空间图形中的轨迹问题
- 格式:ppt
- 大小:1.74 MB
- 文档页数:17
数学轨迹问题
数学轨迹问题是指研究设定的数学函数或方程所描述的几何图形的运动规律和特点。
这类问题通常需要将数学方法与几何图形的运动相结合,通过分析数学函数或方程的性质,来研究图形的形状、位置、变化等问题。
常见的数学轨迹问题包括:
1. 平面曲线轨迹问题:给定一个平面曲线的方程,研究曲线上点的运动轨迹。
例如,求解抛物线上一动点的坐标关系。
2. 空间曲线轨迹问题:给定一个空间曲线的参数方程,研究曲线上点的运动轨迹。
例如,求解螺线上一动点的坐标关系。
3. 平面图形轨迹问题:给定一个平面图形的特定性质,研究这个图形在不同位置、形态下的变化。
例如,研究圆心在直线上的所有圆的轨迹。
4. 空间图形轨迹问题:给定一个空间图形的特点,研究这个图形在不同位置、形态下的变化。
例如,研究圆锥的截面在不同高度下的形状。
数学轨迹问题在几何学、微积分等数学分支中都有广泛的应用。
通过研究数学轨迹问题,可以揭示数学函数或方程的性质,并帮助我们更好地理解几何图形的变化和相互关系。
例析空间中点的轨迹问题的转化求空间图形中点的轨迹既是中学数学学习中的一个难点,又是近几年高考的一个热点,这是一类立体几何与解析几何的交汇题,既考查空间想象能力,同时又考查如何将空间几何的轨迹问题转化为平面的轨迹问题来处理的基本思想。
一.轨迹为点例1已知平面βα||,直线α⊂l ,点P l ∈,平面βα,之间的距离为8,则在β内到P 点的距离为10且到直线l 的距离为9的点的轨迹是 ( )A .一个圆 B.两条直线 C.两个点 D.四个点解析:设Q 为β内一动点,点P 在β内射影为O ,过O, l 的平面与β的交线为l ', PQ=10,∴OQ==-228106点Q 在以O 为圆心6为半径圆上,过Q 作QM l '⊥于M ,又 点Q 到直线l 的距离为9∴QM=178922=-则点Q 在以l '平行距离为17的两条平行线上 两条平行线与圆有四个交点∴这样的点Q 有四个,故答案选D 。
点评:本题以空间图形为背景,把立体几何问题转化到平面上,再用平面几何知识解决,要熟记一些平面几何点的轨迹。
二. 轨迹为线段例2. 如图,正方体1111ABCD A BC D -中,点P 在侧面11BCC B及其边界上运动,并且总保持1AP BD ⊥,则动点P 的轨迹是( )。
βαlMOQPA. 线段1B CB.线段1BCC. 1BB 中点与1CC 中点连成的线段D. BC 中点与11B C 中点连成的线段解:连结11,,AB AC B C ,易知111BD A AB ⊥所以11111,,AB BD AC BD B C BD ⊥⊥⊥,所以1BD ⊥面1ABC ,若P ∈1B C ,则AP ⊂平面1ABC ,于是1BD AP ⊥,因此动点P 的轨迹是线段1B C 。
评注:本题是由线面垂直的性质从而求出点P 的轨迹。
例3 已知圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周),若MP AM ⊥,则点P 的轨迹是________。
第2讲 空间几何体轨迹问题一.选择题(共7小题)1.(2020秋•西城区期末)在棱长为1的正方体1111ABCD A B C D -中,M ,N 分别为1BD ,11B C 的中点,点P 在正方体的表面上运动,且满足MP CN ⊥,则下列说法正确的是( )A .点P 可以是棱1BB 的中点 B .线段MPC .点P 的轨迹是正方形D .点P 轨迹的长度为2【解析】解:在正方体1111ABCD A B C D -中,以D 为坐标原点,分别以DA ,DC ,1DD 为x 轴,y 轴,z 轴建立空间直角坐标系,因为该正方体的棱长为1,M ,N 分别为1BD ,11B C 的中点, 则(0D ,0,0),1111(,,),(,1,1),(0,1,0)2222M N C ,所以1(,0,1)2CN =,设(P x ,y ,)z ,则111(,,)222MP x y z =---,因为MP CN ⊥,所以111()0,2430222x z x z -+-=+-=,当1x =时,14z =, 当0x =时,34z =, 取1133(1,0,),(1,1,),(0,1,),(0,0,)4444E F G H ,连结EF ,FG ,GH ,HE ,则(0,1,0)EF GH ==,1(1,0,)2EH FG ==-,所以四边形EFGH 为矩形,则0,0EF CN EH CN ⋅=⋅=,即EF CN ⊥,EH CN ⊥,又EF 和EH 为平面EFGH 中的两条相交直线, 所以CN ⊥平面EFGH ,又111111(,,),(,,)224224EM MG =-=-,所以M 为EG 的中点,则M ∈平面EFGH , 所以为使MP CN ⊥,必有点P ∈平面EFGH , 又点P 在正方体表面上运动, 所以点P 的轨迹为四边形EFGH , 因此点P 不可能是棱1BB 的中点, 故选项A 错误;又1EF GH ==,EH FG ==,所以EF EH ≠,则点P 的轨迹不是正方形,且矩形EFGH 的周长为222+= 故选项C 错误,选项D 正确;因为1(,0,1)2CN =,111(,,)222MP x y z =---,又MP CN ⊥,则111()0,2430222x z x z -+-=+-=,所以322x z =-,点P 在正方体表面运动,则30212z -,解得1344z,且01y ,所以MP =故当14z =或34z =,0y =或1时,MP 取得最大值为34, 故选项B 错误; 故选:D .2.(2020•5月份模拟)棱长为1的正方体1111ABCD A B C D -中,P 为正方体表面上的一个动点,且总有1PC BD ⊥,则动点P 的轨迹所围成图形的面积为( )A B .C D .1【解析】解:连接1AB ,AC ,1B C ,则可证1BD ⊥平面1ACB , 故P 点轨迹围成图形为△1AB C ,又11AC AB B C ===12AB CS∴. 故选:C .3.(2020•山西模拟)已知长方体1111ABCD A B C D -,2AB AD ==,14AA =,M 是1BB 的中点,点P 在长方体内部或表面上,且//MP 平面11AB D ,则动点P 的轨迹所形成的区域面积是( )A .6B .C .D .9【解析】解:如图所示,E ,F ,G ,H ,N 分别为11B C ,11C D ,1DD ,DA ,AB 的中点, 则11////EF B D NH ,1////MN B A FG , 所以平面//MEFGHN 平面11AB D ,所以动点P 的轨迹是六边形MEFGHN 及其内部. 因为2AB AD ==,14AA =,所以EF HN ==EM MN FG GH ===GM =E 到GM =所以229EFGH S S ===梯形. 故选:D .4.(2020•5月份模拟)棱长为1的正方体1111ABCD A B C D -中P 为正方体表面上的一个动点,且总有1PC BD ⊥,则动点P 的轨迹的长度为( )A .34πB .4πC .D .