考研数学典型题集(一)
- 格式:docx
- 大小:72.89 KB
- 文档页数:3
(完整word 版)考研数学历年真题(2008-2017年)年数学一2017年全国硕士研究生入学统一考试数学(一)试卷一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项是符合题目要求的(1)若函数10(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在0x =处连续,则( ) (A)12ab =(B)12ab =- (C)0ab = (D)2ab =(2)设函数()f x 可导,且()()0f x f x '>则( ) (A)()()11f f >- (B) ()()11f f <- (C )()()11f f >-(D )()()11f f <-(3)函数()22,,f x y z x y z =+在点()1,2,0处沿向量()1,2,2n 的方向导数为( ) (A )12(B )6(C)4(D)2(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,如下图中,实线表示甲的速度曲线()1v v t = (单位:m/s )虚线表示乙的速度曲线()2v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( ) (A )010t = (B)01520t <<(C)025t = (D )025t >()s(5)设α为n 维单位列向量,E 为n 阶单位矩阵,则( ) (A ) T E αα-不可逆 (B ) T E αα+不可逆 (C) 2T E αα+不可逆(D )2T E αα-不可逆(6)已知矩阵200021001A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 210020001B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦100020002C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则( )(A ) A 与C 相似,B 与C 相似 (B ) A 与C 相似,B 与C 不相似(完整word 版)考研数学历年真题(2008-2017年)年数学一 (C ) A 与C 不相似,B 与C 相似(D) A 与C 不相似,B 与C 不相似(7)设,A B 为随机事件,若0()1,0()1P A P B <<<<,则()()P A B P A B >的充分必要条件是( ) A 。
2015年全国硕士研究生入学统一考试数学(一)试题解析一、选择题1、设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3【答案】C 2、设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C) 3,2,1=-==a b c (D) 3,2,1===a b c 【答案】A 3、若级数1∞=∑nn a条件收敛,则=x 3=x 依次为幂级数1(1)∞=-∑nnn na x 的 ( )(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点 【答案】B4、设D 是第一象限由曲线21xy =,41xy =与直线y x =,y =围成的平面区域,函数(),f x y 在D 上连续,则(),Df x y dxdy =⎰⎰ ( )(A)()13sin2142sin2cos ,sin d f r r rdr πθπθθθθ⎰⎰(B)()34cos ,sin d f r r rdr ππθθθ⎰(C)()13sin 2142sin 2cos ,sin d f r r dr πθπθθθθ⎰⎰(D)()34cos ,sin d f r r dr ππθθθ⎰【答案】B5、设矩阵21111214A a a ⎛⎫⎪= ⎪ ⎪⎝⎭,21b d d ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若集合{}1,2Ω=,则线性方程组Ax b =有无穷多解的充分必要条件为( )(A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C) ,a d ∈Ω∉Ω (D) ,a d ∈Ω∈Ω 【答案】D6、设二次型()123,,f x x x 在正交变换为=x Py 下的标准形为2221232+-y y y ,其中()123,,=P e e e ,若()132,,=-Q e e e ,则()123,,f x x x 在正交变换=x Qy 下的标准形为( )(A) 2221232-+y y y (B) 2221232+-y y y (C) 2221232--y y y (D) 2221232++y y y 【答案】A7、若A,B 为任意两个随机事件,则( )(A) ()()()≤P AB P A P B (B) ()()()≥P AB P A P B (C) ()()()2≤P A P B P AB (D) ()()()2≥P A P B P AB【答案】C8、设随机变量,X Y 不相关,且2,1,3===EX EY DX ,则()2+-=⎡⎤⎣⎦E X X Y ( )(A) 3- (B) 3 (C) 5- (D) 5 【答案】D二、填空题9、20ln cos lim _________.x xx →=【答案】12-10、22sin ()d ________.1cos x x x x ππ-+=+⎰【答案】2π411、若函数(,)=z z x y 由方程cos 2+++=x e xyz x x 确定,则(0,1)d ________.z =【答案】dx -12、设Ω是由平面1++=x y z 与三个坐标平面平面所围成的空间区域,则(23)__________.x y z dxdydz Ω++=⎰⎰⎰【答案】1413、n 阶行列式20021202___________.00220012-=-【答案】122n +-14、设二维随机变量(,)x y 服从正态分布(1,0;1,1,0)N ,则{0}________.P XY Y -<=【答案】12三、解答题15、(本题满分10分)设函数()ln(1)sin =+++f x x a x bx x ,3()=g x kx ,若()fx 与()g x 在0→x 是等价无穷小,求,,a b k 的值.【答案】,,.a b k =-=-=-11123【解析】原式()3ln 1sin lim1x x a x bx xkx →+++=()()2333330236lim 1x x x x x a x o x bx x o x kx →⎛⎫⎛⎫+-+++-+ ⎪ ⎪⎝⎭⎝⎭==()()234331236lim1x a a b a x b x x x o x kx →⎛⎫++-+-+ ⎪⎝⎭==即10,0,123a a a b k +=-== 111,,23a b k ∴=-=-=-16、(本题满分10分)设函数()f x 在定义域I 上的导数大于零,若对任意的0x I ∈,由线()=y f x 在点()()0,x f x 处的切线与直线0x x =及x 轴所围成区域的面积恒为4,且()02f =,求()f x 的表达式.【答案】f x x=-8()4. 【解析】设()f x 在点()()00,x f x 处的切线方程为:()()()000,y f x f x x x '-=-令0y =,得到()()000f x x x f x =-+',故由题意,()()00142f x x x ⋅-=,即()()()000142f x f x f x ⋅=',可以转化为一阶微分方程,即28y y '=,可分离变量得到通解为:118x C y =-+,已知()02y =,得到12C =,因此11182x y =-+; 即()84f x x =-+.17、(本题满分10分) 已知函数(),=++fx y x y xy ,曲线C :223++=x y xy ,求(),f x y 在曲线C 上的最大方向导数.【答案】3【解析】因为(),f x y 沿着梯度的方向的方向导数最大,且最大值为梯度的模.()()',1,',1x y f x y y f x y x =+=+,故(){},1,1gradf x y y x =++此题目转化为对函数(),g x y =22:3C x y xy ++=下的最大值.即为条件极值问题.为了计算简单,可以转化为对()()22(,)11d x y y x =+++在约束条件22:3C x y xy ++=下的最大值.构造函数:()()()()2222,,113F x y y x x y xy λλ=++++++-()()()()222120212030x y F x x y F y y x F x y xy λλλ'⎧=+++=⎪'=+++=⎨⎪'=++-=⎩,得到()()()()12341,1,1,1,2,1,1,2M M M M ----. ()()()()12348,0,9,9d M d M d M d M ====3=. 18、(本题满分10分)(I )设函数()()u x ,v x 可导,利用导数定义证明u x v x u x v x u x v x '''=+[()()]()()()() (II )设函数()()()12n u x ,u x ,,u x 可导,n f x u x u x u x = 12()()()(),写出()f x 的求导公式.【解析】(I )0()()()()[()()]lim h u x h v x h u x v x u x v x h→++-'=0()()()()()()()()lim h u x h v x h u x h v x u x h v x u x v x h→++-+++-=00()()()()lim ()lim ()h h v x h v x u x h u x u x h v x h h→→+-+-=++ ()()()()u x v x u x v x ''=+ (II )由题意得12()[()()()]n f x u x u x u x ''=121212()()()()()()()()()n n n u x u x u x u x u x u x u x u x u x '''=+++ 19、(本题满分 10 分)已知曲线L的方程为,z z x ⎧=⎪⎨=⎪⎩起点为()A,终点为()0,B ,计算曲线积分()()2222d d ()d LI y z x zx y y x y z =++-+++⎰.【答案】π2【解析】由题意假设参数方程cos cos x y z θθθ=⎧⎪=⎨⎪=⎩,ππ:22θ→-π22π2[cos )sin 2sin cos (1sin )sin ]d θθθθθθθθ--++++⎰π222π2sin cos (1sin )sin d θθθθθθ-=+++⎰π220sin d π2θθ==20、(本题满11分)设向量组1,23,ααα内3R 的一个基,113=2+2k βαα,22=2βα,()313=++1k βαα.(I )证明向量组1β2β3β为3R 的一个基;(II )当k 为何值时,存在非0向量ξ在基1,23,ααα与基1β2β3β下的坐标相同,并求所有的ξ.【答案】 【解析】(I)证明:()()()()12313213123,,2+2,2,+1201,,020201k k k k βββαααααααα=+⎛⎫⎪= ⎪ ⎪+⎝⎭2012102024021201kk kk ==≠++故123,,βββ为3R 的一个基.(II )由题意知,112233112233,0k k k k k k ξβββαααξ=++=++≠即()()()1112223330,0,1,2,3i k k k k i βαβαβα-+-+-=≠=()()()()()()()11312223133113223132+22++10+2+0k k k k k k k k k k ααααααααααααα-+-+-=++=有非零解即13213+2,,+0k k ααααα=即10110020k k=,得k=0 11223121300,0k k k k k k ααα++=∴=+=11131,0k k k ξαα=-≠21、(本题满分11 分)设矩阵02313312a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A 相似于矩阵12000031b -⎛⎫ ⎪⎪ ⎪⎝⎭B =.(I) 求,a b 的值;(II )求可逆矩阵P ,使1-P AP 为对角矩阵..【解析】(I) ~()()311A B tr A tr B a b ⇒=⇒+=++0231201330012031--=⇒--=-A B ba 14235-=-=⎧⎧∴⇒⎨⎨-==⎩⎩a b a a b b (II)023100123133010123123001123A E C ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--=+--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭()123112*********---⎛⎫⎛⎫ ⎪ ⎪=--=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭CC 的特征值1230,4λλλ===0λ=时(0)0-=E C x 的基础解系为12(2,1,0);(3,0,1)ξξ==-T T5λ=时(4)0-=E C x 的基础解系为3(1,1,1)ξ=--TA 的特征值1:1,1,5λλ=+A C令123231(,,)101011ξξξ--⎛⎫ ⎪==- ⎪ ⎪⎝⎭P ,1115-⎛⎫⎪∴= ⎪ ⎪⎝⎭P AP22、(本题满分11 分) 设随机变量X 的概率密度为()2ln 2,0,0,0.x x f x x -⎧>⎪=⎨≤⎪⎩对X 进行独立重复的观测,直到2个大于3的观测值出现的停止.记Y 为观测次数. (I)求Y 的概率分布; (II)求EY【解析】(I) 记p 为观测值大于3的概率,则313228()ln x p P X dx +∞-=>==⎰,从而12221171188n n n P Y n C p p p n ---==-=-{}()()()(),23,,n =为Y 的概率分布;(II) 将随机变量Y 分解成=Y M N +两个过程,其中M 表示从1到()n n k <次试验观测值大于3首次发生,N 表示从1n +次到第k 试验观测值大于3首次发生.则M Ge n p ~(,),N Ge k n p -(,) (注:Ge 表示几何分布)所以11221618E Y E M N E M E N p p p =+=+=+===()()()(). 23、(本题满分 11 分)设总体X 的概率密度为:x f x θθθ⎧≤≤⎪=-⎨⎪⎩1,1,(,)10,其他. 其中θ为未知参数,12n x ,x ,,x 为来自该总体的简单随机样本. (I)求θ的矩估计量. (II)求θ的最大似然估计量. 【解析】(I)11112()(;)E X xf x dx x dx θθθθ+∞-∞+==⋅=-⎰⎰,令()E X X =,即12X θ+=,解得 1121ni i X X X n θ==-=∑,为θ的矩估计量;(II) 似然函数11110,()(;),n ni i i x L f x θθθθ=⎧⎛⎫≤≤⎪ ⎪==-⎨⎝⎭⎪⎩∏其他, 当1i x θ≤≤时,11111()()nni L θθθ===--∏,则1ln ()ln()L n θθ=--. 从而dln d 1L nθθθ=-(),关于θ单调增加, 所以 12min nX X X θ={,,,} 为θ的最大似然估计量.。
