-1⎭⎝00⎫⎛1⎪⎪0⎭⎝1⎛xk⎫1⎛2 ⎪ → 2 y⎪3⎝⎝k⎭⎛2⎫⎪2⎫⎛x0⎫3⎪⎪⎪=(x+y)00⎪⎪1⎭ 1⎪⎝y0⎭⎪⎝3⎭可见当k→∞时,城市与农村人口比例稳定在2:1.定理7:设A为实对称矩阵,则必存在正交矩阵T,使得T'AT=T-1AT为对角阵.(注意:对角元恰好是A的全体特征值)(常用于证明题)[证明思路]:利用对称变换的理论,等价于对称变换有n个特征向量作成标准正交基(见教材).也可用数学归纳法,将实对称矩阵A用两次正交相似变换化为对角阵.证明:设σ在n维欧氏空间V的标准正交基下的矩阵是A,则σ是对称变换. n=1时,V=L(α),取e1=α/α∈V,则σ(e1)∈V,有σ(e1)=ke1,e1即为所求. 设n-1时命题成立(含义?),考虑n的情形.设法把Vn分解成V1+Vn-1,才能使用归纳假设:1)σ对称−引理−−→σ有实数特征值λ1(才能保证特征向量α1∈V(R),正交矩阵要求实数矩阵);2)取e1=α1/1,则是实特征向量.设V1是L(e1)的正交补,则V1是σ-子空间,维数为n-1,.且σ|V是V1的对称变换.于是利用归纳假设,V1有n-1个特征向量e2, ,en 标准正交,联合1e1,e2, ,en即为V的特征向量、标准正交基.另证:直接从矩阵角度证明,数学归纳法:n=1显然. 设n-1时命题成立,A必有实数特征n值λ1(特征向量α1∈Rn),取e1=α1/α1,则也是实.特征向量.扩充成R的标准正交基e1,e2, ,en,以它们为列作n级矩阵T1,则T1正交,且T1'AT1=T1A(e1,e2, ,en)=T1(Ae1,Ae2, ,Aen)=(λ1T1e1,T1Ae2, ,T1Aen)-1-1-1-1-1注意到E=T1T1=T1(e1,e2, ,en)=(T1e1,T1e2, ,T1en),故T1e1-1-1-1-1-1-1是E的第一列,于是T1'AT1形如⎛λ1⎝0C⎫⎪,而AB⎭对称,T1'AT1也对称,得C=0,且B是n-1级对称矩阵.λ2, ,λn),取由归纳假设,存在n-1级正交矩阵Q,使得Q'BQ=dia(g1T2=⎛ 0⎝0⎫,T=T1T2Q⎪⎭⎛1T'AT=⎝可得T是正交矩阵,并且⎫⎛λ1⎪ Q'⎪⎭⎝⎫⎛1⎪ B⎪⎭⎝⎫⎪= =diag(λ1, ,λn)Q⎪⎭又T'AT=T-1AT与A相似,有相同的特征值,于是λ1, ,λn是A的全部特征值.《欧氏空间》复习一、主要概念1)内积 2)长度 3)夹角 4)正交 5)度量矩阵 6)标准正交基 7)正交矩阵 8)正交变换 9)正交补 10)对称变换 11)最小二乘法二、重要方法1.验证欧氏空间.[内积4条公理]2.利用内积计算长度、夹角;证明向量相等、长度关系式.3.求标准正交基.[可验证!先正交化再单位化,反之…错.]4.正交补的构造与求法.5.正交矩阵、正交变换、对称变换的应用与证明.[注意变换与矩阵的转化]6.求正交矩阵T,使得T'AT=T-1AT为对角阵.(可验证!注意区别第五、七章的方法)7.利用正交线性替换化实二次型为标准形. *8.求最小二乘解. 三、思考题1.什么是内积?欧氏空间的哪些概念与内积有关?(长度、夹角、正交、度量矩阵、标准正交基、同构、正交变换、对称变换、正交补)2.内积与标准正交基有何联系? 3.标准正交基有何作用? 4.如何构造子空间的正交补?5.正交矩阵、实对称矩阵各有哪些特点?6.正交变换、对称变换各有哪些特点和区别?四、例题选讲◎ A正定⇒A+E>1证1:A正定⇒特征值λi>0⇒A+E的特征值λi+1>1 于是A+E=(λ1+1)(λ2+1)(λn+1)>1⋅1 1=1 证2:A正定⇒T-1AT=diag(λ1, ,λn),λi>0A+E=Tdiag(λ1, ,λn)T-1+E=Tdiag(λ1+1, ,λn+1)T-1-1=T(λ1+1)(λ2+1) (λn+1)>1⋅1 1=1《期末总复习》一、考试题型填空、计算、证明、讨论或判断二、复习依据作业(习题集)、例题、课外提高三、各章主线 1.线性空间2.线性变换、运算、关于基的矩阵及变换问题的转化、不变子空间可验证)、结论、对角化判定及求可逆矩阵C3.Jordan标准形4.欧氏空间(注意:涉及的概念都与内积有关)(四条公理)、长度、夹角、标准正交基(求法,可验证)可验证)[可验证].区别第5章方法)四、注意事项1.几类矩阵的特点、区别与联系:……可逆矩阵、对称矩阵、合同矩阵、相似矩阵、正定矩阵、正交矩阵. 2.线性变换问题与矩阵问题的转化……线性空间(通过基)、欧氏空间(通过标准正交基) 3.可验证的几种计算类型特征值(迹)、特征向量(代入方程组)、标准正交基(两两正交、长度为1)、正交矩阵(行[或列]向量组标准正交,或A'A=E)。