【解析】解:P 点的轨迹为过点C 与直线1BD 垂直的截面与正方体的交线,就是图形中点三角形1ACB ,它的周长为:. 故选:C .5.(2020•天河区一模)如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC D 【解析】解:设G ,H ,I 分别为CD 、1CC 、11C D 边上的中点则1A BEG 四点共面, 且平面1//A BGE 平面1B HI 又1//B F 面1A BE ,F ∴落在线段HI 上,正方体1111ABCD A B C D -中的棱长为a ,1122HI CD ∴==.即F 在侧面11CDD C . 故选:D .6.(2020•大观区校级模拟)已知在三棱锥P ABC -中,O 为AB 中点,PO ⊥平面ABC ,90APB ∠=︒,2PA PB ==,下列说法中错误的是( )A .若O 为ABC ∆的外心,则2PC =B .若ABC ∆为等边三角形,则AP BC ⊥C .当90ACB ∠=︒时,PC 与平面PAB 所成角的范围为(0,]4πD .当4PC =时,M 为平面PBC 内动点,若//OM 平面PAC ,则M 在三角形PBC 内的轨迹长度为2【解析】解:O 为ABC ∆的外心,可得OA OB OC ===PO ⊥平面ABC ,可得PO OC ⊥,即有2PC =,A 正确;若ABC ∆为等边三角形,若AP BC ⊥,又AP PB ⊥,可得AP ⊥平面PBC ,即AP PC ⊥,由PO OC ⊥可得PC AC ===,矛盾, 故B 错误;若90ACB ∠=︒时,设PC 与平面PAB 所成角为θ,可得OC OA OB ===2PC =,设C 到平面PAB 的距离为d , 由C PAB P ABC V V --=,可得11112223232d AC BC =, 即有222242AC BC AC BC +==,当且仅当2AC BC ==取得等号,可得d 2sin 22d θ=,即有θ的范围为(0,]4π,C 正确; 取BC 的中点N ,PB 的中点K ,连接OK ,ON ,KN ,由中位线定理可得//ON AC ,//OK PA ,可得平面//OKN 平面PAC , 可得M 在线段KN 上,而122KN PC ==,可得D 正确. 故选:B .7.(2020•昌平区模拟)如图,正方体1111ABCD A B C D -的棱长为3,点E 在棱BC 上,且满足2BE EC =,动点M 在正方体表面上运动,且1ME BD ⊥,则动点M 的轨迹的周长为( )A .B .C .D .【解析】解:由正方体的特点可知1BD ⊥平面1ACB ,在AB ,1BB 上分别取点P ,Q ,使得2BP PA =,12BQ QB =, 连接PE ,PQ ,EQ ,则//PE AC ,1//EQ B C , ∴平面1//AB C 平面PEQ ,1BD ∴⊥平面PEQ ,M ∴的轨迹为PEQ ∆.正方体棱长为3,AC ∴=, 23PE AC ∴==,PEQ ∴∆的周长为3PE =故选:A .二.多选题(共4小题)8.(2020秋•济南期末)已知正方体1111ABCD A B C D -的棱长为2,点E ,F 在平面1111A B C D 内,若||AE =AC DF ⊥,则( )A .点E 的轨迹是一个圆B .点F 的轨迹是一个圆C .||EF 1D .AE 与平面1A BD【解析】解:对于选项A ,在正方体1111ABCD A B C D -中,1AA ⊥平面1111A B C D ,1A E ⊂平面1111A B C D , 所以11AA A E ⊥, 故22211AE AA A E =+, 则有11A E =,所以点E 的轨迹是以1A 为圆心,1为半径的圆, 故选项A 正确;对于选项B ,在正方体中,AC ⊥平面11B BDD , 因为AC DF ⊥, 则DF ⊂平面11B BDD , 故F 在11B D 上,所以F 的轨迹是线段11B D , 故选项B 错误;对于选项C ,||EF 的最小值即为求线段11B D 上的点到以1A 为圆心,1为半径的圆的最小距离,又圆心1A 到线段11B D 的距离为d ,所以||EF 1, 故选项C 正确;建立如图所示的空间直角坐标系,因为点E 的轨迹是以1A 为圆心,1为半径的圆, 故设(cos E θ,sin θ,2),[0,]2πθ∈,则(0A ,0,0),1(0A ,0,2),(2B ,0,0),(0D ,2,0),所以(cos ,sin ,2)AE θθ=,1(2,0,2),(2,2,0)A B BD =-=-, 设平面1A BD 的法向量为(,,)n x y z =, 则有1220220A B n x z BD n x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,令1x =,则1y =,1z =, 故(1,1,1)n =,设AE 与平面1A BD 所成的角为α,则)2|||cos sin |cos ,|||||AE n AE n AE nπθθα++⋅=<===, 当4πθ=时,sin α=,故AE 与平面1A BD ,故选项D 正确. 故选:ACD .9.(2020秋•开福区校级月考)已知正方体1111ABCD A B C D -的棱长为1,动点P 在其表面上运动,且||PAx =,其中点P 的轨迹长度为()f x ,给出下列结论正确的有( ) A .13()216fπ=B .f (1)32π=C .f = D.f =【解析】解:动点P 在其表面上运动,且||PA x =,∴点的轨迹是以A 为球心,PA 为半径的球的球面与正方体的面的交线,当01x <时,点的轨迹如图,则13()3242f x x x ππ=⨯⨯=,所以13()24f π=,故选项A 不符合题意; f (1)32π=,故选项B 符合题意;x <时,点P 的轨迹是三段相等圆弧,在与点A 不相邻的三个面上,圆弧半径R ==,圆弧的圆心角为6π,124f π∴=⨯=,故选项D 符合题意;当x =时,点P 的轨迹是三段相等圆弧,圆弧的长是四分之一个圆,半径是1,如图,∴这条轨迹的长度是:1332142ππ⨯⨯⨯=,故选项C 不符合题意.故选:BD .10.(2020秋•胶州市期中)已知四面体ABCD 的所有棱长均为2,则下列结论正确的是( ) A .异面直线AC 与BD 所成角为60︒B .点A 到平面BCDC .四面体ABCDD .动点P 在平面BCD 上,且AP 与AC 所成角为60︒,则点P 的轨迹是椭圆 【解析】解:如图,由题意,四面体ABCD 为正四面体,取底面BCD 的中心为G ,连接CG 并延长,角BD 于E , 则E 为BD 的中点,且CE BD ⊥,连接AG ,则AG ⊥底面BCD ,得AG BD ⊥, 又AGCE G =,BD ∴⊥平面ACG ,则AC BD ⊥,故A 错误;由四面体的所有棱长为2,可得23CG CE =,又2AC =,AG ∴=,即点A 到平面BCD ,故B 正确;设四面体ABCD 的外接球的球心为O ,半径为R ,连接OC ,则222)R R =-+,解得R =ABCD 的外接球体积为343π⨯=,故C 正确; AP 与AC 所成角为60︒,AP 可看作以AC 为轴的圆锥的母线所在直线,P 的轨迹为平面BCD 截圆锥所得曲线,由AP 与AC 所成角为60︒,且1cos 2ACG ∠=>,可知平面BCD 仅与圆锥一侧面有交点,P 的轨迹为双曲线, 故D 错误. 