考研数学⼀-概率论与数理统计(⼀)考研数学⼀-概率论与数理统计(⼀)(总分:100.00,做题时间:90分钟)⼀、选择题(总题数:10,分数:40.00)1.设随机变量X服从正态分布N(1,σ2 ),其分布函数为F(x),则对任意实数x,有______(分数:4.00)A.F(x)+F(-x)=1.B.F(1+x)+F(1-x)=1.√C.F(x+1)+F(x-1)=1.D.F(1-x)+F(x-1)=1.解析:[解析] 由于X~N(1,σ2 ),所以X的密度函数f(x)的图形是关于x=1对称的,⽽可知正确答案是B.2.设X~P(λ),P 1,P 2分别为随机变量X取偶数和奇数的概率,则______(分数:4.00)A.P1=P2.B.P1<P2.C.P1>P2.√D.P1,P2⼤⼩关系不定.解析:[解析] 若X~P(λ),则,其中X取偶数的概率为X取奇数的概率为于是应选C.3.设随机变量X的密度函数为f(x),且f(-x)=f(x),F(x)是X的分布函数,则对于任意实数a,有______ A.B.C.F(-a)=F(a).D.F(-a)=2F(a)-1.(分数:4.00)A.B. √C.D.解析:[解析] 概率密度f(x)为偶函数,于是对于任意实数a,有F(-a)=1-F(a)成⽴;利⽤区间可加性得结合上⾯的等式,于是得应选B.4.设⼆维随机变量(X,Y)在区域D:x 2 +y 2≤9a 2 (a>0)上服从均匀分布,p=P{X 2 +9Y 2≤9a 2 },则A.p的值与a⽆关,且B.p的值与a⽆关,且C.p的值随a值的增⼤⽽增⼤.D.p的值随a值的增⼤⽽减⼩.(分数:4.00)A.B. √C.D.解析:[解析] 因为(X,Y)在区域D:x 2 +y 2≤9a 2上服从均匀分布,所以(X,Y)的联合密度函数为故选B.5.设随机变量X与Y服从正态分布N(-1,2)与N(1,2),并且X与Y不相关,aX+Y与X+by亦不相关,则______(分数:4.00)A.a-b=1.B.a-b=0.C.a+b=1.D.a+b=0.√解析:[解析] X~N(-1,2),Y~N(1,2),于是D(X)=2,D(Y)=2.⼜Cov(X,Y)=0,Cov(aX+Y,X+bY)=0,由协⽅差的性质有故选D.6.已知总体X的期望E(X)=0,⽅差D(X)=σ2.X 1,…,X n是来⾃总体X的简单随机样本,其均值为,则下⾯可以作为σ2⽆偏估计量的是______A.B.C.D.(分数:4.00)A.B.C. √D.解析:[解析] 由于E(X)=0,D(X)=E(X 2 )=σ2,则所以选择C.对于A,B选项,由E(S 2 )=σ2,知均不是σ2的⽆偏估计量.7.设随机变量序列X 1,…,X n,…相互独⽴,则根据⾟钦⼤数定律,当n→∞时,于其数学期望,只要{X n,n≥1}满⾜______(分数:4.00)A.有相同的数学期望.B.服从同⼀离散型分布.C.服从同⼀泊松分布.√D.服从同⼀连续型分布.解析:[解析] ⾟钦⼤数定律的应⽤条件为:“独⽴同分布且数学期望存在”,选项A缺少同分布条件,选项B、D虽然服从同⼀分布但不能保证期望存在,只有C符合该条件.故选C.8.设X 1,X 2,…,X n是来⾃总体X的简单随机样本,是样本均值,C为任意常数,则______A.B.C.D.(分数:4.00)A.B.C. √D.解析:[解析故选C.9.设总体X服从正态分布N(0,σ2 ),X 1,X 2,…,X 10是来⾃X的简单随机样本,统计量从F分布,则i等于______(分数:4.00)A.4.B.2.√C.3.D.5.解析:[解析] 因为X 1,X 2,…,X 10是来⾃X的简单随机样本,故独⽴同分布于N(0,σ2 )因此,则有⼜与相互独⽴,故故选B.10.在假设检验中,如果待检验的原假设为H 0,那么犯第⼆类错误是指______(分数:4.00)A.H0成⽴,接受H0.B.H0不成⽴,接受H0.√C.H0成⽴,拒绝H0.D.H0不成⽴,拒绝H0.解析:[解析] 直接应⽤“犯第⼆类错误”=“取伪”=“H 0不成⽴,接受H 0”的定义,选择B.⼆、解答题(总题数:10,分数:60.00)11.每次从1,2,3,4,5中任取⼀个数,且取后放回,⽤b i表⽰第i次取出的数(i=1,2,3),三维列向量b=(b 1 ,b 2 ,b 3 ) T,三阶⽅阵,求线性⽅程组Ax=b有解的概率.(分数:6.00)__________________________________________________________________________________________ 正确答案:()解析:对增⼴矩阵作初等⾏变换有于是Ax=b有解的充要条件是,即b 3 -2b 2 +b 1 =0,其中b 1,b 2,b 3相互独⽴,且分布律相同:,k=1,2,3,4,5,i=1,2,3.所以Ax=b有解的概率为甲、⼄两个⼈投球,甲先投,当有任⼀⼈投进之后便获胜,⽐赛结束.设甲、⼄命中率分别为p 1,p 2,0<p 1,p 2<1.求:(分数:6.00)(1).甲、⼄投球次数X 1与X 2的分布;(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:每次投篮是相互独⽴的与其他⼏次⽆关.事件X 1 =n表⽰“甲投了n次”,即“甲、⼄各⾃在前n-1次没有投进,在第n次时甲投进或⼄投进”,所以P{X 1 -n}=(q 1 q 2 ) n-1 (p 1 +q 1 p 2 ),n=1,2,…其中:q i =1-p i,i=1,2.事件“X 2=m”表⽰“⼄投了m次”,即“甲、⼄前m-1次均没有投进,甲在第m次也没有投进,⼄在第m 次投进”,或“甲、⼄前m次均没有投进,甲在第m+1次投进”.特殊地,当m=0时,表⽰甲第⼀次就投中,所以P{X 2 =m}=(q 1 q 2 ) m-1 (q 1 p 2 +q 1 q 2 p 1 )=q 1 (p 2 +q 2 p 1 )(q 1 q 2 ) m-1,m=1,2,…(2).若使甲、⼄两⼈赢得⽐赛的概率相同,则p 1,p 2满⾜什么条件?(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:设事件A表⽰“甲获胜”,则总投篮次数为奇数.当X 1 +X 2 =2n-1时,意味着甲、⼄前n-1次都未投进,甲在第n次投进,于是有P{X 1 +X 2 =2n-1}=p 1 (q 1 q 2 ) n-1,则若甲、⼄两⼈赢得⽐赛的概率相同,则12.设随机变量X在区间(0,1)上服从均匀分布,⼜求Y的概率密度f Y (y)与分布函数F Y (y).(分数:6.00)__________________________________________________________________________________________ 正确答案:()解析:解法⼀:应⽤单调函数公式法先求Y的概率密度f Y (y).由于X在(0,1)内取值所以的值域为(0,+∞),且y=g(x)在(0,1)单调.因此其反函数在(0,+∞)内单调可导,其导数h"(y)=2e -2y,在其定义域(0,+∞)内恒不为零.⼜因为X的概率密度所以Y的概率密度因此可见Y服从参数为2的指数分布,其分布函数为解法⼆:⽤分布函数法先求出Y的分布函数F Y (y).当y≤0时,F Y (y)=0;当y>0时,0<x=1-e -2y<1,最后⼀步是由于X服从(0,1)上的均匀分布.故所求Y的分布函数为将F Y (y)对y求导,得设随机变量(X,Y)的概率密度为试求:(分数:6.00)(1).(X,Y)的分布函数;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:①当x≤0或y≤0时,f(x,y)=0,故F(x,y)=0.②当0<x≤1,0<y≤2时,③当0<x≤1,y>2时,④当x>1,0<Y≤2时,⑤当x>1,y>2时,综上所述,分布函数为(2).(X,Y)的边缘分布密度;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:当0≤x≤1时,当0≤y≤2时,(3).概率P{X+Y>1},P{Y>X} 2.00)__________________________________________________________________________________________ 正确答案:()解析:如下图所⽰,如下图所⽰,所以设(X,Y)服从D={(x,y)|y≥0,x 2 +y 2≤1}上的均匀分布,定义(分数:6.00)(1).求(U,V)的联合分布律;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:由题设可知,故(U,V)的可能值为(0,0),(0,-1),(0,1),(1,-1),(1,0),(1,1).则(U.V)的联合分布律为(2).求关于V的边缘分布律;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:由(U,V)的联合分布律得V的边缘分布律为(3).求在U=1的条件下V的分布律.(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:,所以所以所求V的分布律为13.设随机变量X的概率密度为,求随机变量 F Y (y).(分数:6.00)__________________________________________________________________________________________ 正确答案:()解析:记如下图所⽰,φ(x)在[0,+∞)内最⼩值为-1,⽆最⼤值,在[0,+∞)左端点处的值为0.y=-1,0将y轴分成(-∞,-1),[-1,0),[0,+∞)三个区间.当y∈(-∞,-1)时,F Y (y)=0.当y∈[-1,0)时,纵坐标为y的⽔平直线关于曲线y=φ(x)内的集合在x轴上的投影与[0,+∞)的交集为F Y (y)=f X (x)在上的积分为当y∈[0,+∞)时,纵坐标为y的⽔平直线关于曲线y=φ(x)内的集合在x轴的投影与[0,+∞)的交集为,此时F Y (y)=f X (x)在上的积分为综上所述,y的分布函数为设随机变量X在区间(0,2)上随机取值,在X=x(1<x<2)条件下,随机变量Y在区间(1,x)上服从均匀分布.(分数:6.00)(1).求(X,Y)的联合概率密度,并问X与Y是否独⽴;(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:根据题设X在(0,2)上服从均匀分布,其密度函数为⽽变量Y,在X=x(1<-x<2)的条件下,在区间(1,x)上服从均匀分布,所以其条件概率密度为再根据条件概率密度的定义,可得联合概率密度⼜所以由于f X (x)f Y(y)≠f(x,y),所以X与Y不独⽴.(2).求P{3Y≤2X};(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:如下图所⽰,(3).记Z=X-Y,求Z的概率密度f Z (z).(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:已知(x,y)~f(x,y),则Z=X-Y的取值范围为0<Z<1.当0<z<1时,Z=X-Y的分布函数为则故设随机变量X与Y相互独⽴,X的概率分布为,Y的概率密度函数为Z=X+Y.求:(分数:6.00)3.00)__________________________________________________________________________________________ 正确答案:()(2).Z的概率密度函数.(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:F Z(z)=P{Z≤z}=P{X+Y≤z}=P{X=-1,Y≤z+1}+P{X=0,Y≤z}+P{X=1,Y≤z-1}.因为X与Y相互独⽴,故①当z+1<0(z-1<-2),即z<-1时,f Y (y)=0,从⽽F Z (z)=0;②当0≤z+1<1(-2≤z-1<-1),即-1≤z<0时,③当-1≤z-1<0(1≤z+1<2),即0≤z<1时,④当0≤z-1<1(2≤z+1<3),即1≤z<2时,⑤当1≤z-1(3≤z+1),即z≥2时,综上故设⼆维连续型随机变量(X,Y)的联合概率密度为U=X+Y,V=X-Y.求:(分数:6.00)(1).U的分布函数F 1 (u);(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:当u<0时,F 1 (u)=0;当u≥0时,故U的分布函数F 1 (u)为(2).V的分布函数F 2 (v);(分数:2.00)__________________________________________________________________________________________ 正确答案:()解析:当v<0时,F 2 (v)=0;当v≥0时,故V的分布函数F 2 (v)为(3).P{U≤u,V≥v}(u>v>0),并判断U与V是否独⽴.(分数:2.00)__________________________________________________________________________________________ 正确答案:()当u>0,v>0时,P{U≤u}P{V≥v}=F 1(u)·[1-F 2 (v)]=e -2v (1-e -u ) 2≠P{U≤u,V≥v},从⽽可知,U与V不独⽴.设⼆维随机变量(X,Y)在矩形区域D={(x,y)|0≤x≤2,0≤y≤2}上服从⼆维均匀分布,随机变量求:(分数:6.00)(1).U和V的联合概率分布;(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:(U,V)的可能取值为(-1,-1),(-1,1),(1,-1,),(1,1),如下图.依题意知,X与Y的联合概率密度为则有同理类似地可以计算出其他P ij的值:(2).讨论U和V的相关性和独⽴性.(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:从(U,V)的联合分布与边缘分布可以计算出所以E(UV)=E(U)·E(V),U与V不相关;⼜因为P{U=u,V=v}=P{U=u}·P{V=v},所以U与V相互独⽴.。