§7 不变子空间◎ 本节重点:不变子空间的定义与“限制”.已知可对角化对应于对角矩阵,但是并不是每个都能对角化的.退一步,对应于准对角形也好;虽然比对角形复杂,但也算简单.这个问题的研究需要用到不变子空间的概念. 一、定义与例子1.定义:)(n V L ∈σ,W 是σ的不变子空间W ⇔是V 的子空间,且,W ∈∀ξ有W ∈)(ξσ.简称σ-子空间. (注意:与线性变换有关)2.例子:设)(n V L ∈σ,则下列子空间W 都是σ的不变子空间:1){}0=W 2)V W = 3))0(1-=σW 4))(V W σ= 5){}ξλξσξλ0)(|0=∈==V V W 例1若线性变换A 与B 是可交换的,则B 的核与值域都是A -子空间. 二、线性变换在不变子空间上的“限制”1.定义:设W 是)(n V L ∈σ的不变子空间,可只在W 中考虑σ,记为W |σ.【意义】缩小了线性变换的范围,从而简化线性变换.因此,如果V 可分解为若干-σ子空间i W 的直和,那么对V 的线性变换σ的研究就归结为对各个子空间i W 的直和研究.2.区别:W |σ与σ的作用结果一样,但作用范围不同.即σξξσξ=⇒∈)|(W W ;ξσξ)|(W W ⇒∉无意义.三、不变子空间与线性变换矩阵化简之间的关系(意义)设V 可分解为若干个σ-子空间的直和:s W W W V ⊕⊕⊕= 21,在每个不变子空间i W 中取基k i i i εεε,,,21 ,s i ,2,1=,并把他们合并为V 的一组基,则在这组基下,σ的矩阵具有准对角形⎪⎪⎪⎭⎫ ⎝⎛s A A 1,其中i A ,s i ,2,1=是i W A |在对应基下的矩阵. 进一步的,我们有: *四、不变子空间的直和分解定理12:设线性变换)(n V L ∈σ的特征多项式)(λf 可分解成一次因式:S r S r r f )()()()(2121λλλλλλλ---= ,则V 可以分解成不变子空间的直和:s V V V V ⊕⊕⊕= 21,其中}0)(|{=-∈=ξλσξi r i i E V V .§8 若当(Jordan )标准形介绍若当(Jordan )标准形是一类特殊的准对角矩阵. 一、基本定义 1. 若当块⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=λλλλλ1000010000010000),(t J (λ是复数;注意对角元相同)2. 若当形矩阵=由若干个若当块(阶数未必相同、λ未必相同)组成(不计顺序)的准对角矩阵. (若当形矩阵中包括对角矩阵) 【问题】若当形矩阵的特征值=?例1求所有的三阶若当形矩阵.(若当块不计排列顺序) 二、主要结论定理13: ))((C V L n ∈∀σ,在V 中必定存在一组基,使σ在这组基下的矩阵式若当形矩阵. (这个若当形矩阵除去其中若当块的排列次序外,是被σ唯一决定的,它称为σ的若当标准形)若用矩阵来描述,即定理14:复数域上,每个方阵都相似于某个若当形矩阵.(好用的结论) 三、若当标准形的求法(第八章介绍)【特例】若A 可对角化,则若当标准形就是相似的对角矩阵.【第二届中国大学生数学竞赛预赛2010】设⎪⎪⎪⎭⎫⎝⎛=00020100030100B ,证明B X =2无解,这里X 为三阶复数矩阵.[证法]对复数矩阵,优先考虑它相似于某个Jordan 矩阵这个性质,并联系特征值.§9 最小多项式介绍最小多项式有着良好的理论意义,特别是适用于对角化问题.已知Cayley Hamilton -定理:方阵A 的特征多项式是A 的零化多项式.要寻找其中次数最低的,这就是最小多项式的研究思路. 一、基本定义定义:)(x ϕ是方阵A 的最小多项式0)(=⇔A f 且)(x ϕ次数最低、首项系数为1. 例 数量矩阵kE 的最小多项式是 二、基本性质引理1矩阵A 的最小多项式必唯一. 证法 带余除法引理2)(x f 是A 的零化多项式)(x f ⇔是A 的最小多项式)(x ϕ的倍式,即)(|)(x f x ϕ. 【特例】最小多项式是特征多项式的因式. 证法 带余除法例 求⎪⎪⎪⎭⎫ ⎝⎛=1111A 的最小多项式. 2)1(-x【问题】相似矩阵有相同的最小多项式?例 k 阶若当块kk a a a J ⨯⎪⎪⎪⎪⎪⎭⎫⎝⎛=11的最小多项式是 (直接计算,k a x )(-) 三、主要结论定理 数域P 上矩阵A 可对角化的充要条件是A 的最小多项式是P 上互素的一次因式的乘积. 