故选:BC .11.(2020秋•靖江市校级月考)如图1AC 是棱长为2的正方体,M 为11B C 的中点,下列命题中正确的命题有( )A .1AB 与1BC 成60︒角B .若113CN NC =,面1A MN 交CD 于E ,则13CE =C .P 点在正方形11ABB A 边界及内部运动,且1MP DB ⊥,则PD .E ,F 分别在1DB 和11A C 上,且1112A F DE EB FC ==,直线EF 与1AD ,1A D 所成角分别是α,β,则2παβ+= 【解析】证明:连接1AD ,11B D ,则11//AD BC , 则△11AB D 是正三角形,则1AD 与1AB 所成的角即为1AB 与1BC 成的角, 即1AB 与1BC 成60︒角;故A 正确,若113CN NC =,面1A MN 交CD 于E ,则13CE =;建立以1D 为坐标原点,11D A ,11D C ,1D D 分别为x ,y ,z 轴的空间直角坐标系如图: 则1(2A ,0,0),(1M ,2,0),(0N ,2,3)2,设DE t =,则(0E ,t ,2),1A ,M ,N ,E 四点共面,∴存在实数x ,y 使111A E xA M y A N =+,即(2-,t ,2)(1x =-,2,0)(2y +-,2,3)2,则2222322x y x y t y ⎧⎪--=-⎪+=⎨⎪⎪=⎩,得234343x y t ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩,则43DE =,42233CE =-=,故B 错误,取11A B 的中点H ,1BB 的中点K , 连接HM ,HM ,HK , 则1DB HM ⊥,1DB KM ⊥, 则1DB ⊥平面HKM ,若1MP DB ⊥,则M 在平面HKM 中,则M HK ∈,则1HK ==即P 点在正方形11ABB A 边界及内部运动,且1MP DB ⊥,则P正确,故C 正确;建立如图的空间坐标系如图,则1(2A ,0,0),(0D ,0,2),(2A ,0,2),1(2B ,2,0), 则1(2D A =,0,2),1(2DA =,0,2)-,E ,F 分别在1DB 和11A C 上,且1112A FDE EB FC ==,∴122(233DE DB ==,2,42)(3-=,43,4)3-,则4(3E ,43,2)3,11122(233A F AC ==-,2,40)(3=-,43,0), 则2(3F ,43,0),则2(3EF =-,0,2)3-,则cos |cos EF α=<,122448||122224()()22333D A -->===-+-, 则0α=cos |cos EF β=<,1244||024()3DA -+>==-+, 则2πβ=,即2παβ+=,故D 正确,故选:ACD .三.填空题(共9小题)12.(2020秋•鼓楼区校级期末)如图,在棱长为1的正方体1111ABCD A BC D -中,点E ,F 分别是棱BC 、1CC 的中点,P 是侧面11BCC B 内一点(含边界),若1//A P 平面AEF ,点P 的轨迹长度为 .直线1A P 与平面11BCC B 所成角的正切值的取值范围是 .【解析】解:如图,分别取棱1BB ,11B C 的中点M ,N ,连接1A M ,1A N ,MN ,1BC ,NE ,M ,N ,E ,F 分别是其所在棱的中点,1//MN BC ∴,1//EF BC ,//MN EF ∴,MN ⊂/平面AEF ,EF ⊂平面AEF ,//MN ∴平面AEF ,1//AA NE ,1AA NE =,∴四边形1AENA 为平行四边形,1//A N AE ∴, 1A N ⊂/平面AEF ,AE ⊂平面AEF ,1//A N ∴平面AEF , 1A NM N N =,∴平面1//A MN 平面AEF ,P 是侧面11BCC B 内一点,且1//A P 平面AEF ,∴点P 必在线段MN 上,∴点P的轨迹长度为1122MN BC ==. 点P 的轨迹是线段MN ,11A B ⊥平面11BCC B ,∴直线1A P 与平面11BCC B 所成角的正切值为11A B 与P 到1B 的距离之比,设O 是MN的中点,则2MO NO ==, 111A B =,P 到1B 的距离的最大值为1112MB NB ==, ∴直线1A P 与平面11BCC B 所成角的正切值的最小值为1212=, P 到1B的距离的最小值为1B O == ∴直线1A P 与平面11BCC B=∴直线1A P 与平面11BCC B 所成角的正切值的取值范围是[2,.;[2,.13.(2020秋•桃城区校级月考)在三棱锥P ABC -中,PA AB ⊥,4PA =,3AB =,二面角P AB C --的大小为30︒,在侧面PAB ∆内(含边界)有一动点M ,满足M 到PA 的距离与M 到平面ABC 的距离相等,则M 的轨迹的长度为. 【解析】解:如图,过M 作MN PA ⊥ 于N ,MO ⊥平面ABC 于O , 过O 作OQ AB ⊥ 于Q ,连接MQ , 则MQO ∠ 为二面角P AB C -- 的平面角, 由30MQO ∠=︒, 得2MQ MO =.又MO MN =,所以2MQ MN =,在PAB ∆ 中,以AB 所在直线为x 轴,AP 所在直线为y 轴建立平面直角坐标系, 则直线AM 的方程为2y x =, 直线PB 的方程为43120x y +-=,所以直线AM 与PB 的交点坐标为612(,)55R ,所以M 的轨迹为线段AR ,14.(2020•浙江二模)在棱长为6的正三棱锥P ABC-中,D为棱PA上一动点,E为BC上一动点,且满足32AD BE=,则线段DE的中点Q的运动轨迹的测度||L L为曲线、平面图形、几何体时,||L 分别对应长度、面积、体积).【解析】解:取AB,AC,PB,PC的中点,H,I,G,F,由题意可知,Q在平面FGHI内运动,设2AD x=,3BE x=,在平面FGHI内,32HM x=,MQ x=,所以线段DE的中点Q的轨迹为线段.当E运动到C点时,132HM HI BC===,4AD=,则2MQ=,由正三棱锥的性质,可知PA BC⊥,所以HI MQ⊥,所以||L==15.(2020•河南模拟)在直四棱柱1111ABCD A B C D -中,侧棱长为6,底面是边长为8的菱形,且120ABC ∠=︒,点E 在边BC 上,且满足3BE EC =,动点M 在该四棱柱的表面上运动,并且总保持1ME BD ⊥,则动点M的轨迹围成的图形的面积为 MC 与平面ABCD 所成角最大时,异面直线1MC 与AC 所成角的余弦值为 .