电力系统继电保护典型故障分析案例
- 格式:doc
- 大小:924.50 KB
- 文档页数:18
继电保护故障案例分析【摘要】在国家基础能源建设中,电力对于国民经济的发展起到了至关重要的作用。
随着人民生活水平的逐年提高,对于电力系统的运行也提出了高要求。
电力系统不断地扩容,是电网的结构设计日益繁琐,随之而来的是系统不断出现故障,严重地妨碍了电力系统的正常运营。
继电保护装置对于电力系统具有保护功能,主要体现在电力系统运行方式发生改变的时候,其会实时地将保护的性能以及定值有所改变,以维持机电保护系统的处在良性的运行状态。
本论文以案例解析的方式,对于继电保护的故障进行分析。
【关键词】继电保护;故障分析;故障智能信息系统电力系统的运行状况直接关乎到民生。
在一些不可抗拒的各种干扰因素的影响下,系统在运行的过程中,就容易在干扰的作用下而发生故障。
为了避免出现重大的事故而影响到电力系统的正常运行,就需要对电力系统的继电保护装置进行维护,以降低设备损坏率。
电力系统运行只有建立在安全性和高质量性的基础之上,才可以实现其良好的经济性。
然而在实际运营中,对于继电保护故障问题,具有针对性地处理。
本论文从实例的角度对于继电保护故障进行分析并提出有效策略。
一、电缆断面裸露所引起的继电保护故障(一)继电保护故障案例在重庆发生了一次继电保护故障。
某供电分公司架设的是220千伏电网,一名变电所的值班员在对变压器保护屏后面的地面进行清理的时候,由于拖布碰到了电缆的断面,随之出现了报警。
经过检查之后,才发现是直流接地信号继电器掉牌了。
一次设备并没有出现异常现象,当故障信息被传送到调度中心之后,按照调度中心的指令将220千伏的该线路断路器拉开,将旁路断路器合上之后,线路开始正常共组。
(二)分析故障发生的原因分析事故发生的原因,按照扩建工程的设计要求,主变压器要实现接地保护功能,那么就应该是旁断路器出现跳动。
从旁路综合重合闸屏到主变电器屏以及接线带,回路“R33”两芯也已经接线通电,两者之间需要采用零序保护,直接接入到2段时间继电器的互动触电位置。
第1篇一、前言随着我国电力工业的快速发展,电力系统的规模和复杂程度日益增加,故障跳闸事件也随之增多。
为了提高电力系统的安全稳定运行,降低故障跳闸对电力供应的影响,本总结对2023年度发生的故障跳闸事件进行了梳理和分析,旨在总结经验教训,为今后的电力系统运行和故障处理提供参考。
二、2023年度故障跳闸事件概述2023年度,我国电力系统共发生各类故障跳闸事件X起,其中主变压器故障跳闸X 起,线路故障跳闸X起,继电保护装置故障跳闸X起,其他故障跳闸X起。
以下将对部分典型故障跳闸事件进行详细分析。
三、典型故障跳闸事件分析1. 某热电厂2号主变冷却器全停机组跳闸事件(1)事件经过:2023年10月8日,某热电厂2号主变冷却器两路电源同时发生接地故障,导致2号主变冷却器全停,机组跳闸。
(2)原因分析:直接原因在于2号主变冷却器两路电源同时发生接地故障,间接原因包括:1)热网加热器等涉水系统检修时未采取有效措施,导致2号机2C热网循环水泵出口电动门电气部分进水,使B相发生接地故障;2)2号炉渣浆池搅拌器电源冗余配置,双电源切换装置闭锁机构被违规拆除,两路电源处于同时送电状态,导致2号机厂用380V系统A、B段电源合环;3)运行人员未在保护规定的60分钟内恢复2号主变冷却器运行。
(3)教训:加强设备检修管理,严格执行操作规程;加强人员培训,提高运行人员对主变冷却器保护动作逻辑的掌握程度。
2. 某电厂1号机组运行凝泵故障、备用凝泵联启后汽化导致机组跳闸事件(1)事件经过:2017年2月7日,某电厂1号机组因A凝泵机械密封损坏,B凝泵入口吸入空气,造成凝泵出力降低,除氧器水位低保护动作跳二台给水泵,触发锅炉MFT保护,机组跳闸。
(2)原因分析:A凝泵机械密封损坏导致凝泵出力降低,B凝泵入口吸入空气导致凝泵联启后汽化,最终触发除氧器水位低保护动作,导致机组跳闸。
(3)教训:加强设备巡检和维护,及时发现并处理设备缺陷;提高运行人员对设备异常情况的判断和处理能力。
电力系统继电保护典型故障分析电力系统继电保护是电力系统中的重要组成部分,它具有保护设备和系统安全运行的作用。
在实际运行过程中,电力系统继电保护可能会出现一些故障,影响系统的正常运行。
本文将对电力系统继电保护的典型故障进行分析,并提出相应的解决方案。
一、继电保护元件的故障继电保护元件包括接触器、继电器等,它们是继电保护系统中最基本的组成部分。
在使用过程中,这些元件可能会出现接触不良、线圈烧毁等故障。
这些故障可能会导致继电保护无法有效地进行判断和保护,从而使系统处于不安全的状态。
针对这种故障,首先应定期对继电保护元件进行检测和维护,及时更换有故障的元件。
在设计继电保护系统时应合理设置备用元件,以备不时之需。
二、继电保护装置的误动故障继电保护装置的误动是指在没有故障发生的情况下,保护装置错误地进行动作,导致对合闸或分闸装置的误动。
这种故障可能会给电力系统带来严重的危害,甚至导致事故的发生。
针对这种故障,首先应加强对继电保护装置的测试和校验,确保其工作可靠。
在设计保护装置时应合理设置过滤器和延时元件,以避免误动的发生。
三、继电保护的接线故障继电保护的接线故障是指在接线过程中出现的错误连接或松动等故障。
这种故障可能会导致保护装置无法正常工作,甚至对系统造成更严重的故障。
针对这种故障,首先应加强对继电保护接线的检查和维护,确保其接线正确可靠。
在接线过程中应做好记录和标记,方便日后的检修和维护工作。
四、继电保护与其他系统的干扰故障继电保护系统通常与其他系统共同工作,可能会受到其他系统的干扰。
当继电保护系统与通信系统共用一条电缆时,电缆中的干扰可能影响到继电保护的正常工作。
针对这种故障,首先应确保继电保护系统与其他系统的正常工作不会相互干扰。
在设计继电保护系统时应考虑到可能的干扰因素,采取相应的屏蔽和隔离措施,以消除干扰的影响。
电力系统继电保护在实际运行过程中可能会出现多种故障,影响系统的正常运行。
针对这些故障,我们可以采取一系列的措施,如定期检测和维护保护元件、加强测试和校验、加强接线检查和维护,以及防止与其他系统的干扰等,从而保障电力系统的安全运行。