推论 复数域上A 可对角化的充要条件是A 的最小多项式无重根.例 设A 是n 阶幂等矩阵,且秩为r .试求A 的相似标准形,并说明理由;求A E -2. 解法:由A A =2知A 有最小多项式)1()(2-=-=λλλλλg 且无重根,所以A 相似于对角矩阵,且特征值只能是1或0.又r A r =)(,故存在可逆矩阵P 使⎪⎪⎭⎫ ⎝⎛=-0001rE AP P .从而 rn r n rA E E E AP P E P A E P ----=-⇒⎪⎪⎭⎫ ⎝⎛=-=-222002)2(11. 矩阵相似对角化的应用1.利用矩阵相似对角化计算矩阵多项式若矩阵A 与B 相似,则存在可逆矩阵P 使得1-=PBP A ,于是1-=P PB A k k . 进一步有:当)(x ϕ是多项式时,1)()(-=P B P A ϕϕ.特例:当A 相似于对角矩阵时,由1-=P PB A k k 容易计算方幂kA .2.求Fibonacci 数列通项:)1,0(1012==+=++a a a a a n n n解法 用矩阵形式表示递推关系式⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-+011101110111a a a a a a nn n n n⎪⎪⎭⎫ ⎝⎛=0111A 的特征值为2512,1±=λ,对应的特征向量为'⎪⎪⎭⎫ ⎝⎛±1,251,⎪⎪⎭⎫⎝⎛=-211λλAP P 由此可求nA ,即得⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+=nn n a 25125151. 3.利用矩阵相似对角化线性方程组【例】(人口流动问题)设某国人口流动状态的统计规律是每年有十分之一的城市人口流向农村,十分之二的农村人口流入城市.假定人口总数不变,则经过许多年以后,全国人口将会集中在城市吗? 解 设最初城市、农村人口分别为00,y x ,第k 年末人口分别为k k y x ,,则 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛00118.01.02.09.0y x y x ,⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛--118.01.02.09.0k k k k y x y x 记⎪⎪⎭⎫⎝⎛=8.01.02.09.0A ,可得⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛00y x A y x k k k . 为计算kA ,可考虑把A 相似对角化.特征多项式)7.0)(1(--=-λλλA E .1=λ对应的特征向量为)1,2(1'=α;7.0=λ对应的特征向量为)1,1(2'-=α取⎪⎪⎭⎫⎝⎛-==1112),(21ααP ,得⎪⎪⎭⎫ ⎝⎛-=-2111311P ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=-21117.00011112317.00011k kk P P A令∞→k ,有07.0→k ,得⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-→12223121110001111231k A ⎪⎪⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛3132)(1222310000y x y x y x k k 可见当∞→k 时,城市与农村人口比例稳定在1:2.定理7:设A 为实对称矩阵,则必存在正交矩阵T ,使得1T AT T AT -'=为对角阵.(注意:对角元恰好是A 的全体特征值) (常用于证明题)[证明思路]:利用对称变换的理论,等价于对称变换有n 个特征向量作成标准正交基(见教材).也可用数学归纳法,将实对称矩阵A 用两次正交相似变换化为对角阵.证明:设σ在n 维欧氏空间V 的标准正交基下的矩阵是A ,则σ是对称变换. 1=n 时,)(αL V =,取V e ∈=αα/1,则V e ∈)(1σ,有11)(ke e =σ,1e 即为所求. 设1-n 时命题成立(含义?),考虑n 的情形.设法把n V 分解成11-+n V V ,才能使用归纳假设:1)σ对称σ−−→−引理有实数特征值1λ(才能保证特征向量)(1R V ∈α,正交矩阵要求实数矩阵);2)取111/αα=e ,则是实.