【解析】解:如图,在直四棱柱1111ABCD A B C D -中,底面是菱形,侧棱垂直底面, AC ∴⊥平面11BDD B ,1BD AC ∴⊥,在AB 上取F ,使得3BF FA =,连接EF ,则//EF AC ,1BD EF ⊥, 记AC 与BD 的交点为O ,以O 为坐标原点,建立如图所示的空间直角坐标系,则(4B ,0,0),1(4D -,0,6),(1E ,0), 在1BB 上取一点G ,记为(4G ,0,)t ,∴1(8BD =-,0,6),(3EG =,-,)t ,由12460BD EG t =-+=,解得4t =,即12BG GB =, EFG ∴∆的边为点M 的运动轨迹,由题意得FG =3344EF AC ==⨯=动点M 的轨迹围成的面积为12S =⨯∴当M 与G 重合时,MC 与平面ABCD 所成角最大,(4M,0,4),1(0C,6),∴1(4MC=-,,2),AC的一个方向向量为(0n =,1,0),11143cos,||||68MC nMC nMC n∴<>===,∴异面直线1MC与AC故答案为:16.(2020•高密市模拟)在四棱锥P ABCD-中,PA⊥平面ABCD,2AP=,点M是矩形ABCD内(含边界)的动点,且1AB=,3AD=,直线PM与平面ABCD所成的角为4π.记点M的轨迹长度为α,则tanα= P ABM-的体积最小时,三棱锥P ABM-的外接球的表面积为.【解析】解:如图所示,因为PA⊥平面ABCD,垂足为A,则PMA∠为直线PM与平面ABCD所成的角,所以4PMAπ∠=;因为2AP=,所以2AM=,所以点M位于底面矩形ABCD内的以点A为圆心,2为半径的圆上,记点M的轨迹为圆弧EF,连接AF,则2AF=;因为1AB=,3AD=,所以6AFB FAEπ∠=∠=;则弧EF的长度为263ππα=⨯=,所以tanα.当点M位于F时,三棱锥P ABM-的体积最小,又2PAF PBFπ∠=∠=,所以三棱锥P ABM-的外接球球心为PF的中点;因为PF =所以三棱锥P ABM -的外接球的表面积为248S ππ==.8π.17.(2020•南昌三模)已知长方体1111ABCD A B C D -中,32AB =,2AD =,1AA =已知P 是矩形ABCD内一动点,14PA =,设P 点形成的轨迹长度为α,则tan α= -1C P 的长度最短时,三棱锥1D DPC -的体积为 .【解析】解:在长方体的底面矩形ABCD 内一动点P ,连接AP ,14PA =,1AA =2AP ∴,P ∴点的轨迹为以A 为圆心,以2为半径的圆,与底面矩形BC 的交点为E ,D ,即P 的轨迹为圆弧DE ,连接AE , 在ABE ∆中,332cos 24AB EAB AE ∠===,3sin cos 4DAE EAB ∴∠=∠=,得3arcsin 4DAE ∠=, 2DE DAE α∴==∠,α为钝角, 373sin sin(2arcsin )2448DAE α∴=∠==1cos 8α==-,得tan α=-当1C P 的长度最短时,P 在AC 上,此时52AC ==,则51222PC =-=,:1:5PC AC =.又11132322D DAC V -=⨯⨯⨯⨯∴1115D DPC D DAC V V --==故答案为:-.18.(2020•中卫二模)古希腊数学家阿波罗尼奥斯发现:平面上到两定点A ,B 距离之比为常数(0λλ>且1)λ≠的点的轨迹是一个圆心在直线AB 上的圆,该圆简称为阿氏圆.根据以上信息,解决下面的问题:如图,在长方体1111ABCD A B C D -中,1226AB AD AA ===,点E 在棱AB 上,2BE AE =,动点P 满足BP =.若点P 在平面ABCD 内运动,则点P 所形成的阿氏圆的半径为 P 在长方体1111ABCD A B C D -内部运动,F 为棱11C D 的中点,M 为CP 的中点,则三棱锥1M B CF -的体积的最小值为 .【解析】解:①若点P 在平面ABCD 内运动时,如图以A 为原点距离平面直角坐标系,可得(2,0)E ,(6,0)B .设(,)P x y ,由BP =可得223BP PE =.即22223(2)3(6)x y x y -+=-+,2212x y ⇒+=.则点P 所形成的阿氏圆的半径为A ,②若点P 在长方体1111ABCD A B C D -内部运动,由①可得点P在半径为A 球上. 如图建立空间直角坐标系,可得(3A ,0,0),(0F ,3,3),(0C ,6,0),1(3B ,6,3) 则1(0,3,3),(3,3,0)FC FB =-=,(3,6,0)AC =-设面1FB C 的法向量为(,,)m x y z =,1330330m FC y z m FB x y ⎧=-=⎪⎨=+=⎪⎩,可得(1,1,1)m =--. A 到面1FCB的距离为||9||3m AC d m ===则P 到面1FCB 的距离的最小值为=, M 为CP 的中点,M ∴到面1FCB . 则三棱锥1M B CF -的体积的最小值为1213193234FCB S =⨯=. 故答案为:,94.19.(2020•柯城区校级一模)若四棱锥P ABCD-的侧面PAB内有一动点Q,已知Q到底面ABCD的距离与Q到点P的距离之比为正常数k,且动点Q的轨迹是抛物线,则当二面角P AB C--平面角的大小为30︒时,k的值为12.【解析】解:如图,设二面角P AB C--平面角为θ,点Q到底面ABCD的距离为||QH,点Q到定直线AB得距离为d,则||sinQH dθ=,即||sinQHdθ=.点Q到底面ABCD的距离与到点P的距离之比为正常数k,∴||||QHkPQ=,则||||QHPQk=,动点Q的轨迹是抛物线,||PQ d∴=,即||||sinQH QHkθ=.则sin kθ=.∴二面角P AB C--的平面角的余弦值为cos cos30θ===︒解得:1(0)2k k =>.故答案为:12.20.(2019秋•舟山期末)若四棱锥P ABCD-的侧面PAB内有一动点Q,已知Q到底面ABCD的距离与Q到点P的距离之比为正常数k,且动点Q的轨迹是抛物线,则当二面角P AB C--平面角的大小为60︒时,k的值为.【解析】解:如图,设二面角P AB C--平面角为θ,点Q到底面ABCD的距离为||QH,点Q到定直线AB得距离为d,则||sinQH dθ=,即||sinQHdθ=.点Q到底面ABCD的距离与到点P的距离之比为正常数k,∴||||QHkPQ=,则||||QHPQk=,动点Q的轨迹是抛物线,||PQ d∴=,即||||sinQH QHkθ=,则sin kθ=.∴二面角P AB C--的平面角的余弦值为1 cos cos602θ=︒=.解得:0)k k>..。