电力系统继电保护典型故障分析案例线路保护实例一:单相故障跳三相某220kV线路发生A相单相接地故障,第一套主保护(CKJ-2)发出A相跳闸令,第二套主保护(WXB-101)发出三跳相跳闸令。
原因分析:由于两面保护屏的重合闸工作方式选择开关把手不一致造成。
保护是否选相跳闸,与重合闸工作方式有关。
当重合闸方式选择为单重和综重时,单相故障跳开单相,而当重合闸方式选择为三重和停用时,任何故障都跳开三相两套保护时一般只投入一套重合闸。
另一套保护屏的重合闸出口压板应在断开位置。
由于另一套保护的中重合闸方式选择放在停用位置,致使该保护发出三跳命令。
线路保护实例二:未接入外部故障停信开关量某变电所母线PT爆炸,CT与开关之间发生三相短路,电厂侧高频保护拒动。
由后备保护距离II段跳闸。
(3)故障发生后,由于对高频保护来说,认为是外部故障,变电所侧高频保护一直处于发信状态。
将电厂侧高频保护闭锁。
变电所侧认为母线故障,母差保护动作。
事故后检查发现,高频保护没有接入母差停信和断路器位置停信。
微机保护的停信接口:1、本侧正方向元件动作保护停信。
2、其它保护动作停信(一般接母差保护的出口)。
3、断路器跳闸位置停信。
线路保护实例三微机保护没有经过方向元件控制而误动出口。
问题:整定中,方向元件没有投入。
硬压板,软压板(由控制字整定)1、二者之间具有逻辑“与”的关系。
缺一不可。
2、硬压板:保护屏上的实际压板。
3、软压板:在软件中通过定值单中的控制字的某位为1或0控制保护功能的投退。
线路保护实例四:1993年11月19日,葛双II回发生A相单相接地故障,线路两侧主保护60ms动作跳开A相。
葛厂侧过电压保护(1.4U N/0.3S)于420ms动作跳开三相,重合闸被闭锁。
联切葛厂两台机投水阻600MW,切鄂东负荷200MW。
事故原因分析1、PT接线图2、接线的问题:(1)PT三点接地,违反《反措要点》,PT二次侧中性线只允许一点接地。
电力系统继电保护典型故障分析电力系统继电保护是保障电力系统安全稳定运行的重要组成部分,其作用是在电力系统出现故障时及时采取措施,保护系统设备和电网的安全运行。
继电保护系统本身也可能发生故障,导致了正常的电力系统通常运行。
本文将重点分析电力系统继电保护的典型故障,以及应对这些故障的措施。
希望通过本文的分析,能够帮助电力系统继电保护工程师和相关人员更好地了解继电保护系统故障的原因和解决方法。
一、继电保护系统的基本原理1.测量:继电保护系统通过电流互感器、电压互感器等传感器对电力系统中的电流、电压等参数进行测量,获取实时的电力系统运行参数。
2.比较:继电保护系统将测量得到的参数与预设的电压、电流等阈值进行比较,并根据比较的结果判断电力系统是否处于正常运行状态。
3.判断:当继电保护系统检测到电力系统出现故障时,会根据故障的性质和位置进行判断,确定是否需要对电力系统进行保护动作。
继电保护系统是复杂的电气设备,它的运行涉及到电力系统的多个方面,包括电流、电压、频率等参数的测量和分析,因此也容易发生各种故障。
下面我们将对继电保护系统的典型故障进行分析。
1.测量误差导致的故障继电保护系统中使用的电流互感器、电压互感器等传感器设备可能出现测量误差,这是导致继电保护系统故障的常见原因之一。
测量误差可能是由于传感器设备老化、安装位置不当、外部干扰等多种原因导致的。
当传感器设备出现测量误差时,会导致继电保护系统对电力系统状态的判断出现偏差,甚至错误地对电力系统进行保护动作,从而影响到电力系统的正常运行。
针对测量误差导致的故障,我们可以采取以下措施进行解决:-定期对传感器设备进行校准和检测,确保传感器设备的精度和准确性;-合理安排传感器设备的安装位置,避免外部干扰;-加强对传感器设备的维护保养,延长设备的使用寿命。
2.逻辑判断错误导致的故障继电保护系统中的逻辑控制单元是核心部分,它负责对测量得到的参数进行分析和判断,并根据判断结果执行相应的保护动作。
继电保护作业典型案例【案例1】××地区供电局保护人员试验返送电造成人员触电死亡专业:继电保护事故类型:人身触电1997年3月13日,XX公司110kVXX变电站进行10kV开关及电容器设备春检予试。
上午11时25分,办理了10kV电容器间设备清扫、刷漆工作票的许可手续之后,工作负责人宁X X 安排杨X X 在电容器棚内对电抗器、电容器、放电PT 支柱瓶等进行清扫及刷漆工作。
此后,工作票签发人贾X X 又安排进行电容器及其设备保护试验工作。
保护负责人李XX、成员王XX、王XX三人在电容器开关柜上做完过流、速断、差流保护试验后,王X X 重新接好做过电压保护试验的接线,把试验接在A611、C611端子上,未打开放电PT的二次电缆线。
约12时5分左右,当王X X给上试验电源时、刷漆工崔X X触电,瘫倒电抗器和放电PT中间。
后送医院经抢救无效死亡。
暴露问题:1、保护人员进行电容器电压继电器校验时违反了《国家电网公司电力安全工作规程》第10.15条关于“电压互感器的二次回路通电试验时,为防止由二次侧向一次侧反充电,除应将二次回路断开外,还应取下电压互感器高压熔断器或断开电压互感器一次刀闸”的规定,没有断开通往电容器放电PT的二次回路就通电试验,造成二次侧向一次侧反充电,致使人身触电死亡是这次事故的主要原因。
2、电容器设备清扫、刷漆工作在工作票上,对PT二次侧可能返送电的问题,未采取明显断开点的措施,致使设备停电的技术措施不完善,也是事故发生的重要原因之一。
3、保护工作负责人责任人责任心不强,监护不认真,致使保护工作人员在工作过程中错误的试验做法未得到及时纠正,也是原因之一。
防范措施:1、在PT二次回路加装联锁接点,母线刀闸拉开后,PT二次回路要断开。
2、多班组作业时,工作总负责人要协调好各专业人员的工作,密切配合。
3、现场作业中各类人员要各负责任,认真做好各自范围的工作,相互之间要互相监督和提醒,及时纠正违章行为。
电力系统继电保护故障分析与处理措施单位省市:内蒙古自治区单位邮编:010000摘要:随着科技水平的快速提高,生活、生产用电需求日益增加,同时对供电质量要求同步提升。
电力作为社会发展、科技进步的驱动力,对加快社会经济发展,提高人们生活水平具有重要意义。
继电保护为电力系统的重要组成设备,通过继电保护设备可实现故障的及时发现、处理,降低由于故障产生的损失,确保电力设备安全及供电质量。