特征向量.设1V 是)(1e L 的正交补,则1V 是σ-子空间,维数为1-n ,且1|V σ是1V 的对称变换.于是利用归纳假设,1V 有1-n 个特征向量n e e ,,2 标准正交,联合n e e e ,,,21 即为V 的特征向量、标准正交基.另证:直接从矩阵角度证明,数学归纳法:1=n 显然. 设1-n 时命题成立,A 必有实数特征值1λ(特征向量n R ∈1α),取111/αα=e ,则也是实.特征向量.扩充成n R 的标准正交基n e e e ,,,21 ,以它们为列作n 级矩阵1T ,则1T 正交,且),,,(),,,(),,,(1121111112111211111n n n Ae T Ae T e T Ae Ae Ae T e e e A T AT T -----===' λ注意到),,,(),,,(112111112111111n n e T e T e T e e e T T T E -----=== ,故111e T -是E 的第一列,于是11AT T '形如⎪⎭⎫⎝⎛B C 01λ,而A 对称,11AT T '也对称,得0=C ,且B 是1-n 级对称矩阵. 由归纳假设,存在1-n 级正交矩阵Q ,使得),,(2n diag BQ Q λλ =',取212,001T T T Q T =⎪⎭⎫ ⎝⎛=可得T 是正交矩阵,并且),,(1111n diag Q B Q AT T λλλ ==⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛'=' 又AT T AT T 1-='与A 相似,有相同的特征值,于是n λλ,,1 是A 的全部特征值.《欧氏空间》复习一、主要概念 1)内积 2)长度 3)夹角 4)正交 5)度量矩阵 6)标准正交基7)正交矩阵 8)正交变换 9)正交补 10)对称变换 11)最小二乘法二、重要方法1.验证欧氏空间.[内积4条公理]2.利用内积计算长度、夹角;证明向量相等、长度关系式.3.求标准正交基.[可验证!先正交化再单位化,反之…错.]4.正交补的构造与求法.5.正交矩阵、正交变换、对称变换的应用与证明.[注意变换与矩阵的转化]6.求正交矩阵T ,使得1T AT T AT -'=为对角阵.(可验证!注意区别第五、七章的方法)7.利用正交线性替换化实二次型为标准形. *8.求最小二乘解. 三、思考题1.什么是内积?欧氏空间的哪些概念与内积有关?(长度、夹角、正交、度量矩阵、标准正交基、同构、正交变换、对称变换、正交补) 2.内积与标准正交基有何联系? 3.标准正交基有何作用? 4.如何构造子空间的正交补?5.正交矩阵、实对称矩阵各有哪些特点?6.正交变换、对称变换各有哪些特点和区别? 四、例题选讲 ◎ A 正定1>+⇒E A证1:A 正定⇒特征值E A i +⇒>0λ的特征值11>+i λ 于是1111)1()1)(1(21=⋅>+++=+ n E A λλλ 证2:A 正定⇒0),,,(11>=-i n diag AT T λλλ1111)1()1)(1()1,,1(),,(1211111=⋅>+++=++=+=+--- TT T Tdiag E T Tdiag E A n n n λλλλλλλ《期末总复习》一、考试题型填空、计算、证明、讨论或判断 二、复习依据作业(习题集)、例题、课外提高 三、各章主线 1.线性空间线性空间……定义、线性运算、基、维数、坐标子空间……两个封闭性、基、维数、生成子空间、扩充基、维数公式、和、直和 同构……构造、判定、意义 2.线性变换线性变换……验证(定义)、运算、关于基的矩阵及变换问题的转化、不变子空间 特征值与特征向量……证明、求法(可验证)、结论、对角化判定及求可逆矩阵C 值域与核……基、维数、两者维数关系 3.Jordan 标准形不变因子 初等因子 Jordan 标准形4.欧氏空间(注意:涉及的概念都与内积有关)内积……验证(四条公理)、长度、夹角、标准正交基(求法,可验证) 正交变换……判定、不变性、正交矩阵(可验证)对称变换……判定、特征值、对角化(求正交矩阵[可验证].区别第5章方法)四、注意事项1.几类矩阵的特点、区别与联系:……可逆矩阵、对称矩阵、合同矩阵、相似矩阵、正定矩阵、正交矩阵.2.线性变换问题与矩阵问题的转化……线性空间(通过基)、欧氏空间(通过标准正交基)3.可验证的几种计算类型特征值(迹)、特征向量(代入方程组)、标准正交基(两两正交、长度为1)、')正交矩阵(行[或列]向量组标准正交,或EAA=3、大、中、小队长标志要求各队长必须每天佩戴,以身作则,不得违纪,如有违纪现。