考研数学一真题与解析考研数学一真题一.选择题1—8小题.每小题4分,共32分. 1.设函数在上连续,其二阶导数的图形如右图所示,则曲线在的拐点个数为(A)0 (B)1 (C)2 (D)3【详解】对于连续函数的曲线而言,拐点处的二阶导数等于零或者不存在.从图上可以看出有两个二阶导数等于零的点,以及一个二阶导数不存在的点.但对于这三个点,左边的二阶导数等于零的点的两侧二阶导数都是正的,所以对应的点不是拐点.而另外两个点的两侧二阶导数是异号的,对应的点才是拐点,所以应该选(C)2.设是二阶常系数非齐次线性微分方程的一个特解,则(A)(B)(C)(D)【详解】线性微分方程的特征方程为,由特解可知一定是特征方程的一个实根.如果不是特征方程的实根,则对应于的特解的形式应该为,其中应该是一个零次多项式,即常数,与条件不符,所以也是特征方程的另外一个实根,这样由韦达定理可得,同时是原来方程的一个解,代入可得应该选(A)3.若级数条件收敛,则依次为级数的(A)收敛点,收敛点(B)收敛点,发散点(C)发散点,收敛点(D)发散点,发散点【详解】注意条件级数条件收敛等价于幂级数在处条件收敛,也就是这个幂级数的收敛为,即,所以的收敛半径,绝对收敛域为,显然依次为收敛点.发散点,应该选(B)4.设D是第一象限中由曲线与直线所围成的平面区域,函数在D上连续,则()(A)(B)(C)(D)【详解】积分区域如图所示,化成极坐标方程:也就是D:所以,所以应该选(B).5.设矩阵,若集合,则线性方程组有无穷多解的充分必要条件是(A)(B)(C)(D)【详解】对线性方程组的增广矩阵进行初等行变换:方程组无穷解的充分必要条件是,也就是同时成立,当然应该选(D).6.设二次型在正交变换下的标准形为,其中,若,则在下的标准形为(A)(B)(C)(D)【详解】,所以故选择(A).7.若为任意两个随机事件,则()(A)(B)(C)(D)【详解】所以故选择(C).8.设随机变量不相关,且,则()(A)(B)(C)(D)【详解】故应该选择(D).二.填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.【详解】.10. .【详解】只要注意为奇函数,在对称区间上积分为零,所以11.若函数是由方程确定,则 .【详解】设,则且当时,,所以也就得到12.设是由平面和三个坐标面围成的空间区域,则 .【详解】注意在积分区域内,三个变量具有轮换对称性,也就是13.阶行列式 .【详解】按照第一行展开,得,有由于,得.14.设二维随机变量服从正态分布,则 .【详解】由于相关系数等于零,所以X,Y都服从正态分布,,且相互独立. 则.三.解答题15.(本题满分10分)设函数,在时为等价无穷小,求常数的取值.【详解】当时,把函数展开到三阶的马克劳林公式,得由于当时,是等价无穷小,则有,解得,16.(本题满分10分)设函数在定义域上的导数大于零,若对任意的,曲线在点处的切线与直线及轴所围成区域的面积恒为4,且,求的表达式.【详解】在点处的切线方程为令,得曲线在点处的切线与直线及轴所围成区域的面积为整理,得,解方程,得,由于,得所求曲线方程为17.(本题满分10分)设函数,曲线,求在曲线上的最大方向导数.【详解】显然. 在处的梯度在处的最大方向导数的方向就是梯度方向,最大值为梯度的模所以此题转化为求函数在条件下的条件极值.用拉格朗日乘子法求解如下:令解方程组,得几个可能的极值点,进行比较,可得,在点或处,方向导数取到最大,为18.(本题满分10分)(1)设函数都可导,利用导数定义证明;(2)设函数都可导,,写出的求导公式.【详解】(1)证明:设由导数的定义和可导与连续的关系(2)19.(本题满分10分)已知曲线L的方程为,起点为,终点为,计算曲线积分.【详解】曲线L的参数方程为起点对应,终点为对应.20.(本题满分11分)设向量组为向量空间的一组基,. (1)证明:向量组为向量空间的一组基;(2)当为何值时,存在非零向量,使得在基和基下的坐标相同,并求出所有的非零向量【详解】(1),因为,且显然线性无关,所以是线性无关的,当然是向量空间的一组基. (2)设非零向量在两组基下的坐标都是,则由条件可整理得:,所以条件转化为线性方程组存在非零解. 从而系数行列式应该等于零,也就是由于显然线性无关,所以,也就是. 此时方程组化为,由于线性无关,所以,通解为,其中为任意常数. 所以满足条件的其中为任意不为零的常数.21.(本题满分11分)设矩阵相似于矩阵. (1)求的值;(2)求可逆矩阵,使为对角矩阵.【详解】(1)因为两个矩阵相似,所以有,. 也就是. (2)由,得A,B的特征值都为解方程组,得矩阵A的属于特征值的线性无关的特征向量为;解方程组得矩阵A的属于特征值的线性无关的特征向量为令,则22.(本题满分11分)设随机变量X的概率密度为对X进行独立重复的观测,直到第2个大于3的观测值出现时停止,记为次数. 求的分布函数;(1)求的概率分布;(2)求数学期望【详解】(1)X进行独立重复的观测,得到观测值大于3的概率为显然Y的可能取值为且(2)设23.(本题满分11分)设总体的概率密度为其中为未知参数,是来自总体的简单样本. (1)求参数的矩估计量;(2)求参数的最大似然估计量.【详解】(1)总体的数学期望为令,解得参数的矩估计量:. (2)似然函数为显然是关于的单调递增函数,为了使似然函数达到最大,只要使尽可能大就可以,所以参数的最大似然估计量为10。
2003年考研数学(一)真题评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1) )1ln(12)(cos lim x x x +→ =e1 .【分析】 ∞1型未定式,化为指数函数或利用公式)()(lim x g x f )1(∞=)()1)(lim(x g x f e -进行计算求极限均可.【详解1】 )1ln(12)(cos lim x x x +→=xx x ecos ln )1ln(1lim20+→,而 212c o s s i n lim cos ln lim )1ln(cos ln lim 02020-=-==+→→→x x xx x x x x x x , 故 原式=.121ee=-【详解2】 因为 2121lim)1ln(1)1(cos lim 22020-=-=+⋅-→→x xx x x x , 所以 原式=.121ee=-【评注】 本题属常规题型,完全类似例题见《数学复习指南》P.24-25 【例1.30-31】.(2) 曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是542=-+z y x .【分析】 待求平面的法矢量为}1,4,2{-=n,因此只需确定切点坐标即可求出平面方程, 而切点坐标可根据曲面22y x z +=切平面的法矢量与}1,4,2{-=n平行确定.【详解】 令 22),,(y x z z y x F --=,则x F x 2-=',y F y 2-=', 1='z F .设切点坐标为),,(000z y x ,则切平面的法矢量为 }1,2,2{00y x --,其与已知平面042=-+z y x 平行,因此有11422200-=-=-y x , 可解得 2,100==y x ,相应地有 .520200=+=y x z故所求的切平面方程为0)5()2(4)1(2=---+-z y x ,即 542=-+z y x .【评注】 本题属基本题型,完全类似例题见《数学复习指南》P.279 【例10.28】和 《数学题型集粹和练习题集》P.112 【例8.13】.(3) 设)(cos 02ππ≤≤-=∑∞=x nx ax n n,则2a = 1 .【分析】 将)()(2ππ≤≤-=x x x f 展开为余弦级数)(cos 02ππ≤≤-=∑∞=x nx ax n n,其系数计算公式为⎰=ππ0cos )(2nxdx x f a n .【详解】 根据余弦级数的定义,有 x d x xdx x a 2sin 12cos 22022⎰⎰=⋅=ππππ=⎰⋅-πππ2]22sin 2sin [1xdx x xx=⎰⎰-=πππππ]2cos 2cos [12cos 1xdx xx x xd=1.【评注】 本题属基本题型,主要考查傅里叶级数的展开公式,本质上转化为定积分的计算. 完全类似例题见《文登数学全真模拟试卷》数学一P.62第一大题第(6)小题和《数学复习指南》P.240 【例8.37】.(4)从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为⎪⎪⎭⎫ ⎝⎛--2132. 【分析】 n 维向量空间中,从基n ααα,,,21 到基n βββ,,,21 的过渡矩阵P 满足 [nβββ,,,21 ]=[nααα,,,21 ]P ,因此过渡矩阵P 为:P=[121],,,-n ααα [],,,21n βββ .【详解】根据定义,从2R 的基⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=11,0121αα到基⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=21,1121ββ的过渡矩阵为P=[121],-αα[⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=-21111011],121ββ.=.213221111011⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-【评注】 本题属基本题型,完全类似例题见《数学复习指南》P.429 【例3.35】. (5)设二维随机变量(X,Y)的概率密度为 ,y x x y x f 其他,10,0,6),(≤≤≤⎩⎨⎧=则=≤+}1{Y X P41 . 【分析】 已知二维随机变量(X,Y)的概率密度f(x,y),求满足一定条件的概率}),({0z Y X g P ≤,一般可转化为二重积分}),({0z Y X g P ≤=⎰⎰≤0),(),(z y x g dxdy y x f 进行计算.【详解】 由题设,有 =≤+}1{Y X P ⎰⎰⎰⎰≤+-=121016),(y x xxxdy dx dxdy y x f=.41)126(2102=-⎰dx x xy1DO211 x【评注】 本题属基本题型,但在计算二重积分时,应注意找出概率密度不为零与满足不等式1≤+y x 的公共部分D ,再在其上积分即可. 完全类似例题见《文登数学全真模拟试卷》数学一P.14第一大题第(5)小题.(6)已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间是)49.40,51.39( . (注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ【分析】 已知方差12=σ,对正态总体的数学期望μ进行估计,可根据)1,0(~1N n X μ-,由αμα-=<-1}1{2u nX P 确定临界值2αu ,进而确定相应的置信区间. 【详解】 由题设,95.01=-α,可见.05.0=α 于是查标准正态分布表知.96.12=αu 本题n=16, 40=x , 因此,根据 95.0}96.11{=<-nX P μ,有 95.0}96.116140{=<-μP ,即 95.0}49.40,51.39{=P ,故μ的置信度为0.95的置信区间是)49.40,51.39( . 【评注】 本题属基本题型,完全类似例题见《数学复习指南》P.608 【例6.16】.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数f(x)在),(+∞-∞内连续,其导函数的图形如图所示,则f(x)有(A) 一个极小值点和两个极大值点. (B) 两个极小值点和一个极大值点. (C) 两个极小值点和两个极大值点.(D) 三个极小值点和一个极大值点. [ C ] yO x【分析】 答案与极值点个数有关,而可能的极值点应是导数为零或导数不存在的点,共4个,是极大值点还是极小值可进一步由取极值的第一或第二充分条件判定.【详解】 根据导函数的图形可知,一阶导数为零的点有3个,而 x=0 则是导数不存在的点. 三个一阶导数为零的点左右两侧导数符号不一致,必为极值点,且两个极小值点,一个极大值点;在x=0左侧一阶导数为正,右侧一阶导数为负,可见x=0为极大值点,故f(x)共有两个极小值点和两个极大值点,应选(C).【评注】 本题属新题型,类似考题2001年数学一、二中曾出现过,当时考查的是已知f(x)的图象去推导)(x f '的图象,本题是其逆问题. 完全类似例题在文登学校经济类串讲班上介绍过.(2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A) n n b a <对任意n 成立. (B) n n c b <对任意n 成立.(C) 极限n n n c a ∞→lim 不存在. (D) 极限n n n c b ∞→lim 不存在. [ D ]【分析】 本题考查极限概念,极限值与数列前面有限项的大小无关,可立即排除(A),(B); 而极限n n n c a ∞→lim 是∞⋅0型未定式,可能存在也可能不存在,举反例说明即可;极限n n n c b ∞→lim 属∞⋅1型,必为无穷大量,即不存在.【详解】 用举反例法,取n a n 2=,1=n b ,),2,1(21==n n c n ,则可立即排除(A),(B),(C),因此正确选项为(D).【评注】 对于不便直接证明的问题,经常可考虑用反例,通过排除法找到正确选项. 完全类似方法见《数学最后冲刺》P.179.(3)已知函数f(x,y)在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,则(A) 点(0,0)不是f(x,y)的极值点. (B) 点(0,0)是f(x,y)的极大值点. (C) 点(0,0)是f(x,y)的极小值点.(D) 根据所给条件无法判断点(0,0)是否为f(x,y)的极值点. [ A ] 【分析】 由题设,容易推知f(0,0)=0,因此点(0,0)是否为f(x,y)的极值,关键看在点(0,0)的充分小的邻域内f(x,y)是恒大于零、恒小于零还是变号.【详解】 由1)(),(lim2220,0=+-→→y x xyy x f y x 知,分子的极限必为零,从而有f(0,0)=0, 且 222)(),(y x xy y x f +≈- y x ,(充分小时),于是 .)()0,0(),(222y x xy f y x f ++≈-可见当y=x 且x 充分小时,04)0,0(),(42>+≈-x x f y x f ;而当y= -x 且x 充分小时,04)0,0(),(42<+-≈-x x f y x f . 故点(0,0)不是f(x,y)的极值点,应选(A).【评注】 本题综合考查了多元函数的极限、连续和多元函数的极值概念,题型比较新,有一定难度. 将极限表示式转化为极限值加无穷小量,是有关极限分析过程中常用的思想,类似分析思想的例题见《数学复习指南》P.43 【例1.71】.(4)设向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则 (A) 当s r <时,向量组II 必线性相关. (B) 当s r >时,向量组II 必线性相关. (C) 当s r <时,向量组I 必线性相关. (D) 当s r >时,向量组I 必线性相关. [ D ]【分析】 本题为一般教材上均有的比较两组向量个数的定理:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,则当s r >时,向量组I 必线性相关. 或其逆否命题:若向量组I :r ααα,,,21 可由向量组II :s βββ,,,21 线性表示,且向量组I 线性无关,则必有s r ≤. 可见正确选项为(D). 本题也可通过举反例用排除法找到答案.【详解】 用排除法:如⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,00211ββα,则21100ββα⋅+⋅=,但21,ββ线性无关,排除(A);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=01,01,00121βαα,则21,αα可由1β线性表示,但1β线性无关,排除(B);⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=10,01,01211ββα,1α可由21,ββ线性表示,但1α线性无关,排除(C). 故正确选项为(D).【评注】 本题将一已知定理改造成选择题,如果考生熟知此定理应该可直接找到答案,若记不清楚,也可通过构造适当的反例找到正确选项。
考研数学一线性代数历年真题全解2024线性代数是数学的一个分支,是研究向量空间和线性变换的理论。
在考研数学一科目中,线性代数占据了一定的比重,因此熟练掌握线性代数的知识是非常重要的。
本文将针对考研数学一线性代数部分历年真题进行全面解析,以帮助考生更好地备考。
第一部分:向量空间向量空间是线性代数中的重要概念,也是线性代数的基础知识之一。
在考研数学一中,向量空间的相关知识经常会出现在选择题和计算题中。
下面我们将从历年真题中选取一些典型题目,进行详细解析。
题目1:已知向量空间V中的两个非零向量a,b满足a+b和2a-3b线性相关,求向量a和向量b的线性相关关系。
解析:根据已知条件,可以得到方程组:k1(a+b) + k2(2a-3b) = 0化简可得:(2k1+k2)a + (k1-3k2)b = 0由于a和b非零,所以方程组只有零解。
即:2k1+k2=0k1-3k2=0解得k1=3,k2=-6所以,向量a和向量b的线性相关关系为:3a-6b=0。
题目2:设V是数域K上的线性空间,W是V的子空间。
证明:W和V/W的维数之和等于V的维数。
解析:设V的维数为n,W的维数为m,V/W的维数为k。
由定义可知,W是V的子空间,所以m≤n。
而V/W的维数k的定义是:V中所有代表元素的集合构成的集合的维数。
所以,V中任意一组代表元素的集合都可以作为V的一组基,维数为n。
而V中所有代表元素的集合的元素个数为k,所以k≤n。
综上所述,m+k≤n,并且n=m+k。