关键词:电力系统;继电保护;故障分析;故障处理1电力系统继电保护故障分析1.1运行过程故障运行过程故障是电力继电保护在运行时会受到二次回路、定值整定、压板投退、通道状态等问题的干扰,使变电无法达到正常运行。
诸如此类的问题发生时,需要及时进行处理,否则将会导致继电保护装置非正常运行,安全隐患大大增加。
1.2触电保护设备故障触电保护设备发生故障的原因有很多,如可能是由于设备自身内部构件质量存在问题,使得在实际运转过程中频繁地出现问题,进一步影响电力行业的正常工作,或者是由于在前期施工过程中施工人员操作不当,也会引发后续触电保护设备运行中出现问题,严重的话还会威胁到其他继电设备的安全性与可靠性。
除此之外,倘若继电保护设备绝缘出现了故障,同样会引发较大问题,如产生较大电流导致设备出现发热造成损坏。
1.3开关设备故障一般来说,开关柜的故障也是一种常见的故障问题。
出现这种故障的主要原因是维修人员在日常检查实践中只检查设备外观,而没有对设备进行全面检查,导致设备出现故障问题,从而导致电力系统故障。
1.4电流互感饱和将致使运行中的电力系统产生短路问题,出现电力系统电流负荷的突增,产生系列故障。
如故障发生时,电流互感器与短路电流间存在线性正相关,过大的电流将致使继电保护装置灵敏度下降,此时继电保护设备对于短路故障指令将产生延时现象。
2电力继电保护故障的处理措施2.1故障排查处理技术故障排查处理技术通常是运用继电保护装置的排查技术来分析与排查电力系统继电保护装置中的各个故障点,实时勘测装置中的故障位置并采取针对性的方案进行处理,由此可见,加强继电保护装置的故障排查处理技术的应用可以有效分析与处理继电保护装置的故障。
电力系统继电保护典型故障分析电力系统继电保护是保障电网安全运行的重要保障措施,但由于各种因素的影响,时间长了就会出现各种故障。
下面就常见的故障进行分析,以便增加管理和处理的经验。
1. 继电保护误动继电保护误动是继电保护常见的故障之一,一般因为继电保护本身故障或者被保护设备接线错误或运行不稳定,造成误动。
误动的继电保护会导致原系统设备断电,甚至整个系统的停电。
主要是因为继电保护三个要素(电源、电流、电压)中的一个或多个出现问题时造成的。
故障处理要求对继电保护系统的电源、电流、电压进行全面的检查,并及时排除各种故障,同时加强对继电保护设备的管理,方便及时发现和排除故障。
继电保护漏动是继电保护系统常见的故障类型,它一般是因为装置或线路的绝缘损坏、变形或老化,继电保护附加档错误等引起,会影响到继电保护的正常运行,造成电网运行事故。
处理任务是针对使用环境采取一系列措施,包括加强对接线排布维护管理,对附加档混送、多送进行特别注意,对维护次数特别密集的继电保护装置进行重点检查。
3. 继电保护开断装置损坏继电保护的开断装置是为了保障电力装置的安全运行而设立的,如果发现继电保护的开断装置损坏,则需要及时进行维修或更换工作,可以保证设备运行过程中的安全。
继电保护系统要求刚性高,运行平稳,在检查继电保护时必须对其进行严格要求性检查。
继电保护接线错误是继电保护失去保护作用的一种故障,会对系统造成很大的风险。
因此,在安装和检查继电保护时应该扎实规范地进行继电保护装置的接线检查。
特别是在新设备施工时,应先制定好防止安装继电保护接线错误的措施,如对开关、接地等进行明确号码牌之类的标识。
5. 继电保护撞击、振动导致失效继电保护在运行过程中,往往会受到撞击和振动引起的故障,例如起动发动机时,发动机产生的较大冲击力会造成继电保护的故障;在移动设备运输时,由于振动造成继电保护的失效。
因此,需要采取相应的措施防止继电保护设备受到撞击和振动的影响,避免继电保护设备的失效。
继电保护故障案例分析案例介绍本篇文档将介绍一起继电保护故障的案例,并对其进行详细分析。
该案例发生在某电力公司的变电站中,涉及到变压器和其继电保护装置。
案例分析背景该电力公司的变电站中有一台变压器(编号为T1),其额定容量为20MVA,额定电压为110kV/10kV。
为了保证变压器的运行安全和稳定,配备了一套继电保护装置(包括过流保护和差动保护等某些方案)。
问题描述在某一天,变电站设备检修结束后进行试运行。
当试运行到T1时,出现了一个问题:变压器的差动保护装置动作,导致该变压器停运。
经检查发现,该变压器绝缘性能良好,且差动保护装置没有故障报警信息。
随后,工程技术人员对该故障进行了全面分析,并整理出具体分析如下。
故障分析•第一步,查看稳定装置的相序连接。
稳态三相电流值分别为31.33A、31.12A和-62.45A,三相电压为110.3kV、-237.4V和127.59V。
从电流相序可以看出,稳态合流装置正常。
•第二步,分析相序跳变时的电流、电压变化情况,若电流、电压变化无明显跳跃,则差动保护装置分别正常。
通过现场实验,发现差动保护装置分别正常。
•第三步,分析差动保护配合出现故障的时间。
根据现场测量数据和事件记录,发现故障不是因为差动保护出现故障。
•第四步,分析直流盘跳闸记录。
直流盘动作时,交流端谐波变化较大,交流端形成慢速残余电流,直流盘动作的原因是距离保护。
•第五步,分析距离保护动作的原因。
通过现场实验和测量,发现距离保护动作的原因是在150米导线周围有一处悬空的小钢棒,可能是放在杆上的工具未及时清理干净而遗留下来的,该钢棒导致了谐波泄漏电流,触发了距离保护。
结论经全面分析,该变压器与其差动保护装置无故障。
该变压器停运是由于距离保护动作所致,导致差动保护装置发生不必要的动作。
此外,该故障还提示我们要加强现场管理,保持变电设备的清洁,并加强对工器具的管理,以避免出现悬挂在电线周围的钢棒等异物对设备的影响。
电力系统继电保护典型故障分析电力系统继电保护是电力系统中最重要的安全保护措施之一,为电力系统提供了重要的保护和控制功能。
但是在实际运行中,继电保护也会出现故障和失效的情况,严重影响到电力系统的稳定和安全运行。
因此,对继电保护故障的分析和处理非常的重要。
本文将详细介绍电力系统继电保护的典型故障及其原因分析。
1. 开合闸失灵开合闸失灵是一种极为常见的继电保护故障,主要原因是触头接触不良、脱扣或磨损严重、机构卡滞以及继电保护设备的故障等。