§9 最小多项式根据哈密尔顿—凯莱定理,任给数域P 上一个n 级矩阵A ,总可以找到数域P 上一个多项式)(x f ,使0)(=A f . 如果多项式)(x f 使0)(=A f ,就称)(x f 以A 为根 当然,以为A 根的多项式是很多的.一、定义1.定义:次数最低的首项系数为1的以A 为根的多项式称为A 的最小多项式. 2.基本性质引理1 矩阵A 的最小多项式是唯一的.引理2 设)(x g 是矩阵A 的最小多项式,那么)(x f 以A 为根的充要条件是)(x g 整除)(x f . 由此可知,矩阵A 的最小多项式是A 的特征多项式的一个因式. 3.如何求矩阵A 的最小多项式例1 数量矩阵kE 的最小多项式为k x -, 特别地,单位矩阵的最小多项式为1-x , 零矩阵的最小多项式为x .另一方面,如果A 的最小多项式是1次多项式,那么A 一定是数量矩阵. 例2 设⎪⎪⎪⎭⎫ ⎝⎛=1111A求A 的最小多项式.例3 相似矩阵有相同的最小多项式, 反之不然. 设111111,1222A B ⎛⎫⎛⎫⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. A 与B 的最小多项式都等于)2()1(2--x x ,但是它们的特征多项式不同,因此A 和B 不是相似的.二、应用最小多项式来判断一个矩阵能否对角化的问题1.引理3 设A 是一个准对角矩阵⎪⎪⎭⎫⎝⎛=21A A A ,并设1A 的最小多项式为)(1x g ,2A 的最小多项式为)(2x g , 那么A 的最小多项式为)(1x g ,)(2x g 的最小公倍式)](),([21x g x g .这个结论可以推广到A 为若干个矩阵组成的准对角矩阵的情形.即:如果⎪⎪⎪⎪⎪⎭⎫⎝⎛=s A A A A21, i A 的最小多项式为s i x g i ,,2,1,)( =,那么A 的最小多项式为 )](,),(),([21x g x g x g s2.引理4 k 级若尔当块⎪⎪⎪⎪⎪⎭⎫⎝⎛=a a a J 11 的最小多项式为k a x )(-.3.定理15 数域P 上n 级矩阵A 与对角矩阵相似的充要条件为A 的最小多项式是P 上互素的一次因式的乘积.4.推论 复数矩阵A 与对角矩阵相似的充要条件是A 的最小多项式没有重根.更广一点讲, 在复数域上, 如果存在一个没有重根的多项式 ()f x , 满足()0f A =, 则 A 就可以对角化.例. 设 A 是 n 阶方阵,满足 32220A A A E +--=, 问 A 是否相似于对角矩阵 解:32()22(1)(1)(2)f x x x x x x x =+--=+-+ 是 A 的化零多项式, 从而 A 的最小多项式没有重根,可以对角化,第七章 线性变换(小结)线性变换是线性代数的中心内容之一,它对于研究线性空间的整体结构以及向量之间的内存联系起着重要作用.线性变换的概念是解析几何中的坐标变换、数学分析中的某些变换替换等的抽象和推广,它的理论和方法,(特别是与之相适应的矩阵理论和方法)在解析几何、微分方程等许多其它应用学科,都有极为广泛的应用.本章的中心问题是研究线性变换的矩阵表示, 在方法上则充分利用了线性变换与矩阵对应和相互转换.一、线性变换及其运算1. 基本概念:线性变换,可逆线性变换与逆变换;线性变换的值域与核,秩与零度;线性变换的和与差,乘积和数量乘法,幂和多项式.2. 基本结论(1) 线性变换保持零向量、线性组合与线性关系不变; 线性变换把负向量变为象的负向量、把线性相关的向量组变为线性相关的向量组(2) 线性变换的和、差、积、数量乘法和可逆线性变换的逆变换仍为线性变换. (3) 线性变换的基本运算规律(略).(4) 一个线性空间的全体线性变换关于线性变换的加法与数量乘法作成一个线性空间. (5) 线性空间V 的线性变换A 的象与核是V 的子空间.若dim(V )=n ,则Im(A )由V 的一组基的象生成,而A 的秩+A 的零度=n ,且A 是双射⇔A 是单射⇔ Ker(A )={0}.二、线性变换与矩阵1.基本概念:线性变换在基下的矩阵;相似矩阵.2.基本结论(1) 若n ααα,,,21 是线性空间V 的一个基, V n ∈∀βββ,,,21 ,则存在唯一A )(V L ∈,使得A n i i i ,,2,1,)( ==βα.(2) 在取定n 维线性空间V 的一个基之后,将V 的每一线性变换与它在这个基下的矩阵相对应,则这个对应使得线性变换的和、乘积、数量乘积的矩阵分别对应于矩阵的和、乘积、数量乘积;可逆线性变换与可逆矩阵对应,且逆变换对应逆矩阵。