第二部分:线性变换线性变换在线性代数中扮演着重要的角色,在考研数学一线性代数部分也是一道重要的考点。
线性变换的相关内容通常会涉及到矩阵、特征值等知识。
下面我们将通过历年真题来进行详细解析。
题目3:设A是n阶方阵,证明:矩阵A与其伴随矩阵A*相乘的结果为A的行列式的n次方。
解析:根据定义,矩阵的伴随矩阵满足以下性质:AA*=|A|E其中,|A|为A的行列式,E为单位矩阵。
考研数学一(N维向量与向量空间)-试卷2(总分:64.00,做题时间:90分钟)一、选择题(总题数:12,分数:24.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
(分数:2.00)__________________________________________________________________________________________解析:2.已知P是3阶非零矩阵,且PQ=0,则(分数:2.00)A.t=6时,r(P)=1.B.t=6时,r(P)=2.C.t≠6时,r(P)=1.√D.t≠6时,r(P)=2.解析:解析:若A是m×n矩阵,B是n×s矩阵,且AB=0,则由B的每列都是Ax=0的解,可有r(A)+r(B)≤n,从而r(P)≤3一r(Q).如t=6,则r(Q)=1,得r(P)≤2.因此(A),(B)应排除.如t≠6,则r(Q)=2,得r(P)≤1.因此(D)不正确,而P非零,r(P)≥1,故仅(C)正确.3.设A,B为满足AB=0的任意两个非零矩阵,则必有(分数:2.00)A.A的列向量组线性相关,B的行向量组线性相关.√B.A的列向量组线性相关,B的列向量组线性相关.C.A的行向量组线性相关,B的行向量组线性相关.D.A的行向量组线性相关,B的列向量组线性相关.解析:解析:设A是m×n矩阵,B是n×S矩阵,满足AB=0,且A,B均为非零矩阵,那么r(A)+r(B)≤n,r(A)≥1,r(B)≥1.所以必有r(A)<n 且r(B)<n.因为,秩r(A)=A的列秩<n,r(B)=B的行秩<n,故A的列向量组线性相关,B的行向量组线性相关.应选(A).4.设α1,α2,α3是3维向量空间R 3的一组基,则由基α1,到基α1 +α2,α2 +α3,α3 +α1的过渡矩阵为(分数:2.00)A. √B.C.D.解析:解析:按过渡矩阵概念:(新基)=(旧基).过渡矩阵,那么过渡矩阵C应满足关系式 (α1 +α2,α2 +α3,α3 +α1 )=(α1,α3 )C.由于 (α1 +α2,α2 +α3,α3 +α1 )=(α1,α2,α3 ) (α1,α3 )=(α1,α2,α3 ) 又(α1,α2,α3 )可逆,从而所以应选(A).5.设矩阵是满秩的,则直线=(分数:2.00)A.相交于一点.√B.重合.C.平行但不重合.D.异面.解析:解析:初等变换不改变矩阵的秩,由可知,后者的秩仍应是3.所以直线的方向向量S 1=(a 1一a 2,b 1一b 2,c 1一c 2 ), S 2 =(a 2一a 3,b 2—b 3,c 2一c 3 )线性无关,因此排除(B),(C).究竟是相交还是异面呢?在这两条直线上各取一点(a 3,b 3,c 3 )与(a 1,b 1,c 1 ),可构造向量S=(a 3一a 1,b 3—b 1,c 3一c 1 ),如果S,S 1,S 2共面,则两直线相交,如S 1,S 2,S 3不共面,则两直线异面.而三个向量的共面问题可用向量的混合积或线性相关性来判断.例如或S+S 1 +S 2 =0,所以,应选(A).6.设αi =(a i,b i,c i ) T,i=1,2,3,则平面上三条直线a 1 x+a 2 y+a 3 =0,b 1 x+b 2 y+b 3 =0,c 1 x+c 2 y+c 3 =0 交于一点的充分必要条件是(分数:2.00)A.|α1,α2,α3|=0.B.|α1,α2,α3|≠0.C.r(α1,α2,α3 )=r(α1,α2 ).D.α1,α2线性无关,但α1,α2,α3线性相关.√解析:解析:三条直线交于一点的充要条件是方程组有唯一解,即α3可由α1,α2线性表出且表示法唯一.故(D)正确. (B)肯定错,它表示α1,α2,α3线性无关,于是方程组无解.而(A),(C)均是交于一点的必要条件,仅行列式为0不能排除其中有平行直线,对于(C),因为秩可能是1,也就可能有平行直线.作为充要条件(A),(C)是不正确的.7.设向量组α,β,γ线性无关,α,β,δ线性相关,则(分数:2.00)A.α必可由β,γ,艿线性表示.B.β必不可由α,γ,δ线性表示.C.δ必可由α,β,γ线性表示.√D.δ必不可由α,β,γ线性表示.(C).8.向量组α1,α2,…,αs线性无关的充分必要条件是(分数:2.00)A.α1,α2,…,αs均不是零向量.B.α1,α2,…,αs中任意两个向量的分量不成比例.C.α1,α2,…,αs,αs+1线性无关.D.α1,α2,…,αs中任一个向量均不能由其余s一1个向量线性表出.√解析:解析:(A),(B)均是线性无关的必要条件.例如,α1=(1,1,1) T,α2=(1,2,3) T,α3=(2,3,4) T,虽α1,α2,α3均为非零向量且任两个向量的分量都不成比例,但α1 +α2一α3 =0,α1,α2,α3线性相关. (C)是线性无关的充分条件.由α1,α2,…,αs,αs+1线性无关α1,α2,…,αs线性无关,但由α1,α2,…,αs线性无关α1,α2,…,αs,αs+1线性无关. (D)是【定理3.4】的逆否命题.故应选(D).9.设α1,α2,α3,α4是3维非零向量,则下列说法正确的是(分数:2.00)A.若α1,α2线性相关,α3,α4线性相关,则α1 +α3,α2 +α4也线性相关.B.若α1,α2,α3线性无关,则α1 +α4,α2 +α4,α3 +α4线性无关.C.若α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关.√D.若α1,α2,α3,α4中任意三个向量均线性无关,则α1,α2,α3,α4线性无关.解析:解析:若α1 =(1,0),α2 =(2,0),α3 =(0,2),α4 =(O,3),则α1,α2线性相关,α3,α4线性相关,但α1 +α3 =(1,2),α2 +α4 =(2,3)线性无关.故(A)不正确.对于(B),取α4 =-α1,即知(B)不对.对于(D),可考察向量组(1,0,0),(0,1,0),(0,0,1),(一1,一1,一1),可知(D)不对.至于(C),因为4个3维向量必线性相关,如若α1,α2,α3线性无关,则α4必可由α1,α2,α3线性表出.现在α4不能由α1,α2,α3线性表出,故α1,α2,α3必线性相关.故应选(C).10.若α1,α2,α3线性无关,那么下列线性相关的向量组是(分数:2.00)A.α1,α1 +α2,α1 +α2 +α3.B.α1 +α2,α1-α2,-α3.C.-α1 +α2,α2 +α3,α3-α1.D.α1-α2,α2-α3,α3-α1.√解析:解析:用观察法.由 (α1一α2 )+(α2一α3 )+(α3一α1 )=0,可知α1一α2,α2一α3,α3一α1线性相关.故应选(D).至于(A),(B),(C)线性无关的判断可以用秩也可以用行列式不为0来判断.例如,(A)中r(α1,α1+α2,α1+α2+α3)=r(α1,α1+α2,α3)=r(α1,α2,α3 )=3.或(α1,α1 +α2,α1 +α2 +α3 )=r(α1,α2,α3 ) 由行列式≠0而知α1,α1 +α2,α1 +α2 +α3线性无关.11.设向量组I:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则(分数:2.00)A.当r<s时,向量组(Ⅱ)必线性相关.B.当r>s时,向量组(Ⅱ)必线性相关.C.当r<s时,向量组(Ⅰ)必线性相关.D.当r>s时,向量组(Ⅰ)必线性相关.√解析:解析:用【定理3.6】,若多数向量可用少数向量线性表出,则多数向量一定线性相关.故应选(D).请举例说明(A),(B),(C)均不正确.12.若r(α1,α2,…,αs )=r,则(分数:2.00)A.向量组中任意r一1个向量均线性无关.B.向量组中任意r个向量均线性无关.C.向量组中任意r+1个向量均线性相关.√D.向量组中向量个数必大于r.解析:解析:秩r(α1,α2,…,αs )=r 向量组α1,α2,…,αs的极大线性无关组为r个向量向量组α1,α2,…,αs中有r个向量线性无关,而任r+1个向量必线性相关.所以应选(C).二、填空题(总题数:2,分数:4.00)13.设B是3阶非0矩阵,且AB=0,则a= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:因为AB=0,有r(A)+r(B)≤3.又因B≠0,有r(B)≥1.从而r(A)<3,因此行列式|A|=0.又所以14.设 A *是A的伴随矩阵,则A * x=0的通解是 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:k 1 (1,2,一1) T +k 2 (1,0,1) T)解析:解析:由于|A|=0,秩r(A)=2,知r(A * )=1.那么n—r(A * )=3—1=2.从而A * x=0的通解形式为:k 1η1 +k 2η2.又A * A=|A|E=0,故A的列向量是A * x=0的解.所以A * x=0的通解为:k 1 (1,2,一1) T +k 2 (1,0,1) T.三、解答题(总题数:18,分数:36.00)15.解答题解答应写出文字说明、证明过程或演算步骤。
考研数学一真题及解析在考研数学的考场上,每一位考生都希望能尽可能地发挥出自己的实力,取得理想的成绩。
而要想在数学考试中取得好成绩,除了平时的勤奋学习和积累知识外,对于历年真题的熟悉和掌握也是非常重要的。
本文将为大家带来一份考研数学一真题及解析,希望能够帮助大家更好地理解和学习考研数学。
题目:设函数f(x)在[0,1]上连续,且满足0 ≤ f(x) ≤ 1,证明:存在ξ∈[0,1],使得f(ξ)=ξ。
本题主要考察的是中值定理的应用。
由于题目中给出了f(x)在[0,1]上的取值范围,我们可以利用函数的介值性质进行证明。
(1)介值定理:如果函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号,那么在开区间(a,b)内至少存在一点ξ,使得f(ξ)=0。
(2)零点存在定理:如果函数f(x)在区间[a,b]上连续,且f(a)f(b)<0,那么在开区间(a,b)内至少存在一点ξ,使得f(ξ)=0。
根据题目条件,我们知道0 ≤ f(x) ≤ 1,根据介值定理,我们知道在[0,1]这个闭区间上,f(x)必然取得其最小值0和最大值1之间的某个值。
因此,我们可以构造一个辅助函数g(x)=f(x)-x,则g(0)=f(0)-0≥0,g(1)=f(1)-1≤0。
根据零点存在定理,存在ξ∈[0,1],使得g(ξ)=f(ξ)-ξ=0,即f(ξ)=ξ。
通过以上解析过程,我们证明了存在ξ∈[0,1],使得f(ξ)=ξ。
这正是题目要求我们证明的结果。
本题主要考察了中值定理的应用,特别是介值定理和零点存在定理的应用。
在解题过程中,我们首先需要明确问题的要求和条件,然后利用相关的数学定理和性质进行证明。
对于考研数学一的考生来说,熟悉并掌握这些基本的数学定理和性质是非常重要的。
也要注意对于题目中给出的条件和限制进行合理的利用和转化。
标题:考研数学一真题及答案:揭秘数学考研真题对于正在准备考研数学一的考生来说,理解和掌握真题及答案是至关重要的。
2015年全国硕士研究生入学统一考试数学(一)一、选择题:1:8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3 (2)设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c(C) 3,2,1=-==a b c (D) 3,2,1===a b c(3) 若级数1∞=∑nn a条件收敛,则 3=x 与3=x 依次为幂级数1(1)∞=-∑n n n na x 的 ( )(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点(4) 设D 是第一象限由曲线21xy =,41xy =与直线y x =,3y x =围成的平面区域,函数(),f x y 在D 上连续,则(),Df x y dxdy =⎰⎰ ( )(A)()13sin 2142sin 2cos ,sin d f r r rdr πθπθθθθ⎰⎰(B)()sin 23142sin 2cos ,sin d f r r rdr πθπθθθθ⎰⎰(C)()13sin 2142sin 2cos ,sin d f r r drπθπθθθθ⎰⎰(D)()34cos ,sin d f r r dr ππθθθ⎰(5) 设矩阵21111214A a a ⎛⎫⎪= ⎪ ⎪⎝⎭,21b d d ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若集合{}1,2Ω=,则线性方程组Ax b =有无穷多解的充分必要条件为 ( )(A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C) ,a d ∈Ω∉Ω (D) ,a d ∈Ω∈Ω(6)设二次型()123,,f x x x 在正交变换为=x Py 下的标准形为2221232+-y y y ,其中()123,,=P e e e ,若()132,,=-Q e e e ,则()123,,f x x x 在正交变换=x Qy 下的标准形为( )(A) 2221232-+y y y(B) 2221232+-y y y(C) 2221232--y y y(D) 2221232++y y y(7) 若A,B 为任意两个随机事件,则 ( ) (A) ()()()≤P AB P A P B (B) ()()()≥P AB P A P B(C) ()()()2≤P A P B P AB (D) ()()()2≥P A P B P AB(8)设随机变量,X Y 不相关,且2,1,3===EX EY DX ,则()2+-=⎡⎤⎣⎦E X X Y ( )(A) 3- (B) 3 (C) 5- (D) 5二、填空题:9:14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 20ln cos lim_________.x xx→=(10)22sin ()d ________.1cos x x x x ππ-+=+⎰(11)若函数(,)=z z x y 由方程cos 2+++=xe xyz x x 确定,则(0,1)d ________.z=(12)设Ω是由平面1++=x y z 与三个坐标平面平面所围成的空间区域,则(23)__________.x y z dxdydz Ω++=⎰⎰⎰(13) n 阶行列式20021202___________.00220012-=-L LM M OM M L L(14)设二维随机变量(,)x y 服从正态分布(1,0;1,1,0)N ,则{0}________.P XY Y -<=三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分) 设函数()ln(1)sin =+++f x x a x bx x ,3()=g x kx ,若()fx 与()g x 在0→x 是等价无穷小,求,,a b k 的值.(16)(本题满分10分) 设函数()f x 在定义域I 上的导数大于零,若对任意的0x I ∈,由线()=y f x 在点()()0,x f x 处的切线与直线0x x =及x 轴所围成区域的面积恒为4,且()02f =,求()f x 的表达式.(17)(本题满分10分) 已知函数(),=++fx y x y xy ,曲线C :223++=x y xy ,求(),f x y 在曲线C 上的最大方向导数.