在实际运行中,开合闸失灵往往是由多种因素共同导致的。
因此,对于开合闸失灵的处理,需要综合考虑各种因素。
2. 误动作故障误动作故障是指继电保护在电力系统正常运行时误动作的情况。
误动作故障可能会导致系统的不必要的停机,甚至对系统造成不良的影响。
误动作故障的主要原因是电路变更、信号衰退、噪声干扰以及其他设备的影响等。
3. 缺相故障缺相故障是指继电保护在电力系统中出现相间电压缺失时,无法正常工作的情况。
缺相故障的主要原因是输入电源中相线断开或者过压、过流等原因导致的电源波形变形。
在电力系统中,缺相故障极易引发其他故障,例如线路接地故障、过载及短路等。
4. 过流保护误动作过流保护是电力系统中常用的一种保护装置,主要用于保护输电线路等设备。
但是在实际应用中,过流保护也会出现误动作的情况。
误动作的主要原因是电源电压波形畸变、补偿电容器引起的谐波、相序错位及浪涌等。
因此,针对过流保护误动作的问题,需要对电源波形进行分析,并对保护装置进行合理的设置。
5. 量测误差量测误差指的是继电保护装置在测量电力系统各种参数时误差较大的情况。
量测误差的主要原因是继电保护装置的参数设置不正确、测量电流和电压传感器的精度不够、测量误差等。
针对量测误差问题,需要对继电保护装置进行校准,确保其精度符合要求。
综上所述,电力系统继电保护故障的原因较为复杂,涉及电源波形、电路变更、信号干扰等多种因素。
因此,在实际运行中,需要综合考虑各种因素,对故障进行精细化的分析和处理,确保电力系统的稳定运行。
500kV变电站继电保护故障及解决对策分析摘要:在电力系统中,500kV变电站能够为继电保护、电力调度、计算机通信等提供信息交换的支持,其中继电保护与系统运行有着密切联系,直接决定了电力运行的安全性。
随着当前社会领域电力需求的大幅增长,为了在用电高峰期仍然保证用电稳定性和用电安全,通过在500kV变电站设置继电保护装置,能及时发现变电站运行故障并及时预警。
在本文的分析中,为进一步发挥500kV变电站在电力系统内部的价值,主要根据500kV变电站继电保护装置在运行阶段存在的故障,提出了相应的解决对策,以供参考。
关键词:500kV变电站;继电保护故障;解决对策一、500kV变电站继电保护的运行原则(一)安全性500kV变电站在运行时,继电保护装置主要以维护电力系统的安全性及稳定性作为主要的目标,在电力系统的运维阶段,安全性是必须遵循的一项原则,在检修过程中需要始终将安全放在首要位置。
针对电力设备的检修工作开展,需要检修人员充分了解不同电力设备的特点,这是保障检修工作安全性的重点。
结合电力系统的运行情况,在出现故障后,在继电保护的作用下将自动形成电路开关,能够对线路运行安全性提供保障,系统会对电力设备出现的故障展开及时有效处理,在最短时间内让变电站恢复正常运行的状态,使得电力设备因故障损坏的概率大幅降低,这也是继电保护安全性的主要体现。
(二)先进性在现代科技不断进步的背景下,继电保护系统的技术水平需要体现出与时俱进的特点,只有这样才能更好地发挥继电保护的作用。
因此500kV变电站在运行过程中,需要了解并掌握最前沿的技术手段,结合市场发展现状,做好对继电保护系统的维护、调试和更新,确保能最大限度发挥出继电保护系统的作用。
(三)整体性在电力系统内部存在大量设备,设备类型多样且数量庞大,因此需要根据电力系统运行的实际要求,合理开展检修工作。
在具体落实检修工作时,需要针对继电保护的工作情况展开全面调查,关注继电保护系统的整体性,根据电力系统整体性要求展开科学规划,以此为基础分步骤落实检修,确保继电保护能够发挥出正常的功能,并实现对变电站运行的有效维护。
S42 | ・电力电气专刊・2007年第1期/总第2期电气安全连,并保证其接地的可靠性及电气的连续性。
严禁利用存储、输送可燃性介质的金属管道、设备以及与之相关的金属构件进行接地连接。
3.接地干线、接地标识接地干线长度若超过10m或周围有强磁场设备,应采取屏蔽措施,将接地干线穿钢管保护,或采用屏蔽电缆,钢管或电缆的屏蔽层应单端接地。
如接地干线在室外走线并距离超过10m,应采用双层屏蔽,内层单点接地,外层两端接地,以防雷击及电磁脉冲的干扰。
对隐蔽工程,包括在接地网上的接入点和接地基本位置应设置标识,接地线应有颜色标识:接地系统的颜色应为绿色或绿黄色。
接地连接的要求1.连接电阻和接地电阻连接电阻是指从控制系统的接地端子到总接地板间的导体及连接点电阻的总和,DCS控制系统的连接电阻应小于1Ω。
接地电阻是指接地极对地电阻和总接地板、接地总干线及接地总干线两端的连接点电阻之和,DCS控制系统的接地电阻为工频接地电阻,应小于4Ω。
2.接地连线的规格接地系统的导线应采用多股绞合铜芯绝缘电线或电缆。
根据连接设备的数量和长度,可参考下表数据范围进行接地线的截面选用。
3.接地连接结构的要求DCS系统所有接地连线在接到接地汇流排前均应绝缘良好,所有接地分干线在接到接地汇总板前均应绝缘良好,所有接地干线在接到总接地板前均应绝缘良好。
接地汇流排、接地汇总板、总接地板应用绝缘支架固定。
接地系统的各种连接应保证良好的导电性。
接地连线、接地分干线、接地干线、接地总干线与接地汇流排、接地汇总板的连接应采用铜线片和镀锌钢质螺栓,并采用防松和防滑脱件,以保证连接的牢固可靠或采用焊接。
结束语在DCS控制系统的调试运行过程中,从多次排除故障的经验可以看出,接地系统是否完好对DCS控制系统的安全、正常运行非常关键。
不断从该系统的接地完善过程中总结经验、查找技术规范和相关安装要求,逐步完善了接地系统,从而保障了DCS系统安全、稳定运行。
表 接地线截面选用数据。
电力系统继电保护典型故障分析案例————————————————————————————————作者:————————————————————————————————日期:电力系统继电保护典型故障分析案例 线路保护实例一:单相故障跳三相某220kV 线路发生A 相单相接地故障,第一套主保护(CKJ-2)发出A 相跳闸令,第二套主保护(WXB-101)发出三跳相跳闸令。
重合闸出口停用三相综合单相停用三相综合单相原因分析:由于两面保护屏的重合闸工作方式选择开关把手不一致造成。
保护是否选相跳闸,与重合闸工作方式有关。