立体几何中的轨迹问题在立体几何中,某些点、线、面依一定的规则运动,构成各式各样的轨迹,探求空间轨迹与求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题.对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性.立体几何中的最值问题一般是指有关距离的最值、角的最值或面积的最值的问题.其一般方法有: 1、 几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值;2、 代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等,求出最值.轨迹问题【例1】 如图,在正四棱锥S -ABCD 中,E 是BC 的中点,P 点在侧面△SCD 内及其边界上运动,并且总是保持PE ⊥AC .则动点P 的轨迹与△SCD 组成的相关图形最有可能的是 ( )解析:如图,分别取CD 、SC 的中点F 、G ,连结EF 、EG 、FG 、BD .设AC 与BD 的交点为O ,连结SO ,则动点P 的轨迹是△SCD 的中位线FG .由正四棱锥可得SB ⊥AC ,EF ⊥AC .又∵EG ∥SB∴EG ⊥AC∴AC ⊥平面EFG ,∵P ∈FG ,E ∈平面EFG , ∴AC ⊥PE .另解:本题可用排除法快速求解.B 中P 在D 点这个特殊位置,显然不满足PE ⊥AC ;C 中P 点所在的轨迹与CD 平行,它与CF 成π4角,显然不满足PE ⊥AC ;D 于中P 点所在的轨迹与CD 平行,它与CF 所成的角为锐角,显然也不满足PE ⊥AC .评析:动点轨迹问题是较为新颖的一种创新命题形式,它重点体现了在解析几何与立体几何的知识交汇处设计图形.不但考查了立体几何点线面之间的位置关系,而且又能巧妙地考查求轨迹的基本方法,是表现最为活跃的一种创新题型.这类立体几何中的相关轨迹问题,如“线线垂直”问题,很在程度上是找与定直线垂直的平面,而平面间的交线往往就是动点轨迹.【例2】 (1)如图,在正四棱柱ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是CC 1、C 1D 1、DD 1、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足 时,有MN ∥平面B 1BDD 1.(2) 正方体ABCD —A 1B 1C 1D 1中,P 在侧面BCC 1B 1及其边界上运动,且总保持AP ⊥BD 1,则动点P 的轨迹是 线段B 1C .(3) 正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱A 1B 1,BC 上的动点,且A 1E =BF ,P 为EF 的中点,则点P 的轨迹是 线段MN (M 、N 分别为前右两面的中心).(4) 已知正方体ABCD —A 1B 1C 1D 1的棱长为1,在正方体的侧面BCC 1B 1上到点A 距离为233的点的集合形成一条曲线,那么这条曲线的形状是 ,它的长度是 .若将“在正方体的侧面BCC 1B 1上到点A 距离为23 3 的点的集合”改为“在正方体表面上与点A 距离为233的点的集合” 那么这条曲线的形状又是 ,它的长度又是 .1AC C 1AEC C 1A AB1A 1(1)(2)(3)(4)DDA .B .C .D . A【例3】 (1)(04北京)在正方体ABCD -A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是 ( D )A . A 直线B .圆C .双曲线D .抛物线 变式:若将“P 到直线BC 与直线C 1D 1的距离相等”改为“P 到直线BC 与直线C 1D 1的距离之比为1:2(或2:1)”, 则动点P 的轨迹所在的曲线是 椭圆 (双曲线). (2)(06北京)平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是 (A )A .一条直线B .一个圆C .一个椭圆D .双曲线的一支解:设l 与l 是其中的两条任意的直线,则这两条直线确定一个平面,且斜线AB 垂直这个平面,由过平面外一点有且只有一个平面与已知直线垂直可知过定点A 与AB 垂直所有直线都在这个平面内,故动点C 都在这个平面与平面α的交线上,故选A . (3)已知正方体ABCD —A 1B 1C 1D 1的棱长为1,M 在棱AB 上,且AM =13,点P 到直线A 1D 1的距离与点P 到点M 的距离的平方差为1,则点P 的轨迹为 抛物线 .(4)已知正方体ABCD —A 1B 1C 1D 1的棱长为3,长为2的线段MN 点一个端点M 在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为 π6. 【例4】 (04重庆)若三棱锥A -BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是:( D )【例5】 四棱锥P -ABCD ,AD ⊥面P AB ,BC ⊥面P AB ,底面ABCD 为梯形,AD =4,BC =8,AB =6,∠APD =∠CPB ,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分 分析:∵AD ⊥面P AB ,BC ⊥平面P AB ∴AD ∥BC 且AD ⊥P A ,CB ⊥PB ∵∠APD =∠CPB ∴tanAPD =tanCPB∴AD P A =CB PB ∴PB =2P A在平面APB 内,以AB 的中点为原点,AB 所在直线为x 轴建立平面直角坐标系,则A (-3,0)、B (3,0),设P (x ,y )(y ≠0),则(x -3)2+y 2=4[(x +3)2+y 2](y ≠0)即(x +5)2+y 2=16(y ≠0) ∴P 的轨迹是(B )BABCDA3P A BC D立体几何中的轨迹问题(教师版)1.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 与到直线B 1C 1的距离相等,则动点P 所在曲线的形状为(D ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分 简析 本题主要考查点到直线距离的概念,线面垂直及抛物线的定义.因为B 1C 1⊥面AB 1,所以PB 1就是P 到直线B 1C 1的距离,故由抛物线的定义知:动点的轨迹为抛物线的一段,从而选D .2.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为2:1,则动点P 所在曲线的形状为(B ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分3.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为1:2,则动点P 所在曲线的形状为(C ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分4.在正方体ABCD-A 1B 1C 1D 1中,E 为AA 1的中点,点P 在其对角面BB 1D 1D 内运动,若EP 总与直线AC 成等角,则点P 的轨迹有可能是(A ).A .圆或圆的一部分B .抛物线或其一部分C .双曲线或其一部分D .椭圆或其一部分 简析 由条件易知:AC 是平面BB 1D 1D 的法向量,所以EP 与直线AC 成等角,得到EP 与平面BB 1D 1D 所成的角都相等,故点P 的轨迹有可能是圆或圆的一部分.5.