(18)(本题满分 10 分)(I )设函数()()u x ,v x 可导,利用导数定义证明u x v x u x v x u x v x '''=+[()()]()()()() (II )设函数()()()12n u x ,u x ,,u x L 可导,n f x u x u x u x =L 12()()()(),写出()f x 的求导公式.(19)(本题满分 10 分)已知曲线L的方程为,z z x ⎧=⎪⎨=⎪⎩起点为()A,终点为()0,B ,计算曲线积分()()2222d d ()d LI y z x z x y y x y z =++-+++⎰.(20) (本题满11分)设向量组1,23,ααα内3R 的一个基,113=2+2k βαα,22=2βα,()313=++1k βαα.(I )证明向量组1β2β3β为3R 的一个基;(II )当k 为何值时,存在非0向量ξ在基1,23,ααα与基1β2β3β下的坐标相同,并求所有的ξ.(21) (本题满分11 分)设矩阵02313312a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A 相似于矩阵12000031b -⎛⎫ ⎪⎪ ⎪⎝⎭B =.(I) 求,a b 的值;(II )求可逆矩阵P ,使1-P AP 为对角矩阵..(22) (本题满分11 分) 设随机变量X 的概率密度为()2ln 2,0,0,0.xx f x x -⎧>⎪=⎨≤⎪⎩对X 进行独立重复的观测,直到2个大于3的观测值出现的停止.记Y 为观测次数. (I)求Y 的概率分布; (II)求EY(23) (本题满分 11 分)设总体X 的概率密度为:x f x θθθ⎧≤≤⎪=-⎨⎪⎩1,1,(,)10,其他. 其中θ为未知参数,12n x ,x ,,x L 为来自该总体的简单随机样本. (I)求θ的矩估计量. (II)求θ的最大似然估计量.答案解析(1)【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号.因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ).(2)【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212x e 、13x e -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解xy xe =代入得1c =-.故选(A )(3)【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质.【解析】因为1nn a∞=∑条件收敛,即2x =为幂级数1(1)nn n a x ∞=-∑的条件收敛点,所以1(1)nn n a x ∞=-∑的收敛半径为1,收敛区间为(0,2).而幂级数逐项求导不改变收敛区间,故1(1)nnn na x ∞=-∑的收敛区间还是(0,2).因而x =3x =依次为幂级数1(1)n n n na x ∞=-∑的收敛点,发散点.故选(B ).(4)【答案】(B )【分析】此题考查将二重积分化成极坐标系下的累次积分 【解析】先画出D 的图形,所以(,)Df x y dxdy =⎰⎰34(cos ,sin )d f r r rdr ππθθθ⎰,故选(B ) (5)【答案】(D)【解析】2211111111(,)1201111400(1)(2)(1)(2)A b ad a d a d a a d d ⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,由()(,)3r A r A b =<,故1a =或2a =,同时1d =或2d =.故选(D ) (6)【答案】(A)【解析】由x Py =,故222123()2T T T f x Ax y P AP y y y y ===+-. 且200010001TP AP ⎛⎫⎪= ⎪ ⎪-⎝⎭.由已知可得:100001010Q P PC ⎛⎫⎪== ⎪ ⎪-⎝⎭故有200()010001T T TQ AQ C P AP C ⎛⎫⎪==- ⎪ ⎪⎝⎭所以222123()2T T T f x Ax y Q AQ y y y y ===-+.选(A ) (7)【答案】(C)【解析】由于,AB A AB B ⊂⊂,按概率的基本性质,我们有()()P AB P A ≤且()()P AB P B ≤,从而()()()2P A P B P AB +≤≤,选(C) .(8)【答案】(D)【解析】22[(2)](2)()()2()E X X Y E X XY X E X E XY E X +-=+-=+-2()()()()2()D X E X E X E Y E X =++⋅-23221225=++⨯-⨯=,选(D) .(9)【答案】12-【分析】此题考查型未定式极限,可直接用洛必达法则,也可以用等价无穷小替换. 【解析】方法一:2000sin ln(cos )tan 1cos lim lim lim .222x x x xx x x x x x →→→--===-方法二:2222200001ln(cos )ln(1cos 1)cos 112lim lim lim lim .2x x x x x x x x x x x x →→→→-+--====- (10)【答案】2π4【分析】此题考查定积分的计算,需要用奇偶函数在对称区间上的性质化简.【解析】22202sin 2.1cos 4x x dx xdx x ππππ-⎛⎫+== ⎪+⎝⎭⎰⎰(11)【答案】dx -【分析】此题考查隐函数求导.【解析】令(,,)cos 2zF x y z e xyz x x =+++-,则(,,)1sin ,,(,,)z x y z F x y z yz x F xz F x y z e xy '''=+-==+又当0,1x y ==时1z e =,即0z =.所以(0,1)(0,1)(0,1,0)(0,1,0)1,0(0,1,0)(0,1,0)y x z z F F zz xF yF ''∂∂=-=-=-=''∂∂,因而(0,1).dzdx =-(12)【答案】14【分析】此题考查三重积分的计算,可直接计算,也可以利用轮换对称性化简后再计算. 【解析】由轮换对称性,得1(23)66zD x y z dxdydz zdxdydz zdz dxdy ΩΩ++==⎰⎰⎰⎰⎰⎰⎰⎰⎰,其中z D 为平面z z =截空间区域Ω所得的截面,其面积为21(1)2z -.所以 112320011(23)66(1)3(2).24x y z dxdydz zdxdydz z z dz z z z dz ΩΩ++==⋅-=-+=⎰⎰⎰⎰⎰⎰⎰⎰(13)【答案】122n +- 【解析】按第一行展开得1111200212022(1)2(1)220220012n n n n n D D D +----==+--=+-L L LL L221222(22)2222222n n n n D D ---=++=++=+++L 122n +=-(14)【答案】12【解析】由题设知,~(1,1),~(0,1)X N Y N ,而且X Y 、相互独立,从而{0}{(1)0}{10,0}{10,0}P XY Y P X Y P X Y P X Y -<=-<=-><+-<>11111{1}{0}{1}{0}22222P X P Y P X P Y =><+<>=⨯+⨯=. (15)【答案】,,.a b k =-=-=-11123【解析】法一:原式()3ln 1sin lim1x x a x bx xkx →+++=()()2333330236lim 1x x x x x a x o x bx x o x kx→⎛⎫⎛⎫+-+++-+ ⎪ ⎪⎝⎭⎝⎭==()()234331236lim1x a a b a x b x x x o x kx→⎛⎫++-+-+ ⎪⎝⎭== 即10,0,123a aa b k+=-==111,,23a b k ∴=-=-=-法二:()3ln 1sin lim1x x a x bx xkx →+++=21sin cos 1lim13x ab x bx x x kx →++++==因为分子的极限为0,则1a =-()212cos sin 1lim16x b x bx x x kx→--+-+==,分子的极限为0,12b =-()022sin sin cos 13lim 16x b x b x bx xx k →----+==,13k =- 111,,23a b k ∴=-=-=-(16)【答案】f x x=-8()4. 【解析】设()f x 在点()()00,x f x 处的切线方程为:()()()000,y f x f x x x '-=-令0y =,得到()()000f x x x f x =-+',故由题意,()()00142f x x x ⋅-=,即()()()000142f x f x f x ⋅=',可以转化为一阶微分方程,即28y y '=,可分离变量得到通解为:118x C y =-+,已知()02y =,得到12C =,因此11182x y =-+;即()84f x x =-+.(17)【答案】3【解析】因为(),f x y 沿着梯度的方向的方向导数最大,且最大值为梯度的模.()()',1,',1x y f x y y f x y x =+=+,故(){},1,1gradf x y y x =++此题目转化为对函数(),g x y =在约束条件22:3C x y xy ++=下的最大值.即为条件极值问题.为了计算简单,可以转化为对()()22(,)11d x y y x =+++在约束条件22:3C x y xy ++=下的最大值.构造函数:()()()()2222,,113F x y y x x y xy λλ=++++++-()()()()222120212030x y F x x y F y y x F x y xy λλλ'⎧=+++=⎪'=+++=⎨⎪'=++-=⎩,得到()()()()12341,1,1,1,2,1,1,2M M M M ----. ()()()()12348,0,9,9d M d M d M d M====3=.(18)【解析】(I )0()()()()[()()]limh u x h v x h u x v x u x v x h→++-'=0()()()()()()()()limh u x h v x h u x h v x u x h v x u x v x h→++-+++-=0()()()()lim ()lim ()h h v x h v x u x h u x u x h v x h h→→+-+-=++ ()()()()u x v x u x v x ''=+(II )由题意得12()[()()()]n f x u x u x u x ''=L121212()()()()()()()()()n n n u x u x u x u x u x u x u x u x u x '''=+++L L L L(19)【答案】π2【解析】由题意假设参数方程cos cos x y z θθθ=⎧⎪=⎨⎪=⎩,ππ:22θ→-π22π2[cos )sin 2sin cos (1sin )sin ]d θθθθθθθθ--++++⎰π222π2sin cos (1sin )sin d θθθθθθ-=+++⎰π220sin d π2θθ==(20)【答案】 【解析】(I)证明:()()()()12313213123,,2+2,2,+1201,,020201k k k k βββαααααααα=+⎛⎫⎪= ⎪ ⎪+⎝⎭20121224021201k k k k ==≠++ 故123,,βββ为3R 的一个基. (II )由题意知,112233112233,0k k k k k k ξβββαααξ=++=++≠即()()()1112223330,0,1,2,3i k k k k i βαβαβα-+-+-=≠=()()()()()()()11312223133113223132+22++10+2+0k k k k k k k k k k ααααααααααααα-+-+-=++=有非零解即13213+2,,+0k k ααααα=即101010020k k=,得k=0 11223121300,0k k k k k k ααα++=∴=+=11131,0k k k ξαα=-≠(21)【解析】(I) ~()()311A B tr A tr B a b ⇒=⇒+=++23120133001231--=⇒--=-A B b a14235-=-=⎧⎧∴⇒⎨⎨-==⎩⎩a b a a b b (II)023100123133010123123001123A E C ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--=+--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭()123112*********---⎛⎫⎛⎫ ⎪ ⎪=--=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭CC 的特征值1230,4λλλ===0λ=时(0)0-=E C x 的基础解系为12(2,1,0);(3,0,1)ξξ==-T T5λ=时(4)0-=E C x 的基础解系为3(1,1,1)ξ=--TA 的特征值1:1,1,5λλ=+A C令123231(,,)101011ξξξ--⎛⎫ ⎪==- ⎪ ⎪⎝⎭P ,1115-⎛⎫ ⎪∴= ⎪ ⎪⎝⎭P AP(22)【解析】(I) 记p 为观测值大于3的概率,则313228()ln x p P X dx +∞-=>==⎰, 从而12221171188n n n P Y n C p p p n ---==-=-{}()()()(),23,,n =L 为Y 的概率分布; (II) 法一:分解法:将随机变量Y 分解成=Y M N +两个过程,其中M 表示从1到()n n k <次试验观测值大于3首次发生,N 表示从1n +次到第k 试验观测值大于3首次发生.则M Ge n p ~(,),N Ge k n p -(,):(注:Ge 表示几何分布)所以11221618E Y E M N E M E N p p p =+=+=+===()()()(). 法二:直接计算22212221777711288888n n n n n n n E Y n P Y n n n n n ∞∞∞---====⋅==⋅-=⋅--+∑∑∑(){}()()()()[()()()]记212111()()n n S x n n xx ∞-==⋅--<<∑,则2113222211n n n n n n S x n n xn xx x ∞∞∞--==='''=⋅-=⋅==-∑∑∑()()()()(),12213222111()()()()()n n n n xS x n n xx n n x xS x x ∞∞--===⋅-=⋅-==-∑∑,2222313222111()()()()()nn n n x S x n n x xn n xx S x x ∞∞-===⋅-=⋅-==-∑∑,所以212332422211()()()()()x x S x S x S x S x x x-+=-+==--,从而7168E Y S ==()().(23)【解析】(I)11112()(;)E X xf x dx x dx θθθθ+∞-∞+==⋅=-⎰⎰, 令()E X X =,即12X θ+=,解得$1121ni i X X X n θ==-=∑,为θ的矩估计量;(II) 似然函数11110,()(;),n ni i i x L f x θθθθ=⎧⎛⎫≤≤⎪ ⎪==-⎨⎝⎭⎪⎩∏其他, 当1i x θ≤≤时,11111()()nni L θθθ===--∏,则1ln ()ln()L n θθ=--. 从而dln d 1L nθθθ=-(),关于θ单调增加, 所以$12min nX X X θ={,,,}L 为θ的最大似然估计量. 