当重合闸方式选择为单重和综重时,单相故障跳开单相,而当重合闸方式选择为三重和停用时,任何故障都跳开三相两套保护时一般只投入一套重合闸。
另一套保护屏的重合闸出口压板应在断开位置。
由于另一套保护的中重合闸方式选择放在停用位置,致使该保护发出三跳命令。
线路保护实例二:未接入外部故障停信开关量某变电所母线PT 爆炸,CT 与开关之间发生三相短路,电厂侧高频保护拒动。
由后备保护距离II 段跳闸。
电厂系统变电所F (3)母差高频保护母差故障发生后,由于对高频保护来说,认为是外部故障,变电所侧高频保护一直处于发信状态。
将电厂侧高频保护闭锁。
变电所侧认为母线故障,母差保护动作。
事故后检查发现,高频保护没有接入母差停信和断路器位置停信。
微机保护的停信接口:1、本侧正方向元件动作保护停信。
2、其它保护动作停信(一般接母差保护的出口)。
3、断路器跳闸位置停信。
线路保护实例三微机保护没有经过方向元件控制而误动出口。
问题:整定中,方向元件没有投入。
硬压板,软压板(由控制字整定)1、二者之间具有逻辑“与”的关系。
缺一不可。
2、硬压板:保护屏上的实际压板。
3、软压板:在软件中通过定值单中的控制字的某位为1或0控制保护功能的投退。
线路保护实例四:1993年11月19日,葛双II回发生A相单相接地故障,线路两侧主保护60ms动作跳开A相。
继电保护误动故障案例分析与处理摘要:文章通过对一起10 kV供电线路送电不成功的原因查找,分析了三段式馈线保护在10kV供电系统中的配置情况,根据存在的问题提出了解决办法。
关键词:继电保护;误动;分析处理1 故障现象及经过漾泉蓝焰煤层气公司35 kV变电站是2012年7月才投入运行的一座新变电站,采用一台主变单母线不分段运行方式,该站共有5条10 kV出线,总负荷约为3 200 kW,馈线保护装置选用了北京清大继保电力技术有限公司的THL-302A 型数字线路保护测控装置。
2012年11月10日07:20,10 kV南二区624线路过流一段保护动作跳闸,运行人员对开关、断路器和保护装置进行检查均正常,对线路进行巡查,最终确定了故障为线路落鸟造成相间短路,故障点找到且已排除,09:02对线路试送电,试送不成功。
保护动作数据如表1,波形如图1所示。
南二区624;事件类型:保护事件;事件时间:2012/11/10-09:02:17.0562 故障原因分析10 kV南二区624线路全长15.3 km,接带22台变压器,单台最大容量315 kV A,最小80 kV A,总容量为2 480 kV A,该线路平均负荷约为650 kW,平均电流52 A。
该线路电流互感器采用两相星形接法,变比为200/5,选用的THL-302A 型线路保护装置,具有三段低电压闭锁方向过流保护,低电压闭锁方向反时限过流保护,三相一次自动重合闸、失压保护、测控及现场总线通信等功能,过流保护的低电压闭锁和方向闭锁可单独投退。
南二区624线路保护定值单如表2所示。
10 kV架空线路常见故障有单相接地、两相和三相短路等故障。
该线路所投过流I段、II段保护可以保护线路相间短路故障,绝缘监察配合系统专门配置的小电流接地选线装置可判定单相接地故障,所以南二区624回路所配保护种类基本合理,能够满足线路出现的各种故障对于继电保护的需求。
上面的分析表明继电保护配置能够满足线路故障的需求,下面对继电保护的整定计算进行检查分析:空载变压器投入送电时会出现很高的励磁涌流,其幅值可以达到变压器额定电流的6~8倍同时含有大量的非周期分量和高次谐波分量,对于线路接带的多台变压器,每台变压器的励磁涌流对于整条线路的影响会因安装位置和距离电源侧的长度有所不同,南二区线路总长15.3 km,线路中后段安装的变压器对整条线路的启动电流影响较小,根据以往的经验线路的送电冲击电流按照所有变压器额定电流的3倍计算,即:I=3×2 480/10/1.732≈429.6 A,折算到二次侧i=429.6/40≈10.7 A。
电力系统继电保护故障分析与处理李博摘要:继电保护对于广大群众用电安全和稳定用电都有着重要的影响。
在当前社会发展中,继电保护故障的频繁发生,也在很大程度上影响了电力系统的正常运转,严重的甚至会对生产和生活带来不利影响。
为此,笔者将在本文对电力系统继电保护故障进行分析,并对处理故障的具体方法进行介绍。
关键词:电力系统;继电保护;故障分析与处理当前我国已经发展为了世界经济大国,因此整个国家和社会的发展过程中更是离不开电力资源的帮助与支持,不管进行怎样的社会生产,还是日常的生活中,都应该在电力支撑下开展,所以在某种程度上说,电力系统的安全性和稳定性,更是确保国家飞速发展的重要前提。
但是经过笔者的实际研究,确定继电保护故障的出现,影响了生产工作的顺利开展,同时还在很大程度上限制了人们的生活水平提升。
对电力系统继电保护故障故障的解决,也是当前电力系统发展中最需要引起关注的问题。
1继电保护故障产生的原因就目前的研究情况来看,电力系统的继电保护故障产生有三方面的原因:第一是装置自身的老化。
继电保护装置的材料有自身的寿命,随着时间的推移,其材料老化会越来越严重,所以装置在运行的过程中会因为自身材料性能下降出现故障。
第二是继电保护装置受到系统不稳定电压或者电流的影响出现故障。
在某些特殊的时刻,电力系统的电压或者电流会发生暂时性的紊乱,由此会形成继电保护故障。
第三是外力破坏导继电保护故障。
因为自然力或者是人为力的破坏会造成继电保护装置的运行异常,所以此异常会导致继电保护装置发生故障。
2电力系统继电保护故障分析2.1电压互感器二次回路故障分析在电力系统的继电保护装置中,电压互感器和电流互感器做为二次回路,是继电保护运行过程中不可或缺的重要组成设备。
但是,电压互感器和电流互感器在二次回路的运行过程易受各种因素的影响而出现故障带来严重后果。
实际运行过程中,电压互感器二次回路的故障主要表现为以下几方面:二次回路中性点存在较多连接不当的情况,而连接不当多是因为接线施工工艺不合理;三角电压回路出现断线,一旦出现电压回路断线,就会导致零序保护发生故障;PT 二次失压,是电压互感器二次回路运行过程中最常见的故障之一。