已知正方体ABCD A B C D -1111的棱长为a ,定点M 在棱AB 上(但不在端点A ,B 上),点P 是平面ABCD 内的动点,且点P 到直线A D 11的距离与点P 到点M 的距离的平方差为a 2,则点P 的轨迹所在曲线为(A ). A .抛物线B .双曲线C .直线D .圆简析在正方体ABCD A B C D -1111中,过P 作PF ⊥AD ,过F 作FE ⊥A 1D 1,垂足分别为F 、E ,连结PE .则PE 2=a 2+PF 2,又PE 2-PM 2=a 2,所以PM 2=PF 2,从而PM =PF ,故点P 到直线AD 与到点M 的距离相等,故点P 的轨迹是以M 为焦点,AD 为准线的抛物线.6.在正方体ABCD A B C D -1111中,点P 在侧面BCC 1B 1及其边界上运动,总有AP ⊥BD 1,则动点P 的轨迹为__________. 简析 在解题中,我们要找到运动变化中的不变因素,通常将动点聚焦到某一个平面.易证BD 1⊥面ACB 1,所以满足BD 1⊥AP 的所有点P 都在一个平面ACB 1上.而已知条件中的点P 是在侧面BCC 1B 1及其边界上运动,因此,符合条件的点P 在平面ACB 1与平面BCC 1B 1交线上,故所求的轨迹为线段B 1C .本题的解题基本思路是:利用升维,化“动”为“静”,即先找出所有点的轨迹,然后缩小到符合条件的点的轨迹.7.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面∆SCD 内及其边界上运动,总有PE ⊥AC ,则动点P 的轨迹为_______________.答案 线段MN (M 、N 分别为SC 、CD 的中点)8.若A 、B 为平面α的两个定点,点P 在α外,PB ⊥α,动点C (不同于A 、B )在α内,且PC ⊥AC ,则动点C 在平面内的轨迹是________.(除去两点的圆) 9.若三棱锥A —BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与∆ABC 组成的图形可能是:(D )A A AP PP PB C B C B C B C A B C D简析 动点P 在侧面ABC 内,若点P 到AB 的距离等于到棱BC 的距离,则点P 在∠ABC 的内角平分线上.现在P 到平面BCD 的距离等于到棱AB 的距离,而P 到棱BC 的距离大于P 到底面BCD 的距离,于是,P 到棱AB 的距离小于P 到棱BC 的距离,故动点P 只能在∠ABC 的内角平分线与AB 之间的区域内.只能选D . 10.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是(B ). A .圆 B .椭圆 C .双曲线 D .抛物线解题的要领就是化空间问题为平面问题,把一些重要元素集中在某一个平面内,利 用相关的知识去解答,象平面几何知识、解析几何知识等.11.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________. 简析以B 为圆心,半径为33且圆心角为π2的圆弧,长度为36π. 12.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是 . 提示轨迹的图形是一个平行四边形.13.已知棱长为3的正方体ABCD A B C D -1111中,长为2的线段MN 的一个端点在DD 1上运动,另一个端点N 在底面ABCD 上运动,求MN 中点P 的轨迹与正方体的面所围成的几何体的体积.简析 由于M 、N 都是运动的,所以求的轨迹必须化“动”为“静”,结合动点P 的几何性质,连结DP ,因为MN=2,所以PD=1,因此点P 的轨迹是一个以D 为球心,1为半径的球面在正方体内的部分,所以点P 的轨迹与正方体的表面所围成的几何体的体积为球的体积的18,即1843163⨯⨯=ππ. 14.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( ) 简析:如图,设点P 在平面β内的射影是O ,则OP 是α、β的公垂线,OP=4.在β内到点P 的距离等于5的点到O 的距离等于3,可知所求点的轨迹是β内在以O 为圆心,3为半径的圆上.又在β内到直线l 的距离等于29的点的集合是两条平行直线m 、n ,它们到点O 的距离都等于32174)29(22<=-,所以直线m 、n 与这个圆均相交,共有四个交点.因此所求点的轨迹是四个点,故选C .16.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分简析:因为⊥AD 面PAB ,⊥BC 面PAB ,所以AD//BC ,且︒=∠=∠90CBP DAP . 又8BC ,4AD ,CPB APD ==∠=∠,可得CPB tan PB CB PA AD APD tan ∠===∠,即得2ADCBPA PB == 在平面PAB 内,以AB 所在直线为x 轴,AB 中点O 为坐标原点,建立平面直角坐标系,则A (-3,0)、B(3,0).设点P (x ,y ),则有2y )3x (y )3x (|PA ||PB |2222=+++-=,整理得09x 10y x 22=+++由于点P 不在直线AB 上,故此轨迹为一个不完整的圆,选B .17.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点简析:因为PC AC ⊥,且PC 在α内的射影为BC ,所以BC AC ⊥,即︒=∠90ACB .所以点C 的轨迹是以AB 为直径的圆且去掉A 、B 两点,故选B .18.如图,在正方体1111D C B A ABCD -中,P 是侧面1BC 内一动点,若P 到直线BC 与直线11D C 的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C .双曲线D .抛物线简析:因为P 到11D C 的距离即为P 到1C 的距离,所以在面1BC 内,P 到定点1C 的距离与P 到定直线BC 的距离相等.由圆锥曲线的定义知动点P 的轨迹为抛物线,故选D .19.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线简析:如图4,以A 为原点,AB 为x 轴、AD 为y 轴,建立平面直角坐标系.设P (x ,y ),作AD PE ⊥于E 、11D A PF ⊥于F ,连结EF ,易知1x |EF ||PE ||PF |2222+=+=又作CD PN ⊥于N ,则|1y ||PN |-=.依题意|PN ||PF |=, 即|1y |1x 2-=+,化简得0y 2y x 22=+- 故动点P 的轨迹为双曲线,选B .20.如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()(A)圆(B)椭圆(C)一条直线(D)两条平行直线分析:由于线段AB是定长线段,而△ABP的面积为定值,所以动点P到线段AB 的距离也是定值.