2016年全国硕士研究生入学统一考试数学(一)一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若反常积分()11badx x x +∞+⎰收敛,则( )()()()()11111111A a bB a bC a a bD a a b <>>><+>>+>且且且且(2)已知函数()()21,1ln ,1x x f x x x -<⎧⎪=⎨≥⎪⎩,则()f x 的一个原函数是( )()()()()()()()()()()()()()()()()22221,11,1ln 1,1ln 11,11,11,1ln 11,1ln 11,1x x x x A F x B F x x x x x x x x x x x C F x D F x x x x x x x ⎧⎧-<-<⎪⎪==⎨⎨-≥+-≥⎪⎪⎩⎩⎧⎧-<-<⎪⎪==⎨⎨++≥-+≥⎪⎪⎩⎩(3)若()()222211y x y x =+-=++是微分方程()()y p x y q x '+=的两个解,则()q x =( )()()()()()()2222313111xx A x x B x x C D x x +-+-++(4)已知函数(),0111,,1,2,1x x f x x n n n n ≤⎧⎪=⎨<≤=⎪+⎩K ,则( ) (A )0x =是()f x 的第一类间断点 (B )0x =是()f x 的第二类间断点 (C )()f x 在0x =处连续但不可导 (D )()f x 在0x =处可导 (5)设A ,B 是可逆矩阵,且A 与B 相似,则下列结论错误的是( ) (A )TA 与TB 相似 (B )1A -与1B -相似(C )T A A +与T B B +相似 (D )1A A -+与1B B -+相似(6)设二次型()222123123121323,,444f x x x x x x x x x x x x =+++++,则()123,,2f x x x =在空间直角坐标下表示的二次曲面为( )(A )单叶双曲面 (B )双叶双曲面 (C )椭球面 (C )柱面(7)设随机变量()()0,~2>σσμN X ,记{}2σμ+≤=X P p ,则( )(A )p 随着μ的增加而增加 (B )p 随着σ的增加而增加 (C )p 随着μ的增加而减少 (D )p 随着σ的增加而减少(8)随机试验E 有三种两两不相容的结果321,,A A A ,且三种结果发生的概率均为31,将试验E 独立重复做2次,X 表示2次试验中结果1A 发生的次数,Y 表示2次试验中结果2A 发生的次数,则X 与Y 的相关系数为( )二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)()__________cos 1sin 1ln lim200=-+⎰→x dt t t t xx(10)向量场()()zk xyj i z y x z y x A ++++=,,的旋度_________=rotA(11)设函数()v u f ,可微,()y x z z ,=由方程()()y z x f x y z x ,122-=-+确定,则()_________1,0=dz(12)设函数()21arctan axxx x f +-=,且()10''=f ,则________=a (13)行列式1000100014321λλλλ--=-+____________.(14)设12,,...,n x x x 为来自总体()2,Nμσ的简单随机样本,样本均值9.5x =,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为______.三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)已知平面区域()(),221cos ,22D r r ππθθθ⎧⎫=≤≤+-≤≤⎨⎬⎩⎭,计算二重积分Dxdxdy ⎰⎰.(16)(本题满分10分)设函数()y x 满足方程'''20,y y ky ++=其中01k <<.()I 证明:反常积分0()y x dx +∞⎰收敛;()II 若'(0)1,(0)1,y y ==求0()y x dx +∞⎰的值.(17)(本题满分10分)设函数(,)f x y 满足2(,)(21),x y f x y x e x-∂=+∂且(0,)1,tf y y L =+是从点(0,0)到点(1,)t 的光滑曲线,计算曲线积分(,)(,)()tL f x y f x y I t dx dy x y∂∂=+∂∂⎰,并求()I t 的最小值(18)设有界区域Ω由平面222=++z y x 与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分()zdxdyydzdx dydz xI 3212+-+=⎰⎰∑(19)(本题满分10分)已知函数()f x 可导,且(0)1f =,10'()2f x <<,设数列{}n x 满足1()(1,2...)n n x f x n +==,证明:(I )级数11()n n n xx ∞+=-∑绝对收敛;(II )lim n n x →∞存在,且0lim 2n n x →∞<<.(20)(本题满分11分)设矩阵1112221,11112 A a B aa a--⎛⎫⎛⎫ ⎪ ⎪==⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭当a为何值时,方程AX B=无解、有唯一解、有无穷多解?(21)(本题满分11分)已知矩阵011230000A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭(I )求99A(II )设3阶矩阵23(,,)B ααα=满足2B BA =,记100123(,,)B βββ=将123,,βββ分别表示为123,,ααα的线性组合。
202X 年全国硕士研究生入学统一考试数学〔一〕真题一、选择题:18小题,每题4分,共32分。
以下每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上。
(1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如下图,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3【答案】〔C 〕【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号。
因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.应选〔C 〕. (2)设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则 ( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C) 3,2,1=-==a b c (D) 3,2,1===a b c【答案】〔A 〕【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比拟等式两边的系数可得待估系数值,另一种是依据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212x e 、13x e -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解x y xe =代入得1c =-.应选〔A 〕(3) 假设级数1∞=∑nn a条件收敛,则=x 3=x 依次为幂级数1(1)∞=-∑n n n na x 的( )(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点 【答案】〔B 〕【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质。
考研数学一(线性代数)历年真题试卷汇编15(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设A=(α1,α2,α3,α4)是4阶矩阵.A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为A.α1,α3.B.α1,α2.C.α1,α2,α3.D.α2,α3,α4正确答案:D解析:首先,4元齐次线性方程组A*x=0的基础解系所含解向量的个数为4一r(A*),其中r(A*)为A*的秩,因此求r(A*)是一个关键.其次,由Ax=0的基础解系只含1个向量,即4一r(A)=1,得r(A)=3,于是由r(A*)与r(A)的关系,知r(A*)=1,因此,方程组A*x=0的基础解系所含解向量的个数为4一r(A*)=3,故选项A、(B)不对.再次,由(1,0,1,0)T是方程组Ax=0或x1α1+x2α2+x3α3 +x4α4=0的解,知α1+α3=0,故α1与α3线性相关,于是只有选项D正确.知识模块:线性方程组2.设矩阵A=,若集合Ω={1,2},则线性方程组Ax=b有无穷多解的充分必要条件为A.B.C.D.正确答案:D解析:对方程组的增广矩阵施行初等行变换(化成阶梯形):由于方程组有无穷多解,当然不能有唯一解,所以有(a一1)(a一2)=0,即a=1或a=2,此时系数矩阵的秩为2,由有解判定定理知,当且仅当a∈Ω且d∈Ω,所以选D.知识模块:线性方程组3.设A为m×n矩阵,齐次线性方程组Ax=0仅有零解的充分条件是A的A.列向量组线性无关.B.列向量组线性相关.C.行向量组线性无关.D.行向量组线性相关.正确答案:A 涉及知识点:线性方程组4.设齐次线性方程组的系数矩阵为A,且存在3阶方阵B≠O,使AB=O,则A.λ=一2且|B|=0.B.λ=一2且|B|≠0.C.λ=1且|B|=0.D.λ=1且|B|≠0.正确答案:C 涉及知识点:线性方程组5.设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且秩(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=A.B.C.D.正确答案:C解析:由Ax=b的解的结构知关键在于求出Ax=0的基础解系,由于Ax=0的基础解系所含解向量个数为4一秩(A)=4—3=1,因此Ax=0的任意一个非零解都可作为Ax=0的基础解系.易知ξ=2α1一(α2+α3)=(2,3,4,5)T是Ax=0的一个非零解,故ξ可作为Ax=0的基础解系,所以,Ax=b的通解为x=α1+c ξ,只有选项C正确.知识模块:线性方程组填空题6.若方程组有解。
历年考研数学一真题及答案一、单项选择题1、教育学作为一门独立学科,开始诞生于()A.资本主义社会B.封建社会C.古代社会D.原始社会答案:A.资本主义社会。
2、“不愤不启,不悱不发”这句话出自()A.《论语》B.《学记》C.《礼记》D.《中庸》答案:A.《论语》。
3、“寓德育于教学之中,寓德育于活动之中”是德育()原则。
A.导向性B.疏导性C.一致性D.因材施教性答案:C.一致性。
二、多项选择题1、教育学发展阶段包括()A.独立形态阶段B.前教育学阶段C.教育学萌芽阶段D.教育学形成阶段答案:ABC。
2、教育学的任务在于()A.阐述教育基本原理,解决教育的基本问题B.研究和揭示教育规律,增强教育的科学性和预见性,提高教育的有C.揭示教育的内部规律,深化人们对教育的认识和理解D.研究和解决教育的具体问题,增强教育的针对性和实效性答案:ABC。
3、教育与社会的发展具有密切的关系,表现为()A.教育是社会赖以存在和发展的基础B.教育是培养人的社会活动,是实现人的社会化最为基本的途径和手段之一C.教育通过传递生产经验和社会生活经验,促进生产力的发展和经济的繁荣D.教育通过培养人才参与和推动政治、经济、文化的发展和进步答案:ABCD。
4、下列属于全面发展教育组成部分的是()A.德育B.智育C.体育D.美育答案:ABCD。
一、单项选择题1、下列哪一项不属于我国宪法规定的公民基本权利?A.受教育权B.言论自由D.选举权答案:D.选举权。
2、根据我国《宪法》规定,下列哪一项不属于全国人民代表大会的职权?A.制定和修改宪法B.监督宪法的实施C.制定和修改刑事、民事、国家机构的和其他的基本法律D.选举中华人民共和国主席、副主席答案:D.选举中华人民共和国主席、副主席。
3、根据我国《宪法》规定,下列哪一项不属于公民的基本义务?A.依法纳税B.劳动C.受教育D.爱护公共财物答案:D.爱护公共财物。
二、多项选择题1、下列哪些选项属于我国宪法规定的公民基本权利?A.受教育权B.劳动权C.言论自由D.选举权和被选举权答案:A,B,C,D。
第一章 函数·极限·连续一. 填空题1. 已知 f ( x)sin x, f [ ( x)] 1 x 2 , 则 (x)__________, 定义域为 ___________.1 xax2.设 limate tdt , 则 a = ________.xx3. lim12n222=________.nnn 1 nn 2nn n1 | x | 1 4. 已知函数 f (x)| x | 1 0, 则 f[f(x)] _______.5.lim ( n3 nnn ) =_______.n6. 设当 x0 时, f (x)ex1ax为 x 的 3 阶无穷小 , 则 a _____, b ______ .1 bx7.lim cot x1 1=______.sin x xx 08. 已知 limn 1990A (0), 则 A = ______, k = _______.n k(n 1) kn二. 选择题1. 设 f(x)和 (x)在 (- , + )内有定义 , f(x)为连续函数 , 且 f(x) 0, (x)有间断点 , 则(a) [ f(x)]必有间断点(b) [(x)]2必有间断点(c) f [(x)] 必有间断点 (d)( x)必有间断点f ( x)2. 设函数 f ( x) x tan xe sin x , 则 f(x) 是(a) 偶函数(b) 无界函数 (c) 周期函数(d) 单调函数3. 函数 f ( x)| x | sin( x 2) 在下列哪个区间内有界x( x 1)( x 2)2(a) ( - 1, 0) (b) (0, 1) (c) (1, 2) (d) (2, 3)1时, 函数x 21 4. 当 x1e x 1 的极限x 15. 极限lim352n12 的值是122222n2( n1)n23(a) 0(b) 1(c) 2(d)不存在( x1)95 ( ax1)56. 设lim2508 ,则a的值为x( x1)(a) 1(b) 2(c) 58(d) 均不对7.设lim ( x 1)( x 2)( x3)( x 4)( x 5)x(3x2), 则,的数值为(a)= 1,1(b)= 5,1(c)1(d) 均不对=== 5, =33358. 设f ( x) 2x3x 2 ,则当x0 时(a) f(x) 是 x 的等价无穷小(b) f(x) 是 x 的同阶但非等价无穷小(c) f(x) 比 x 较低价无穷小(d) f(x) 比 x 较高价无穷小9.设lim (1 x)(12x)(13x)a 6 ,则a的值为x 0x(a)-1(b) 1(c) 2(d) 310. 设lim a tan x b(1 cos x)22,其中 a2c20 ,则必有x 0cln( 1 2x) d(1 e x)(a) b = 4d(b) b = - 4d(c) a = 4c(d) a =-4c三. 计算题1.求下列极限1(1)lim (x e x ) xx(2)lim (sin2cos1) x x x x1tan x1 lim x3(3)x 01sin x2.求下列极限(1)lim ln(1 3x1)(2) lim1 cot2 x x 0x 23. 求下列极限 (1) limn(n n 1)nln n1 e nx (2)lim nx n 1 eannn b(3) lim, 其中 a > 0, b > 0n22(1 cosx)x 0x 2 4.f (x) 1x1 x2 dt x 0x costf (x) 在x0 的 性与可 性 .5. 求下列函数的 断点并判 型1(1) f ( x)2 x 112 x 1x(2 x)x2 cos x(2) f (x)1sinx 021xx sin 1x 06. 