继电保护所典型事故、事件案例讲解一、电网事故:(一)“2.24”220kV普吉变电站误接线导致母差失灵保护误动的一般电网事故1、事故经过简介:2004年2月24日,220kV普吉变电站110kV普张线高阻接地(线路断线),导致220kV#2、#3主变中性点过流跳闸,同时,220kV母差失灵保护动作跳220kV 开关(包括#1主变高压侧开关),此次事故造成220kV普吉站全站失电,普吉发电厂减列。
事故分析表明:110kV普张线147开关保护正确动作,220kV#2、#3主变保护正确动作,但220kV母差失灵保护属于误动,保护误动使220Kv#1变压器停电,导致35kV负荷失电。
2、原因分析:220kV#2、#3主变保护更换施工过程:在进行#1主变保护更换过程中,施工人员发现主变保护动作起动母差失灵保护回路接线错误,及时联系设计人员,设计人员同意更改回路,并将发放#2、#3主变的设计更改通知单,但在随后的施工中,设计人员一直未发更改通知单,我所施工人员即自行更改相关回路,出现更改错误。
由于保护人员在进行#1主变保护装置更换过程中,将220kV#2、#3主变保护启动母差失灵保护的回路接线接错,导致保护出口动作起动元件短接,使母差失灵保护仅变为有流起动,同时存在母差失灵保护装置低电压闭锁继电器接点粘死,导致母差失灵保护误动,引起事故范围的扩大。
3、暴露问题:(1)继电保护工作人员在对主变保护进行改造时,工作责任心不强,未经设计人员发送回路更改通知单,就擅自更改回路接线;且在施工完毕后不认真、细致地检查回路;致使启动失灵回路出现接线错误。
(2)加强保护装置投产前的验收工作,对每一个关键回路都要进行认真、细致的检查。
4、防范措施:(1)工作负责人要对工程每个环节都认真把握,特别是对关键环节的把握;(2)在施工过程中要严格按照图纸施工,对回路更改要遵守相关规定,不得擅自更改回路;(3)工作中要严格按照相关作业指导书施工;(4)验收过程中要严格把关;(5)加强员工技术培训;(6)管理手段上要采取有效措施;(7)加强工程的技术监督和检验管理,对110kV以上验收所内必须先进行初验,合格后才能申请验收,并且要有试验报告;(8)生计室要加强现场施工安全管理,重点现场要亲自监督。
继电保护故障分析与处理方法摘要:继电作为电力系统正常运转的决定性因素之一,加强继电的保护工作,对整个电力系统具有不可替代的重要意义。
关键词:继电保护;故障;处理方法引言继电保护装置是现代电力系统安全的基础,是预防供电过程中大规模停电的重要技术方式。
随着现代城市改建、扩建脚步的不断加快,我国电力系统也进行了大面积的改造。
通过技术改造实现了城市供电的稳定与安全。
作为电力系统中的重要组成部分,继电保护装置故障的发生将影响电力设备的安全、影响电力系统供电的稳定性与安全性。
一、继电保护常见的故障分析1、开关保护设备的选择不当由于多数的高负荷、密集的地区都需要为配电建立开关站,这种供电模式即是变电所—开关站—配电变压器,选择有效的开关保护设备也有重要的意义,一些开关站尚未具有自动化继电保护能力,可以采取负荷开关来对电力系统进行保护。
2、运行故障在继电保护中,运行故障是最为常见的,也是危害性最大的一种故障形式。
例如在电路网络的长期运行中,局部温度过高有可能导致继电保护装置失灵,具体表现为:主变差动保护开关拒合的误动等在现阶段的继电保护工作中,电压互感器的二次电压回路故障较为常见,也是电力网络运行中的薄弱环节之一,(如下图)电压互感器是继电保护测量装置的起始点,所以其与继电保护运行故障的引发具有重要的联系。
3、电流互感饱和故障电流互感器的饱和对电力系统继电保护的影响是非常之大。
随着配电系统设备终端负荷的不断增容,如果发生短路,则短路电流会很大。
如果是系统在靠近终端设备区的位置发生短路时,电流可能会达到或者接近电流互感器单次额定电流的100倍以上。
在常态短路情况下,越大电流互感器误差是随着一次短路电流倍数增大而增大,当电流速断保护使灵敏度降低时就可能阻止动作。
在线路短路时,由于电流互感器的电流出现了饱和,而再次感应的二次电流小或者接近于零,也会导致定时限过流保护装置无法展开动作。
当在配电系统的出口线过流保护拒绝动作时而导致配电所进口线保护动作了,则会使整个配电系统出现断电的状况。
电力系统继电保护典型故障分析案例一、引言电力系统继电保护是电力系统中非常重要的组成部分,其主要功能是在电力系统发生故障时,迅速切除故障区域,保护电力设备和人员的安全。
本文将通过分析几个典型的电力系统继电保护故障案例,来探讨故障原因、分析方法以及解决方案。
二、故障案例分析1. 案例一:变电站电流互感器故障故障描述:某变电站A相电流互感器发生故障,导致保护装置误动作,引起了系统的不必要停电。
故障原因:经过仔细分析,发现电流互感器内部绝缘失效,导致测量误差增大,进而引起保护装置误动作。
解决方案:更换故障的电流互感器,并进行绝缘测试,确保其正常工作。
2. 案例二:线路短路故障故障描述:某条输电线路发生短路故障,但保护装置未能及时切除故障区域,导致系统停电。
故障原因:经过分析,发现保护装置的动作时间设置过长,未能及时检测到短路故障并切除。
解决方案:调整保护装置的动作时间,使其能够及时检测到短路故障并切除。
3. 案例三:发电机过电流故障故障描述:某台发电机出现过电流故障,导致发电机停机维修。
故障原因:经过分析,发现发电机内部绝缘失效,导致过电流现象。
解决方案:更换发电机的绝缘材料,并进行绝缘测试,确保其正常运行。
三、故障分析方法1. 实地调查:对发生故障的设备和现场进行详细的调查,了解故障发生的具体情况,包括设备的工作状态、环境条件等。
2. 数据分析:收集故障发生时的各种数据,如电流、电压、功率等,通过对数据的分析,找出异常现象和规律。
3. 故障模拟:利用电力系统模拟软件对故障进行模拟,通过模拟结果来验证故障原因和解决方案的可行性。
4. 经验总结:将已解决的故障案例进行总结,形成故障分析经验,为今后类似故障的处理提供参考。
四、故障解决方案1. 及时维护:定期对继电保护设备进行检修和维护,确保其正常工作。
2. 技术改进:引入先进的继电保护装置和技术,提高系统的故障检测和切除能力。
3. 增加备用设备:在关键位置增加备用设备,以备发生故障时能够快速切换。
继电保护常见事故的种类(上)随着电力系统的不断发展,大容量机组、高电压陆续投入运行,电力设备继电保护体系越来越庞大了,继电保护的原理结构也越来越复杂。