由此可知空间点P在以AB为轴的圆柱侧面上.又P在平面内运动,所以这个问题相当于一个平面去斜切一个圆柱(AB是平面的斜线段),得到的切痕是椭圆.P的轨迹就是圆柱侧面与平面a的交线.21.如图,动点P在正方体1111ABCD A B C D-的对角线1BD上.过点P作垂直于平面11BB D D的直线,与正方体表面相交于M N,.设BP x=,MN y=,则函数()y f x=的图象大致是()分析:将线段MN投影到平面ABCD内,易得y为x一次函数.22.已知异面直线a,b成︒60角,公垂线段MN的长等于2,线段AB两个端点A、B分别在a,b上移动,且线段AB长等于4,求线段AB中点的轨迹方程.图5简析:如图5,易知线段AB的中点P在公垂线段MN的中垂面α上,直线'a、'b为平面α内过MN的中点O分别平行于a、b的直线,'a'AA⊥于'A,'b'BB⊥于'B,则P'B'AAB=⋂,且P也为'B'A的中点.由已知MN=2,AB=4,易知,2AP,1'AA==得32'B'A=.则问题转化为求长等于32的线段'B'A的两个端点'A、'B分别在'a、'b上移动时其中点P的轨迹.现以'OB'A∠的角平分线为x轴,O为原点建立如图6所示的平面直角坐标系.A BCDMNPA1 B1C1D1yxOyxOyxOyxO图6设)y ,x (P ,n |'OB |,m |'OA |==, 则)n 21,n 23('B ),m 21,m 23('A - )n m (41y ),n m (43x -=+=222)32()n m (41)n m (43=++- 消去m 、n ,得线段AB 的中点P 的轨迹为椭圆,其方程为1y 9x 22=+.点评:例5和例6分别将立体几何与解析几何中的双曲线与椭圆巧妙地整合在一起,相互交汇和渗透,有利于培养运用多学科知识解决问题的能力.立体几何中的轨迹问题1.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 与到直线B 1C 1的距离相等,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分2.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为2:1,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分3.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为1:2,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分4.在正方体ABCD-A 1B 1C 1D 1中,E 为AA 1的中点,点P 在其对角面BB 1D 1D 内运动,若EP 总与直线AC 成等角,则点P 的轨迹有可能是 ( ) A .圆或圆的一部分 B .抛物线或其一部分 C .双曲线或其一部分 D .椭圆或其一部分 5.已知正方体ABCD A B C D -1111的棱长为a ,定点M 在棱AB 上(但不在端点A ,B 上),点P 是平面ABCD 内的动点,且点P 到直线A D 11的距离与点P 到点M 的距离的平方差为a 2,则点P 的轨迹所在曲线为( ) A .抛物线B .双曲线C .直线D .圆6.若三棱锥A —BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与∆ABC 组成的图形可能是 ( ) A A AP PP PB C B C B C B CA B C DA B C D 7.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是 ( )A .圆B .椭圆C .双曲线D .抛物线8.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( )A .一个圆B .两条平行直线C .四个点D .两个点9.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( ) A .圆 B .不完整的圆 C .抛物线 D .抛物线的一部分 10.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点11.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线12.如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )A .圆B .椭圆C .一条直线D .两条平行直线 13.如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设BP x =,MN y =,则函数()y f x =的图象大致是( )14.在正方体ABCD A B C D -1111中,点P 在侧面BCC 1B 1及其边界上运动,总有AP ⊥BD 1,则动点P 的轨迹为________.15.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面∆SCD 内及其边界上运动,总有PE ⊥AC ,则动点P 的轨迹为_______________.16.若A 、B 为平面α的两个定点,点P 在α外,PB ⊥α,动点C (不同于A 、B )在α内,且PC ⊥AC ,则动点C 在平面内的轨迹是________.17.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________.18.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是 .19.已知棱长为3的正方体ABCD A B C D -1111中,长为2的线段MN 的一个端点在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 中点P 的轨迹与正方体的面所围成的几何体的体积是 .20.已知异面直线a ,b 成︒60角,公垂线段MN 的长等于2,线段AB 两个端点A 、B 分别在a ,b 上移动,且线段AB 长等于4,求线段AB 中点的轨迹方程.ABC D MNP A 1B 1C 1D 1 yxOyxOyxOyx O。