函数 f ( x)xxe x在 x = 0 的 性 .7. f(x) 在 [a, b] 上 , 且 a < x 1 < x 2 < ⋯ < x n < b, c i (I = 1, 2, 3, ⋯ , n) 任意正数 , 在 (a, b) 内至少存在一个, 使f ( )c 1 f (x 1 ) c 2 f ( x 2 )c ncn .c 1 c 28. f(x) 在 [a, b]上 , 且 f(a) < a, f(b) > b, 在 (a, b)内至少存在一个 , 使 f( ) = .9. 设 f(x) 在 [0, 1] 上连续 , 且 0 f(x) 1, 试证在 [0, 1] 内至少存在一个, 使 f( ) = .10. 设 f(x), g(x) 在[a, b] 上连续 , 且 f(a) < g(a), f(b) > g(b),试证在(a, b)内至少存在一个, 使f( ) = g( ).11.证明方程x5-3x-2 = 0 在(1, 2) 内至少有一个实根 .12. 设 f(x) 在 x = 0 的某领域内二阶可导, 且lim sin 3x f ( x)0 ,求f (0), f ' (0), f ' '(0)及limf (x)3 x3x2x2.x 0x 0第二章导数与微分一. 填空题1 . 设lim f ( x0k x) f ( x0 )1f '( x0 ) ,则 k = ________.x0x32.设函数 y = y(x) 由方程e xy cos(xy)0确定 ,则 dy______.dx3.已知 f(- x) =-f(x), 且f ' (x0 )k ,则 f ' ( x0 )______.4.设 f(x) 可导 ,f ( x0m x) f (x0n x)_______.则 limxx05. f ( x)1x ,则 f ( n ) ( x) = _______.1x6.已知df11, 则f '1_______. dx x2x27.设 f 为可导函数 ,y sin{ f [sindy_______.f ( x)]} ,则dx8.设 y = f(x) 由方程e2 x y cos( xy )e1所确定 , 则曲线 y = f(x) 在点 (0, 1)处的法线方程为 _______.二. 选择题1.已知函数 f(x) 具有任意阶导数 , 且f ' (x)[ f (x)] 2,则当 n 为大于 2 的正整数时 , f(x) 的 n 阶导数是(a) n![ f ( x)]n1(b)n[ f ( x)] n 1(c)[ f (x)] 2n(d)n![ f ( x)] 2n2.设函数对任意x 均满足 f(1 + x) = af(x),且 f ' (0)b,其中 a, b 为非零常数 , 则(a) f(x) 在 x = 1处不可导(b) f(x) 在 x = 1处可导 ,且 f ' (1) a(c) f(x) 在 x = 1处可导 , 且f ' (1) b(d) f(x) 在 x = 1处可导 , 且f ' (1)ab3.设 f ( x)3x3x 2| x |,则使 f ( n)(0) 存在的最高阶导数n 为(a) 0(b) 1(c) 2(d) 34.设函数 y = f(x) 在点 x 0处可导 , 当自变量 x 由 x 0增加到 x0 +y dyx 时 , 记 y 为 f(x) 的增量 , dy 为 f(x) 的微分 , lim等于x 0xx2 sin 1x05. 设f ( x)x x0ax b在 x = 0 处可导 , 则(a) a = 1, b = 0(b) a = 0, b 为任意常数(c) a = 0, b = 0(d) a = 1, b 为任意常数三. 计算题1.y ln[cos( 103x 2 )],求 y'2. 已知 f(u) 可导 ,y f [ln( x a x2 )],求 y'3.已知y e t 2dt x2costdt sin y2,求 y' .004.设 y 为 x 的函数是由方程ln x 2y2arctan y确定的 , 求y' . x四. 已知当 x0 时, f( x) 有定义且二阶可导 ,问 a, b, c 为何值时F ( x)f ( x)x0二阶可导 . ax2bx c x0五. 已知f ( x)x 2,求 f(n ) ( 0) .1x2六. 设y xln x ,求f( n) (1) .第三章一元函数积分学 (不定积分 )一. 求下列不定积分 : 1.1 2 ln 1 xdx 1 x 1 x1 1 x 1 x 1 x 1 1 22.x 1 x 2arctandx arctand arctanx 2arctanc1 x1 x1 1 x3.cos x sin x1 1 sin x dx(1 cos x)21 cos x4.dx x( x 8 1)1 111 sin x(1 sin x cosx)(sin x cosx)5.dx 222dx1 sin x cosx1 sin x cosx二. 求下列不定积分 :dx1.( x 1)2 x 2 2 x 2dx 2.x 4 1 x 23.dx1) 1 x 2(2x 2x 2dx 4.(a > 0)a 2 x 25.(1 x 2 ) 3 dx6.x 21dxx 4x 17.dxx2x21三. 求下列不定积分:e3x e xdx 1.e2xe4 x1dx2.2x (1 4 x)四. 求下列不定积分:x51.( x2)100dxdx2.x 1 x4五. 求下列不定积分:1.x cos2 xdx2.sec3 xdx3.(ln x)3dxx 24.cos(ln x)dxx cos4x1x cos4x1x1x sin 2x1sin 2xdx5.2dxx2dx xd sin 2sin 3 x8sin3 3 x828282cos221x sin 2 x1sin 2 x d x1x sin2x1cotxc824228242六. 求下列不定积分 :x ln( x1x 2 )2.x arctan x dx1x23.arctan e x dxe2 x七.x ln(1x 2 ) 3x0设 f ( x)22x 3)e x x, 求 f (x)dx .( x0八.设 f ' (e x ) a sin x b cos x, (a, b为不同时为零的常数), 求 f(x).九. 求下列不定积分:1.3x23x (2x3)dx32.(3x 22x5) 2(3x1) dx3.ln( x 1 x2 )dx1x2xdx4.(1 x2x21) ln(1x 21)十. 求下列不定积分:x arctan x1.(1x2)dx2.arcsinxdx 1 xarcsinx1x2 3.2dxx1x 2arctan x4.2(1x 2dxx)十一 . 求下列不定积分: 1.x34x 2 dxx2a22.x3.e x (1e x ) dx1e2 x4.xxdx (a > 0) 2a x十二 . 求下列不定积分:dx1.sin x 1cos x2.2sin x2dxcos x3.sin x cos x dxsin x cos x十三 . 求下列不定积分:x1.dx1 x x2.e x 1dxe x 13.x 1arctan x 1 dxx第三章一元函数积分学 (定积分 )b0 ,则f(x) 0.一.若 f(x) 在[a, b]上连续 , 证明 : 对于任意选定的连续函数(x), 均有f (x) ( x)dxa二. 设为任意实数 , 证明 :I21dx=21.0 1(tan x)0 1dx (cot x)4三.已知 f(x) 在 [0, 1]上连续 , 对任意 x, y 都有 |f(x) - f(y)| < M|x-y|, 证明f ( x)dx1n f k M1n k n2n01四.设 In4 tan n xdx , n为大于1的正整数,证明:1I n1.02(n1)2(n1)五. 设 f(x) 在[0, 1] 连续 , 且单调减少 , f(x) > 0,证明:对于满足0 << < 1 的任何, , 有f ( x)dx f ( x)dx六. 设 f(x) 在[a, b] 上二阶可导 , 且 f ' ' ( x) < 0,证明 :b f (x)dx (b a) fa ba2七. 设 f(x) 在[0, 1] 上连续 , 且单调不增 , 证明 : 任给 (0, 1), 有1 f ( x)dxf ( x)dx八. 设 f(x) 在[a, b] 上连续 ,f ' ( x) 在 [a, b]内存在而且可积 , f(a) = f(b) = 0, 试证 :| f ( x) |1b2 | f ' (x) | dx , (a < x < b)a九. 设 f(x) 在[0, 1] 上具有二阶连续导数f ' ' ( x) , 且 f (0) f (1) 0, f ( x) 0 , 试证 :1f ' ' ( x)dx 4f ( x)十. 设 f(x) 在[0, 1] 上有一阶连续导数 , 且 f(1) -f(0) = 1,试证 :1 2dx 1[ f ' (x)] 022十一 . 设函数 f(x) 在 [0, 2] 上连续 , 且f (x)dx = 0,xf ( x)dx = a > 0. 证明 :[0, 2], 使 |f( )| a.0 0第三章一元函数积分学(广义积分 )一. 计算下列广义积分:x2edx(1)10 (e x1)31(2)0( x21)( x24)dx(3)dx3 (1 x2 ) 21(4)sin(ln x)dx11dx (5)2 x x21 (6)arctan x3dx(1 x2 ) 2第四章 微分中值定理一. 设函数 f(x) 在闭区间 [0, 1] 上可微 , 对于 [0, 1] 上每一个 x, 函数 f(x) 的值都在开区间(0, 1)内 , 且 f ' ( x) 1, 证明 : 在 (0, 1)内有且仅有一个 x, 使 f(x) = x.1f ( x) dxf (0) . 证明 : 在(0, 1)内存在一个, 使 f ' ( ) 0 .二. 设函数 f(x) 在[0, 1] 上连续 , (0, 1) 内可导 , 且 3 2 3三.设函数 f(x) 在[1, 2] 上有二阶导数 , 且 f(1) = f(2) = 0,又 F(x) =(x - 1)2f(x), 证明 : 在(1, 2)内至少存在一个 , 使 F ' ' ( ) 0 .四. 设 f(x)在 [0, x](x > 0) 上连续 , 在 (0, x)内可导 , 且 f(0) = 0, 试证 : 在(0, x) 内存在一个, 使f ( x) (1 ) ln(1 x) f ' ( ) .五. 设 f(x)在 [a, b]上可导 , 且 ab > 0, 试证 : 存在一个 (a, b), 使1b n a n [nf ( ) f '()] n 1f (b)b a f (a)六. 设函数 f(x), g(x), h(x)在 [a, b] 上连续 , 在(a, b)内可导 , 证明 :存在一个(a, b), 使f (a) g(a) h(a)f (b)g( b) h(b) 0f ' ( )g' ( )h' ( )七. 设 f(x)在 [x1, x2] 上二阶可导 , 且 0< x1 < x2 , 证明 : 在( x1 , x2)内至少存在一个, 使1e x1e x2 e x1e x2 f ( x1 )f ( ) f ' ( )f ( x2 )八. 若 x1x2 > 0, 证明 : 存在一个(x1, x2)或( x2, x1 ), 使x1e x2x2 e x1(1)e (x1x2 )九 .设f(x), g( x) 在 [a, b] 上连续 ,在(a,b) 内可导 ,且f( a) = f(b) = 0, g(x)0,试证:至少存在一个(a, b),使f ' ( ) g( ) g' ( ) f ( )十. 设 f(x) 在 [a, b] 上连续(0 a b) ,在(a, b)内可导,证明在(a, b)存在,2f ' ()使 f ' ( )ab.第五章一元微积分的应用一. 选择题1. 设 f(x) 在 (-, + )内可导 , 且对任意x1, x2 , x1 > x2时, 都有 f(x 1) > f(x 2), 则(a) 对任意 x, f '( x) 0(b) 对任意 x, f '( x)0(c) 函数 f( - x)单调增加(d) 函数- f(- x)单调增加1x 2x 1的渐近线有2. 曲线y e x2arctan( x 1)( x2)(a) 1 条(b) 2 条(c) 3 条(d) 4 条3. 设 f(x) 在 [- , + ] 上连续 , 当 a 为何值时 , F (a)[ f (x) a cosnx ]2 dx 的值为极小值.(a) f ( x) cos nxdx(b)(c)2(d)f ( x) cosnxdx4. 函数 y = f(x)具有下列特征 :1f ( x) cosnxdx 1f ( x) cosnxdx 2f(0) = 1; f ' (0)0 ,当x0 时, f '( x)0x00 ; f '' ( x)x, 则其图形00(a)(b)(c)(d)11115. 设三次函数y f ( x) ax3bx 2cx d ,若两个极值点及其对应的两个极值均为相反数, 则这个函数的图形是(a) 关于 y 轴对称(b) 关于原点对称(c) 关于直线 y = x 轴对称(d) 以上均错6.曲线 y x( x 1)(2 x) 与x轴所围图形面积可表示为21)( 2x)dx11)( 2x) dx21)( 2x)dx(a)x( x(b)x( x x( x00111)( 2x)dx21)(2x)dx21)(2x)dx(c)x(x x(x(d)x( x010二. 填空题x11. 函数F ( x)2dt (x > 0)的单调减少区间______.1t2. 曲线y x3x 与其在x13. 二椭圆x2y 21,x2y 21( a > b > 0)之间的图形的面积______. a2b2b2 a 24. x2+ y2= a2绕 x =-b(b > a > 0) 旋转所成旋转体体积_______.(5) 求心脏线= 4(1+cos ) 和直线= 0, =围成图形绕极轴旋转所成旋转体体积_____.2三. 证明题xtf (t )dt0 时函数( x)01. 设 f(x) 为连续正值函数 , 证明当 x单调增加 .xf (t )dt2. 设 f(x)在[ a, b]上连续 , 在(a, b)内f ' ' ( x)f ( x) f (a)0 ,证明 ( x)在 (a, b)内单增 .x a3. 设 f(x)在[ a, b]上连续 , 在(a, b)内可导且f ' ( x)0 ,求证:F ( x)1xf (t )dt 在(a, b)内也 F ' ( x) 0 . x a a4. 设 f(x)在[ a, b] 上连续 , 且 f(x) > 0,又 F ( x)x x 1f ( t)dt dt .证明:a b f ( t)i. F ' ( x) 2, ii. F(x) = 0在(a, b)内有唯一实根.5. 明方程tan x 1 x 在(0, 1)内有唯一根.6.a1, a2, ⋯ , a n n 个数 , 并足a1a2(1) n 1a n0 .明:方程32n1a1 cos x a2 cos3x a n cos(2n1) x0在 (0,2) 内至少有一根 .四. 算1. 在直 x-y + 1=0 与抛物y x24x 5 的交点上引抛物的法, 求由两法及接两交点的弦所成的三角形的面.22f (x)] 2 dx 最小的直方程.2. 求通点 (1, 1)的直 y = f(x)中 , 使得[ x3. 求函数f ( x)x2(2 t)e t dt 的最大与最小. 04. 已知 (x- b)2 + y2 = a2, 其中 b > a > 0, 求此 y 旋所构成的旋体体和表面.第六章多元函数微分学一. 考虑二元函数的下面 4 条性质( I ) f ( x, y) 在点 (x0 , y0 ) 处连续;( II ) f ( x, y) 在点 ( x0 , y0 ) 处的两个偏导数连续; ( I II) f ( x, y) 在点 (x0 , y0 ) 处可微;( IV ) f (x, y) 在点 (x0 , y0 ) 处的两个偏导数存在;若用 P Q 表示可由性质P推出性质Q,则有( A ) ( C )(II )(III )( I )(III )(IV )( I )( B )( D )( III )(II )( I )(III )(I )( IV )xy2,( x, y)(0,0)二. 二元函数f ( x, y)x2y0) 处在点 (0, 0,(x, y)(0,0)( A ) 连续 , 偏导数存在 ;( B ) 连续 , 偏导数不存在 ; ( C ) 不连续 , 偏导数存在 ;( D ) 不连续 , 偏导数不存在 .