电力生产过程中,由于受不可抗拒的外力破坏、设备存在缺陷、继电保护误动、运行人员误操作、误处理等原因,常常会发生设备事故或故障。
而处理电气设备事故或故障是一件很复杂的工作,它要求检修人员具有良好的技术素质和一定的检修技能,并熟悉电气事故处理规程,系统运行方式和设备性能、结构、工作原理、运行参数等技术法规和专业知识。
为了能够正确判断和及时处理电力生产过程中发生的各种电气设备事故或故障,掌握处理电气设备事故或故障的一般方法。
本文主要介绍一下继电保护事故的类型、事故处理的基本思路和方法,通过相关规程的应用和经验交流以达到提高继电保护从业人员本专业事故处理能力的目的。
二.继电保护事故的种类发生继电保护事故的原因是多方面的,当继电保护设备或二次设备出现问题以后,有时很难判断故障的根源,只有找出事故的根源,才能有针对性的加以消除。
所以,找到故障点是问题的第一步。
继电保护的分类对现场的事故分析处理是非常必要的。
但是分类的标准不易掌握,因为对于运行设备和新安装设备在管理方面的事故划分显然不同,人们理解和运用标准的水平也有差别。
通过多年的运行、检修经验和事故案例的总结,将现场的事故归纳为以下几种。
(一)定值的问题(二)装置元器件的损坏(三)保护装置程序有问题(四)自然因素引起的故障(五)接线错误(六)抗干扰性能差(七)振动引起的故障(八)误碰与误操作引起事故(九)工作电源的问题(十)TV、TA及其二次回路的问题(十一)其他二次回路的问题(十二)保护性能的问题(十三)设计的问题(一)定值的问题1.整定计算的错误继电保护设备更新较快,由于设备厂家提供的技术资料不全,在设备特性尚未被人们掌握透彻的情况下,继电保护的定值不容易计算准确。
由于电力系统的参数或元器件的参数的标称值与实际值有差别,有时两者的差别比较大,则以标称值算出的定值较不准确。
电力系统继电保护典型故障分析案例线路保护实例一:单相故障跳三相某220kV线路发生A相单相接地故障,第一套主保护(CKJ-2)发出A相跳闸令,第二套主保护(WXB-101)发出三跳相跳闸令。
原因分析:由于两面保护屏的重合闸工作方式选择开关把手不一致造成。
保护是否选相跳闸,与重合闸工作方式有关。
当重合闸方式选择为单重和综重时,单相故障跳开单相,而当重合闸方式选择为三重和停用时,任何故障都跳开三相两套保护时一般只投入一套重合闸。
另一套保护屏的重合闸出口压板应在断开位置。
由于另一套保护的中重合闸方式选择放在停用位置,致使该保护发出三跳命令。
线路保护实例二:未接入外部故障停信开关量某变电所母线PT爆炸,CT与开关之间发生三相短路,电厂侧高频保护拒动。
由后备保护距离II段跳闸。
(3)故障发生后,由于对高频保护来说,认为是外部故障,变电所侧高频保护一直处于发信状态。
将电厂侧高频保护闭锁。
变电所侧认为母线故障,母差保护动作。
事故后检查发现,高频保护没有接入母差停信和断路器位置停信。
微机保护的停信接口:1、本侧正方向元件动作保护停信。
2、其它保护动作停信(一般接母差保护的出口)。
3、断路器跳闸位置停信。
线路保护实例三微机保护没有经过方向元件控制而误动出口。
问题:整定中,方向元件没有投入。
硬压板,软压板(由控制字整定)1、二者之间具有逻辑“与”的关系。
缺一不可。
2、硬压板:保护屏上的实际压板。
3、软压板:在软件中通过定值单中的控制字的某位为1或0控制保护功能的投退。
线路保护实例四:1993年11月19日,葛双II回发生A相单相接地故障,线路两侧主保护60ms动作跳开A相。
葛厂侧过电压保护(1.4U N/0.3S)于420ms动作跳开三相,重合闸被闭锁。
联切葛厂两台机投水阻600MW,切鄂东负荷200MW。
事故原因分析1、PT接线图2、接线的问题:(1)PT三点接地,违反《反措要点》,PT二次侧中性线只允许一点接地。
(2)开口三角的N与两星形中性线相连,违反《反措要点》,PT二次回路与三次回路独立。
(3)多点接地造成PT开口三角经电阻短路。
(4)电压互感器两组星形中性线在开关厂相连,违反《反措要点》,中性线从开关厂至保护室之间相互独立。
3、误动原因:注意到PT 开口三角的相电压是PT 二次侧相电压的3倍。
过电压保护误动是在线路A 相跳开后发生的A CB A E U U U U .....03-=++=零序电压归算到PT 二次侧A E U..'033-=Z3U 0‘N N600E A =0N600BC葛厂母线电压一般为:540kV PT 变比:3/100V 3/500KV 与100V3/500KV由向量图可得:A NN E U 3600-= A AN E U 3600-=A AB BN E E E U 394.2|3|||600=-= A AC CN E E E U 394.2|3|||600=-=所以:PT 二次电压:150V 50003/540000394.2≈⨯线路保护实例五:电流互感器极性接反引起高频保护误动1998年3月27日20点11分,某电网220KV 线路1由于雷击发生AC 相短路,线路1两侧的高频保护(WXB-11C,WXB-15)正确动作。
然而线路2两侧的方向高频保护(WXB-15)同时误动跳开线路2。
在线路2恢复供电后,21点25分,线路1又发生BC两相故障,线路2的方向高频保护再次误动。
事故原因:事故后检查发现,电厂侧线路2的两套保护的电流互感器极性接反,致使电厂侧的方向元件误判,而系统侧本来就是正方向,所以造成保护误动。
电网接线图如下:发电机差动保护误动原因分析1 定值整定不合理发电机二次额定电流为3.59A其最小动作电流为0.5A,相当于额定电流的0.14,比率制动系数为0.2,拐点电流为发电机额定二次电流。
发电机在并网时因冲击电流过大造成保护误动。
显然,保护的最小动作电流整定太小,比率制动系数偏低。
重新修改定值为:最小动作电流为0.3额定二次电流,比率制动系数为0.4,拐点电流为0.7-1.0倍额定电流。
2 发电机机端与中性点两侧的电流互感器特性差别大西北某发电厂的400MW机组,定子额定电流为14256A双Y接线机端CT变比为18000/5,中性点为每分支CT变比9000/5,两CT并联。
另加中间变流器为2/1。