§7 不变子空间◎ 本节重点:不变子空间的定义与“限制”.已知可对角化对应于对角矩阵,但是并不是每个都能对角化的.退一步,对应于准对角形也好;虽然比对角形复杂,但也算简单.这个问题的研究需要用到不变子空间的概念. 一、定义与例子1.定义:)(n V L ∈σ,W 是σ的不变子空间W ⇔是V 的子空间,且,W ∈∀ξ有W ∈)(ξσ.简称σ-子空间. (注意:与线性变换有关)2.例子:设)(n V L ∈σ,则下列子空间W 都是σ的不变子空间:1){}0=W 2)V W = 3))0(1-=σW 4))(V W σ= 5){}ξλξσξλ0)(|0=∈==V V W 例1若线性变换A 与B 是可交换的,则B 的核与值域都是A -子空间. 二、线性变换在不变子空间上的“限制”1.定义:设W 是)(n V L ∈σ的不变子空间,可只在W 中考虑σ,记为W |σ.【意义】缩小了线性变换的范围,从而简化线性变换.因此,如果V 可分解为若干-σ子空间i W 的直和,那么对V 的线性变换σ的研究就归结为对各个子空间i W 的直和研究.2.区别:W |σ与σ的作用结果一样,但作用范围不同.即σξξσξ=⇒∈)|(W W ;ξσξ)|(W W ⇒∉无意义.三、不变子空间与线性变换矩阵化简之间的关系(意义)设V 可分解为若干个σ-子空间的直和:s W W W V ⊕⊕⊕= 21,在每个不变子空间i W 中取基k i i i εεε,,,21 ,s i ,2,1=,并把他们合并为V 的一组基,则在这组基下,σ的矩阵具有准对角形⎪⎪⎪⎭⎫ ⎝⎛s A A 1,其中i A ,s i ,2,1=是i W A |在对应基下的矩阵. 进一步的,我们有: *四、不变子空间的直和分解定理12:设线性变换)(n V L ∈σ的特征多项式)(λf 可分解成一次因式:S r S r r f )()()()(2121λλλλλλλ---= ,则V 可以分解成不变子空间的直和:s V V V V ⊕⊕⊕= 21,其中}0)(|{=-∈=ξλσξi r i i E V V .§8 若当(Jordan )标准形介绍若当(Jordan )标准形是一类特殊的准对角矩阵. 一、基本定义 1. 若当块⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=λλλλλ1000010000010000),(t J (λ是复数;注意对角元相同)2. 若当形矩阵=由若干个若当块(阶数未必相同、λ未必相同)组成(不计顺序)的准对角矩阵. (若当形矩阵中包括对角矩阵) 【问题】若当形矩阵的特征值=?例1求所有的三阶若当形矩阵.(若当块不计排列顺序) 二、主要结论定理13: ))((C V L n ∈∀σ,在V 中必定存在一组基,使σ在这组基下的矩阵式若当形矩阵. (这个若当形矩阵除去其中若当块的排列次序外,是被σ唯一决定的,它称为σ的若当标准形)若用矩阵来描述,即定理14:复数域上,每个方阵都相似于某个若当形矩阵.(好用的结论) 三、若当标准形的求法(第八章介绍)【特例】若A 可对角化,则若当标准形就是相似的对角矩阵.【第二届中国大学生数学竞赛预赛2010】设⎪⎪⎪⎭⎫⎝⎛=00020100030100B ,证明B X =2无解,这里X 为三阶复数矩阵.[证法]对复数矩阵,优先考虑它相似于某个Jordan 矩阵这个性质,并联系特征值.§9 最小多项式介绍最小多项式有着良好的理论意义,特别是适用于对角化问题.已知Cayley Hamilton -定理:方阵A 的特征多项式是A 的零化多项式.要寻找其中次数最低的,这就是最小多项式的研究思路. 一、基本定义定义:)(x ϕ是方阵A 的最小多项式0)(=⇔A f 且)(x ϕ次数最低、首项系数为1. 例 数量矩阵kE 的最小多项式是 二、基本性质引理1矩阵A 的最小多项式必唯一. 证法 带余除法引理2)(x f 是A 的零化多项式)(x f ⇔是A 的最小多项式)(x ϕ的倍式,即)(|)(x f x ϕ. 【特例】最小多项式是特征多项式的因式. 证法 带余除法例 求⎪⎪⎪⎭⎫ ⎝⎛=1111A 的最小多项式. 2)1(-x【问题】相似矩阵有相同的最小多项式?例 k 阶若当块kk a a a J ⨯⎪⎪⎪⎪⎪⎭⎫⎝⎛=11的最小多项式是 (直接计算,k a x )(-) 三、主要结论定理 数域P 上矩阵A 可对角化的充要条件是A 的最小多项式是P 上互素的一次因式的乘积. 