三. 设 f, g 为连续可微函数 , u f ( x, xy), v g( x xy) ,求uv . x x四. 设x2z2y z, 其中为可微函数 , 求z .y y五. 设u f ( x, y, z),又 y(x, t ), t( x, z),求u. x六. 求下列方程所确定函数的全微分:1. f ( x y, y z, z x)0,求 dz ;2.z f ( xz, z y),求 dz .七. 设z f ( e x sin y, x2y 2 ) ,其中f具有二阶连续偏导数, 求 2z.x y八.已知 z f (2 x, x ),求 zxx ' ', z yy ' ' . y九. 已知z f (xln,)' ' ,zxy' ' ,zyy' '.y x y ,求 z xx十. 设y y( x), zx y z z20确定 , 求dy dz z(x),由y2z z30, .x dx dx十一 . 设z xf (y)(y),求 x2 2 z2xy 2 z y 2 2 zx x x 2x y y22十二 . 设z f [ x2y, ( xy)] ,其中f(u, v)具有二阶连续偏导数,(u) 二阶可导,求z. x y十三 . 设F ( x, y(x), z(x))P( x, y(x)) Q ( x, y( x)) z( x) ,其中出现的函数都是连续可微的F d F , 试计算.第七章二重积分一. 比较积分值的大小:1. 设I1D 结论正确的是x y x y 3xy{( x, y) | (x 1)2( y1)22},则下列dxdy, I2dxdy, I 3dxdy 其中D4D4D4( A )I 1I 2I 3( B )I 2I 3I 1( C )I 1I 3I 2( D )I 3I 2I 12.设 I ie ( x2y2) dxdy, i1, 2,3, 其中 :D1{( x, y) | x 2y2r 2 } , D2{( x, y) | x2y 22r 2 } ,D iD 3{( x, y) | | x |r , | y |r } 则下列结论正确的是( A )I 1I 2I 3( B )I 2I 3I 1( C ) I1I 3I 2( D ) I3I 2I 13.设I1cos x 2y2,I 2cos(x 2y2 ), I 3cos(x 2y 2 ) 2其中 D{( x, y) | x2y 21} ,则下列D D D结论正确的是( A ) I1I 2I 3( B ) I2I 3I 1( C ) I1I 3I 2( D ) I3I 2I 1二. 将二重积分I f ( x, y)d 化为累次积分(两种形式),其中D给定如下:D1. D: 由y28x 与 x28 y 所围之区域.2. D: 由 x = 3, x = 5, x -2y + 1 = 0 及 x -2y + 7 = 0 所围之区域 .3. D: 由x2y 2 1 , y x 及 x > 0 所围之区域 .4. D: 由 |x| + |y| 1 所围之区域 .三.改变下列积分次序 :a a2x21.dx a2x 2 f ( x, y)dy2a1x 233xf (x, y) dy2.dx0f (x, y)dy dx201002x 2f ( x, y)dy12x23.dxx dxxf ( x, y) dy10四. 将二重积分I f ( x, y)d 化为极坐标形式的累次积分, 其中 :D1.D: a2x2 +y 2b2 , y0, (b > a > 0)2.D: x 2+y2y, x03.D: 0x +y1, 0 x1五. 求解下列二重积分:2x 1.dx1x sinx42dy dx2y2xxsin dy1y 2 x2. dx e 2 dy003.y dxdy , D:由y = x4-x3的上凸弧段部分与x 轴所形成的曲边梯形Dx 64.xydxdy , D: y x及1 x2+ y22 x2y2D六. 计算下列二重积分 :x222y 21.yx 1 .1dxdy , D:22 Da b a b2.ln( x2y 2 )dxdy , D:2x 2y 21 , 并求上述二重积分当0 时的极限 .Dax f ' ( y)3.dxdy(a x)( x y)1 x 2y 24.2 2 dxdy , D: x 2 + y 2 1, x 0, y 0. D1 x y2七. 求证 :f ( xy)dxdy ln 2 f ( u) du , 其中 D 是由 xy = 1, xy = 2, y = x 及 y = 4x(x > 0, y > 0) 所围成之区域 .1Df ( x y)dxdy2 2f (u)du八 . 求证 :2 u x 2y 2121x2y 21t 2e2 dxdy a九 . 设 f(t)是半径为 t 的圆周长 , 试证 : f (t) e 2 dt2x 2 y2 a220m y n dxdy 0十 . 设 m, n 均为正整数 , 其中至少有一个是奇数, 证明xx 2y2 a2十一.设平面区域 D {( x, y) | x 3y 1, 1 x 1}, f (x) 是定义在 [ a, a] (a1) 上的任意连续函数试求: I 2 y[( x 1) f ( x) (x1) f ( x)] dxdyDLy x 3第八章无穷级数一. 填空题x 1n a n1(1) 设有级数a n, 若lim2a n 1, 则该级数的收敛半径为 ______.n 1n3(2) 幂级数n n3)n x2n 1的收敛半径为 ______.n 1 2((3) 幂级数x n的收敛区间为 ______. n 1n 1(4) 幂级数x n 1的收敛区间为 ______. n 1 n2n(5)幂级数(n1)x n的和函数为______.n1二. 单项选择题(1)设 a n0(n1,2,),且a n收敛,常数(0,) ,则级数( 1)n (n tan ) a2 nn 12n 1n(A) 绝对收敛(B) 条件收敛(C)发散(D) 收敛性与有关(2)设 u n( 1)n ln(11) ,则n(A)u n与u n2都收敛. (B)u n与u n2都发散. (C)u n收敛,而u n2发散. (D)u n发散,u n2收敛.n 1n 1n 1n 1n 1n 1n 1n 1(3)下列各选项正确的是(A) 若u n2与v n2都收敛 , 则(u n v n ) 2收敛n 1n 1n 1(B) 若| u n v n | 收敛,则u n2与v n2都收敛n 1n 1n 1u n 1(C) 若正项级数发散 ,则u nn 1n(D) 若级数u n收敛,且 u n v n ( n 1,2, ) ,则级数v n收敛.sin n1(4) 设为常数 , 则级数nn 1 n2(A)绝对收敛 . (B) 发散 . (C) 条件收敛 . (D) 敛散性与取值有关 .三. 判断下列级数的敛散性:11(1)sinn 1 ln( n 2)n(2)1( a 0) n 1 ( a n 1)( a n)( a n 1)3n n!(3)n 1 n nn2(4)n 1 ( n 1 / n) n( n! )2(5)n1 ( 2n)!(6)(1ln n)nn 1n四. 判断下列级数的敛散性n(1)( 1)n 2n1n 13n1(2)( 1)n n1n 1(n 1) n 1 1(3)sin( n)n 1n(4)( 1)n 1 tan1n 1n n五. 求下列级数的收敛域:( x2x1)n (1)n 1n( n1) (2)( 1)n x2 n 1n 12n 1 (3)2n 1 x2 n 1n 12n( x1)2 n(4)n 1n 9n六. 求下列级数的和:(1)( 1)n 1 x2 n 12n 1n 1(2)n(n 1)xn 1( x1)n (3)n 1n2nn七. 把下列级数展成x 的幂级数 :(1) f ( x)1ln1x1arctan x 21x2x ln(1x)(2) f ( x)x dx第九章常微分方程及差分方程简介一. 填空题1. 微分方程y' y tan x cos x 的通解为_________.2.微分方程 ydx( x24x)dy0的通解为 ________.3.微分方程 y' 'y 2 x 的通解为________.4.微分方程 y' ' 2 y' 2 y e x的通解为________.5.已知曲线 y f ( x) 过点(0,1),且其上任一点 (x, y) 处的切线斜率为x ln(1x2 ) ,则 f ( x) =_______.2二. 单项选择题2 x 1. 若函数 f (x) 满足关系式 f ( x)tf ( )dt ln 2 ,则 f (x) 等于(A)e x ln 2(B)e2 x ln 2(C)e x ln 2(D)e2 x ln 22.微分方程 y' 'y e x1的一个特解应具有形式(式中 a、 b 为常数 )(A)ae x b(B)axe x b (C) ae x bx(D) axe x bx三. 解下列微分方程:dy3( x 1) 2 (1 y 2 )1. dxy| x 012. (1y2 )dx x(1 x) ydy0dy13.1dx x y四. 解下列微分方程:yy1. y' e xx2.xdy ydx x2y 2 dxy y3. ( x y cos )dx x cos dy0x x五. 解下列微分方程:1.y' y cos x e sin x1x2.x2 y' y x2 e x3.xy' ln x y ax(ln x1)4.y' sin x cos x y sin3 x0六. 解下列微分方程:1.y' y tan x sec x, y(0)02.y' y cos x sin x cos x, y(0)13.y' x sin 2 y xe x2 cos2 y, y( 0)4七. 解下列方程 :1.y' ' 2 2 y' 2 y02.y' ' 2 y' 3y03.y' ' 2 y' 3y0八. 解下列方程 :x 23 )e2x 1. y' ' 4 y' 4y (1 x2.y' ' 3 y' 2y cos 2x3.y' ' 2 y' y5xe x4. 2 y' ' 2 y' 3 y x22x 15.y' ' y' x21第十章函数方程与不等式证明11aa n 1a n一. 证明不等式ln a( n 1) 21 1n 1 a n. (a > 1, n 1)n 2二. 若 a0, b 0, 0 < p < 1, 证明( ab) p a p b p三. 设函数 f(x) 在[0, 1] 上有连续导数 , 满足 0f ' ( x) 1且 f (0)0. 求证1 213( x)dxf ( x)dxf四. 求证| a |p | b |p 21 p (| a | | b |) p , (0 < p < 1).五. 求证 : 若 x + y + z = 6,则 x2y 2 z 2 12 , (x 0, y 0, z0).六.证明 : 1 若 f(x) 在[a, b] 上是增加的,且在其上2 若 f(x) 在[a, b] 上是增加的,且在其上f ' ' ( x) 0,则 (b a) f ( a) f ( x) dx (b a)f (a)f (b)ba2f ' ' ( x) 0 ,则 ( b a) f (b) f ( x)dx ( b a) f (a) f (b)ba2x1x2x n x12x22x n2七. 证明 : 1n nx1x2x n nx1 x2x n2n八. 设f ' ' ( x)c[ a, b] , 且f (a)f (b) 0, 求证f (x) dx(b a) 3ba12a x b九. 若 f ' ( x) 在 [0, 2 ] 上连续 , 且 f ' (x)2 2[ f (2 ) f (0)]0, n(正整数 )有f ( x) sin nxdxn十. 设在 [a, b] 上 f ' ' ( x) 0 , a < x 1 < x 2 < b, 0 << 1, 试证 :f ( x 1 ) (1 ) f ( x 2 ) f [ x 1 (1) x 2 ]第十一章微积分在经济中的应用一.生产某产品的固定成本为10, 而当产量为 x 时的边际成本函数为 C ' 40 20 x3x 2, 边际收益为R'32 10x ,试求: ( 1 )总利润函数 ; ( 2 ) 使总利润最大的产量 .二. 设某商品的需求量Q 是单价 P(单位 : 元 )的函数 : Q = 12000 -80P; 商品的总成本 C 是需求量 Q 的函数 : C = 25000 + 50Q; 每单位商品需要纳税 2 元, 试求使销售利润最大的商品单价和最大利润额.三. 一商家销售某种商品的价格满足关系P = 7- 0.2x(万元 / 吨), x 为销售量 ( 单位 :吨 ), 商品的成本函数C3x 1(万元). (1)若每销售一吨商品政府要征税 t ( 万元 ), 求该商家获最大利润时的销售量; (2) t 为何值时 , 政府税收总额最大 .四 . 设某企业每月需要使用某种零件2400 件 , 每件成本为150 元, 每年库存费为成本的 6 , 每次订货费为100 元, 试求每批订货量为多少时, 方使每月的库存费与订货费之和最少, 并求出这个最少费用(假设零件是均匀使用).。
考研数学典型题集(一)
注:为数学1,2,3,数学分析考研而作,内部资料,请勿外传!后附答案及提示
第一章 极限(5题)
1.计算极限∏=∞→n k k n x 12cos lim ,并计算 2
1212121212121211++⋅+⋅.
2.设{}{}n n b a ,均为正整数数列,且21111)3(3,1--+=+==n n n n b a b a b a ,证明:数列⎭
⎬⎫⎩⎨⎧n n b a 收敛,并求其极限.
3.设)(x f 是R 上的实函数,x x y f y x F 2)(),(-=,且52
1),1(2+-=y x y F ,取,00>x 定义 ,)2,(,),2,(),2,(1112001n n n x x F x x x F x x x F x ===+,求证:n n x ∞→lim 存在,并求其值.
4.求2223)ln(cos tan lim 0x x x x x -→-.
5.设.,3,2,1,sin ,20,10 ==<<=-n x x a a x n n π
(1)求n n x ∞→lim (2)求证:.13
lim =∞→n n x n
第二章 一元函数微分学
1.设函数)(x f 在点a x =处可导,则函数)(x f 在点a x =处不可导的充要条件是)(a f 和)('a f 分别满足条件?
2.设)(x f 在),0[+∞上二阶连续可微,0)(,0)0()0('''>==x f f f .又)(x u 表示)(x f y =在点))(,(x f x 的切线在x 轴上的截距,求极限)
()())((lim 0x f x u x u xf x +→.
3.求x x x x f 233)(+=在点0=x 处所存在的最高阶导数.
4.设)(x f 在),0(+∞上三次可导,且)(lim ),(lim '''x f x f x x +∞→+∞→存在,求)(lim ),(lim '''x f x f x x +∞→+∞→.
5.设∑==n k k n x x f 1sin
)(,求证:
(1)对+
∈∀Z n ,方程1)(=x f n 在]2
,6(ππ内有且仅有一个解; (2)设]2,6(ππ∈n x 是方程1)(=x f n 的解,证明.6lim π=∞→n n x
参考答案及提示:
第一章 极限 1.x x x n k k n sin 2cos lim 1=∏=∞→,提示:利用x x x cos sin 22sin =公式从后递乘
2
21212121212121211π
=++⋅+⋅ ,提示:利用2121218cos ,214cos +==ππ,
......再利用第一小题求解.
2.提示:收敛利用单调有界原理,极限值为
3.
3.提示:利用单调有界原理,极限值为3.
4.提示:利用等价无穷小,答案为6
ln 21-
. 5.(1)0 (2)略
第二章 一元函数微分学
1..0)(,0)('≠=a f a f
2.提示:想到牛顿迭代公式把)(x u 表示出来,)()()('x f x f x x u -
=.答案为.21 3.提示:把函数分段表示,答案为0.
4.提示:利用Taylor 展开,答案分别为0),(lim 61'''x f x +∞→-
. 5.略.。