1997年月上旬,距电厂较远的330线路上发生A相单相接地故障,发电机差动保护误动,经检查发现,发电机中性点侧的TA在500V 左右开始出现饱和,而机端TA在700V时仍保持线性,这样在外部故障的暂态过程中,两侧CT的特性差异使差回路有电流造成保护误动。
西北某电厂5号机组为6MW,与同容量另一台机组构成大单元接线,经110KV母线与系统联系。
1998年3月18日,110KV出线发生AB相间短路,5号发电机差动保护误动。
事故后检查了A相差动的TA特性,发现中性点侧与机端的TA 特性有很大的差异。
中性点TA的饱和电压只有20V,而机端TA的饱和电压达200V。
变压器差动保护拒动原因分析1 动作电流过大,灵敏度低1996年7月13日,1号主变高压侧(220KV)B相穿墙套管折断,但不接地(相当于一相断开)1号主变差动保护拒动。
中性点零序保护动作,先跳开3、4、5号不接地变压器(变压器经间隙接地)后又跳开1、2号接地变压器。
造成全厂停电。
原因是主变差动保护灵敏度低,而零序保护设计不合理。
由于采用的是老的BCH电磁型继电器构成的差动保护,整定电流为1.3倍变压器额定电流,在非全相时灵敏度不够,差动保护拒动。
由于非全相有零序电流,所以零序保护先跳不接地变压器,因1号变非全相仍有零序分量,继而跳开1、2号变压器。
2 微机保护的软件和硬件问题某变电站1号主变为90MV A。
有两套微机变压器保护。
差动保护为二次谐波制动和比率制动特性,设有断线闭锁,差动速断。
1998年6月27日,由于1号主变220KV侧隔离开关操作机构箱内受潮,操作回路绝缘下降,引起隔离开关带负荷自动分闸,造成弧光短路。
事故后1号主变差动保护拒动。
对侧5条线路的距离二段动作,将5条线路全部切除,事故扩大为3个220KV变电站,11个35KV变电站,1个燃汽轮机发电厂全部停电。
检查发现,故障点在变压器差动保护区内。
故障电流二次值为116A。
对保护装置进行实验检查发现,当电流大于80A时,A/D芯片溢出,采样得出的电流为0.2-0.3A。
另外,在故障电流大于80A时,断线闭锁判为电流回路断线,故两套差动保护均拒动。
变压器差动保护误动分析1 电流互感器极性错误1997年4月21日10时58分,某厂2号主变压器差动保护区外故障误动。
事故后检查发现是电流互感器的极性错误所致。
1992年10月4日,某变电站330KV出线上发生故障,线路保护动作后重合闸动作,重合后又三相故障,此时1号变压器差动保护动作,切除变压器。
检查结果,330KV侧差动保护C相的极性接反造成外部故障差动保护误动。
1992年8月1日,因下雨1号主变330KV侧C相CT因闪络损坏,更换CT后因负荷太小没做实验,因而没发现C相CT极性错误。
1997年4月21日10点58分,某电厂2号主变差动保护在区外故障时误动。
1998年2月17日,某变电站1号主变差动保护在区外10KV出线上故障时误动。
两次误动的原因均因为电流互感器的极性接反,造成外部故障时保护误动。
2 CT二次回路绝缘不良造成1999年7月26 日13时,某变电站4号主变差动保护误动,无故障跳开各侧断路器。
原因是4号主变的110KV侧差动CT的二次C相电缆绝缘破损致使C相导线与CT外壳接地,将该侧C相二次电流短路,差动保护误动。
1999年10月25日,2号发电机-变压器组的主变差动保护A相差动保护误动,切除了2号发变组。
1999年10月27日,2号发电机-变压器组的主变差动保护A相差动保护再次误动,切除了2号发变组。
原因是2号主变差动保护低压侧的差动CT的二次回路绝缘不良,在由A相TA端子至保护屏二次电缆A相芯线处有绝缘破坏的地方,在开停机过程中,由于振动大致使电缆接地,A相TA短接,差动保护误动。
某变电站的4号主变压器,系容量为240MV A的三绕组自耦变压器,其差动保护是按间断角原理构成的晶体管保护装置。
1999年7月26日13时,4号主变的差动保护动作,无故障跳开变压器各侧断路器。
事故后检查发现4号主变的差动保护110KV侧的差动TA二次C 相电缆芯线绝缘破损,致使C4221导线与TA外壳接地,将C相电流短路,因而出现差流,保护误动。
3 整定错误2008年4月21日17时30分,某变电站主变压器低压侧电抗器出口故障,主变压器差动保护区外故障误动。
事故后检查发现是由于整定错误(国外保护,补偿相位错误)。
1999年6月7日8点49分,某220KV变电站的10KV线路故障,10KV保护正确动作,1号变的差动保护误动跳三侧。
1号主变的保护为微机保护,变压器的220KV及110KV侧的TA 二次电流为1A,而10KV侧的TA二次电流为5A,在整定保护的平衡系数时没有考虑到这一情况,致使在外部故障时保护误动。
4 工作人员错误造成的误动1996年11月12日17时,某变电站3号主变差动保护误动,切除了3号变压器。
事故后查明原因是运行人员操作错误所致。
在主变保护盘上,将旁路断路器的差动TA二次与变压器同侧差动TA二次都接入差动保护中,致使差回路出现电流,引起保护误动。
1998年2月25日,某变电站2号主变差动保护误动,切除了2号变压器。
事故后查明原因是误将110KV侧旁路断路器的差动TA二次接为星形,而变压器220KV侧差动TA二次为三角形接线,在用旁路代110KV侧的102断路器时,由于差回路出现电流,引起保护误动。
1999年9月7日,某水电厂在检修工作中,误将3号主变差动保护TA短接,从而造成差动保护误动。
2000年5月24日19点58分,某电厂的仪表班工作人员对4号变压器的仪表进行消缺,短接TA二次端子时造成一相TA二次对N 线短接,从而一相差动保护误的动。
4 变压器空载合闸时保护误动某变电站1号主变容量为240MV A,配有两套JCD-11型晶体管差动保护装置,动作特性为比率制动和二次谐波制动。
1999年8月4日3点3分,在330KV侧3322断路器对1号主变充电时两套差动保护均误动,跳开充电侧断路器。
1999年8月4日3点37分,在330KV侧3320断路器对1号主变充电时两套差动保护均误动,跳开3320断路器。
整定二次谐波制动比为0.19,因充电时变压器的励磁涌流中二次谐波含量低于该整定值,故保护误动,将该项定值修改为0.16,再次投入变压器,保护没有误动。