推论 复数域上A 可对角化的充要条件是A 的最小多项式无重根.例 设A 是n 阶幂等矩阵,且秩为r .试求A 的相似标准形,并说明理由;求A E -2. 解法:由A A =2知A 有最小多项式)1()(2-=-=λλλλλg 且无重根,所以A 相似于对角矩阵,且特征值只能是1或0.又r A r =)(,故存在可逆矩阵P 使⎪⎪⎭⎫ ⎝⎛=-0001rE AP P .从而 rn r n rA E E E AP P E P A E P ----=-⇒⎪⎪⎭⎫ ⎝⎛=-=-222002)2(11. 矩阵相似对角化的应用1.利用矩阵相似对角化计算矩阵多项式若矩阵A 与B 相似,则存在可逆矩阵P 使得1-=PBP A ,于是1-=P PB A k k . 进一步有:当)(x ϕ是多项式时,1)()(-=P B P A ϕϕ.特例:当A 相似于对角矩阵时,由1-=P PB A k k 容易计算方幂kA .2.求Fibonacci 数列通项:)1,0(1012==+=++a a a a a n n n解法 用矩阵形式表示递推关系式⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-+011101110111a a a a a a nn n n n⎪⎪⎭⎫ ⎝⎛=0111A 的特征值为2512,1±=λ,对应的特征向量为'⎪⎪⎭⎫ ⎝⎛±1,251,⎪⎪⎭⎫⎝⎛=-211λλAP P 由此可求nA ,即得⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+=nn n a 25125151. 3.利用矩阵相似对角化线性方程组【例】(人口流动问题)设某国人口流动状态的统计规律是每年有十分之一的城市人口流向农村,十分之二的农村人口流入城市.假定人口总数不变,则经过许多年以后,全国人口将会集中在城市吗? 解 设最初城市、农村人口分别为00,y x ,第k 年末人口分别为k k y x ,,则 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛00118.01.02.09.0y x y x ,⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛--118.01.02.09.0k k k k y x y x 记⎪⎪⎭⎫⎝⎛=8.01.02.09.0A ,可得⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛00y x A y x k k k . 为计算kA ,可考虑把A 相似对角化.特征多项式)7.0)(1(--=-λλλA E .1=λ对应的特征向量为)1,2(1'=α;7.0=λ对应的特征向量为)1,1(2'-=α取⎪⎪⎭⎫⎝⎛-==1112),(21ααP ,得⎪⎪⎭⎫ ⎝⎛-=-2111311P ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=-21117.00011112317.00011k kk P P A令∞→k ,有07.0→k ,得⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-→12223121110001111231k A ⎪⎪⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛3132)(1222310000y x y x y x k k 可见当∞→k 时,城市与农村人口比例稳定在1:2.定理7:设A 为实对称矩阵,则必存在正交矩阵T ,使得1T AT T AT -'=为对角阵.(注意:对角元恰好是A 的全体特征值) (常用于证明题)[证明思路]:利用对称变换的理论,等价于对称变换有n 个特征向量作成标准正交基(见教材).也可用数学归纳法,将实对称矩阵A 用两次正交相似变换化为对角阵.证明:设σ在n 维欧氏空间V 的标准正交基下的矩阵是A ,则σ是对称变换. 1=n 时,)(αL V =,取V e ∈=αα/1,则V e ∈)(1σ,有11)(ke e =σ,1e 即为所求. 设1-n 时命题成立(含义?),考虑n 的情形.设法把n V 分解成11-+n V V ,才能使用归纳假设:1)σ对称σ−−→−引理有实数特征值1λ(才能保证特征向量)(1R V ∈α,正交矩阵要求实数矩阵);2)取111/αα=e ,则是实.特征向量.设1V 是)(1e L 的正交补,则1V 是σ-子空间,维数为1-n ,且1|V σ是1V 的对称变换.于是利用归纳假设,1V 有1-n 个特征向量n e e ,,2 标准正交,联合n e e e ,,,21 即为V 的特征向量、标准正交基.另证:直接从矩阵角度证明,数学归纳法:1=n 显然. 设1-n 时命题成立,A 必有实数特征值1λ(特征向量n R ∈1α),取111/αα=e ,则也是实.特征向量.扩充成n R 的标准正交基n e e e ,,,21 ,以它们为列作n 级矩阵1T ,则1T 正交,且),,,(),,,(),,,(1121111112111211111n n n Ae T Ae T e T Ae Ae Ae T e e e A T AT T -----===' λ注意到),,,(),,,(112111112111111n n e T e T e T e e e T T T E -----=== ,故111e T -是E 的第一列,于是11AT T '形如⎪⎭⎫⎝⎛B C 01λ,而A 对称,11AT T '也对称,得0=C ,且B 是1-n 级对称矩阵. 由归纳假设,存在1-n 级正交矩阵Q ,使得),,(2n diag BQ Q λλ =',取212,001T T T Q T =⎪⎭⎫ ⎝⎛=可得T 是正交矩阵,并且),,(1111n diag Q B Q AT T λλλ ==⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛'=' 又AT T AT T 1-='与A 相似,有相同的特征值,于是n λλ,,1 是A 的全部特征值.《欧氏空间》复习一、主要概念 1)内积 2)长度 3)夹角 4)正交 5)度量矩阵 6)标准正交基7)正交矩阵 8)正交变换 9)正交补 10)对称变换 11)最小二乘法二、重要方法1.验证欧氏空间.[内积4条公理]2.利用内积计算长度、夹角;证明向量相等、长度关系式.3.求标准正交基.[可验证!先正交化再单位化,反之…错.]4.正交补的构造与求法.5.正交矩阵、正交变换、对称变换的应用与证明.[注意变换与矩阵的转化]6.求正交矩阵T ,使得1T AT T AT -'=为对角阵.(可验证!注意区别第五、七章的方法)7.利用正交线性替换化实二次型为标准形. *8.求最小二乘解. 三、思考题1.什么是内积?欧氏空间的哪些概念与内积有关?(长度、夹角、正交、度量矩阵、标准正交基、同构、正交变换、对称变换、正交补) 2.内积与标准正交基有何联系? 3.标准正交基有何作用? 4.如何构造子空间的正交补?5.正交矩阵、实对称矩阵各有哪些特点?6.正交变换、对称变换各有哪些特点和区别? 四、例题选讲 ◎ A 正定1>+⇒E A证1:A 正定⇒特征值E A i +⇒>0λ的特征值11>+i λ 于是1111)1()1)(1(21=⋅>+++=+ n E A λλλ 证2:A 正定⇒0),,,(11>=-i n diag AT T λλλ1111)1()1)(1()1,,1(),,(1211111=⋅>+++=++=+=+--- TT T Tdiag E T Tdiag E A n n n λλλλλλλ《期末总复习》一、考试题型填空、计算、证明、讨论或判断 二、复习依据作业(习题集)、例题、课外提高 三、各章主线 1.线性空间线性空间……定义、线性运算、基、维数、坐标子空间……两个封闭性、基、维数、生成子空间、扩充基、维数公式、和、直和 同构……构造、判定、意义 2.线性变换线性变换……验证(定义)、运算、关于基的矩阵及变换问题的转化、不变子空间 特征值与特征向量……证明、求法(可验证)、结论、对角化判定及求可逆矩阵C 值域与核……基、维数、两者维数关系 3.Jordan 标准形不变因子 初等因子 Jordan 标准形4.欧氏空间(注意:涉及的概念都与内积有关)内积……验证(四条公理)、长度、夹角、标准正交基(求法,可验证) 正交变换……判定、不变性、正交矩阵(可验证)对称变换……判定、特征值、对角化(求正交矩阵[可验证].区别第5章方法)四、注意事项1.几类矩阵的特点、区别与联系:……可逆矩阵、对称矩阵、合同矩阵、相似矩阵、正定矩阵、正交矩阵.2.线性变换问题与矩阵问题的转化……线性空间(通过基)、欧氏空间(通过标准正交基)3.可验证的几种计算类型特征值(迹)、特征向量(代入方程组)、标准正交基(两两正交、长度为1)、')正交矩阵(行[或列]向量组标准正交,或EAA=3、大、中、小队长标志要求各队长必须每天佩戴,以身作则,不得违纪,如有违纪现。