2023年高考数学----轨迹问题规律方法与典型例题讲解【规律方法】解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.【典型例题】例1.(2022·北京·昌平一中高三阶段练习)设正方体1111ABCD A B C D −的棱长为1,E ,F 分别为AB ,1BD 的中点,点M 在正方体的表面上运动,且满足FM DE ⊥,则下列命题:①点M 可以是棱AD 的中点; ②点M 的轨迹是菱形; ③点M 轨迹的长度为2④点M . 其中正确的命题个数为( ) A .1 B .2 C .3 D .4【答案】B【解析】连接,AC BD ,交于O ,则O 为,AC BD 中点,因为F 为1BD 的中点,所以1//FO DD , 由正方体的性质可知1DD ⊥平面ABCD , 所以FO ⊥平面ABCD , 因为DE ⊂平面ABCD , 所以FO DE ⊥,过点O 作PQ DE ⊥,分别交,BC AD 于,P Q ,过点,P Q 分别作11//,//PH BB QG AA ,分别交1111,B C A D 于点,H G ,连接GH , 所以,PQGH 四点共面,且//,GQ PH GQ PH =, 所以,四边形PQGH 为平行四边形, 因为1AA ⊥平面ABCD ,所以PH ⊥平面ABCD ,PQ ⊂平面ABCD , 所以PH PQ ⊥所以,四边形PQGH 为矩形,因为PQ FO O =,,PQ FO ⊂平面PQGH , 所以DE ⊥平面PQGH ,因为点M 在正方体的表面上运动,且满足FM DE ⊥ 所以,当FM ⊂面PQGH 时,始终有FM DE ⊥, 所以,点M 的轨迹是矩形PQGH ,如下图,因为2DQO QDE QDE AED π∠+∠=∠+∠=,所以,DQO AED ∠=∠, 所以,AQO BED ∠=∠, 因为4OAQ EBD π∠=∠=,所以AOQ △∽BDE △,所以AQ AO BE BD =,即12AQ=,即14AQ = 所以14CP AQ ==,PQ =, 所以,点M 不可能是棱AD 的中点,点M 的轨迹是矩形PQGH ,轨迹长度为矩形PQGH的周长212⎫⎪⎪⎝⎭,1 故正确的命题为③④.个数为2个. 故选:B例2.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D −的边长为2,点E ,F 分别为棱CD ,1DD 的中点,点P 为四边形11CDD C 内(包括边界)的一动点,且满足1B P ∥平面BEF ,则点P 的轨迹长为( )A B .2CD .1【答案】A【解析】画出示意图如下:取1CC 中点N ,取11D C 中点M ,连接11,,,B M B N MN ME ,则11,ME B B ME B B =∥,则四边形1MEBB 为平行四边形,所以1B M ∥BE , 连接1D C ,则11,MN D C EF D C ∥∥,故MN ∥EF ,又1B M MN M BE EF E ⋂=⋂=, ,1,B M MN ⊂平面1B MN ,BE EF ⊂平面BEF, 所以平面BEF ∥平面B 1MN ,平面1B MN ∩平面11CDD C =MN ,所以P 点轨迹即为MN ,长度为11||||2MN D C == 证明:因为平面BEF ∥平面1B MN ,P 点是MN 上的动点,故1B P ⊂平面1B MN ,所以1B P ∥平面BEF ,满足题意. 故选:A .例3.(2022·全国·模拟预测(理))如图,在四棱锥P ABCD −中,底面ABCD 是边长为2的正方形,PA ⊥平面ABCD ,且2PA =,点E ,F ,G 分别为棱AB ,AD ,PC 的中点,下列说法错误的是( )A .AG ⊥平面PBDB .直线FG 和直线AC 所成的角为π3C .过点E ,F ,G 的平面截四棱锥P ABCD −所得的截面为五边形D .当点T 在平面ABCD 内运动,且满足AGT △的面积为12时,动点T 的轨迹是圆 【答案】D【解析】可将四棱锥P ABCD −补形成正方体ABCD PB CD ''−,如图①,直线AG 即体对角线AC ',易证AC '⊥平面PDB ,A 选项正确; 如图②,取CD 的中点H ,连接FH ,可知FH AC //,所以GFH ∠ (或其补角)与直线FG 和直线AC 所成的角相同,在FGH 中,FG GH FG ==,所以π3GFH ∠=,B 选项正确;如图③,延长EF 交直线CD 于点H ,交直线BC 于点I ,连接GI 交PB 于点M ,连接GH 交PD 于点N ,则五边形EFNGM 即为平面EFG 截 四棱锥P ABCD −所得的截面,C 选项正确;当12AGT S =△时,因为AG 所以点T 到AG 点T 在以AC 为轴,底面半径r =T 在平面ABCD 上,所以点T 的轨迹是椭圆.D 选项错误. 故选:D例4.(2022·浙江温州·高三开学考试)如图,正方体1AC ,P 为平面11B BD 内一动点,设二面角11A BD P −−的大小为α,直线1A P 与平面11BD A 所成角的大小为β.若cos sin βα=,则点P 的轨迹是( )A .圆B .抛物线C .椭圆D .双曲线【答案】D【解析】连接AC 交BD 于O ,取11B D 中点1O ,连接1OO以O 为原点,分别以OA 、OB 、1OO 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图:令正方体边长为2,则11(,)A C A B ,(0,,)P y z =面11BD A 的一个法向量为1(2,AB =−,面11BB D 的一个法向量为(AC =− 则1(co 1s 2,AC AB −==,故二面角111A BD B −−的大小为π3又二面角11A BD P −−的大小(]0,παÎ,则π3α=或2π3α=由cos sin βα=,,可得π6β=又1(,)y z A P =−1111(1sin 2A P AB A P AB β⋅−===⋅整理得240z z +++= 即3)1y z z =−+,是双曲线. 故选:D例5.(2022·全国·高三专题练习)如图,正方体ABCD A B C D −''''中,M 为BC 边的中点,点P 在底面A B C D ''''和侧面CDD C ''上运动并且使MAC PAC ''∠=∠,那么点P 的轨迹是( )A .两段圆弧B .两段椭圆弧C .两段双曲线弧D .两段抛物线弧【答案】C【解析】由P 点的轨迹实际是一个正圆锥面和两个平面的交线,其中这个正圆锥面的中心轴即为AC ',顶点为A ,顶角的一半即为MAC '∠, 以A 点为坐标原点建立空间直角坐标系,则1(0,0,1),(1,1,0),(,1,1)2AC M ,可得1(1,1,1),(,1,0)2ACAM '=−=,1111cos MAC ⨯+⨯'∠===,设AC '与底面A BC D ''''所成的角为θ,则A C cos AC θ''===>',所以MAC θ'<∠,''''的交线是双曲线弧,所以该正圆锥面和底面A B C D同理可知,P点在平面CDD C''的交线是双曲线弧,故选:C.。
轨迹问题再探究(圆轨问题)主从联动模型专注陕西中考数学研究关注刘⽼师微信公众号“龙哥与数学”,和你⼀起挑战中考数学,冲刺名校。
轨迹问题再探索---圆轨模型导读在前⾯的学习中,我们已经认识了轨迹,知道在初中阶段,我们会遇到两种轨迹问题,⼀它们分别对应不同的知识点。
圆弧上的点到定点的距离等于定个是圆弧,⼀个是线段。
它们分别对应不同的知识点。
圆弧上的点到定点的距离等于定个是圆弧,⼀个是线段。
长,线段上的点到直线的距离也等于定长。
但是在实际的考查过程中,我们往往不是事先知道动点所形成的轨迹。
⽽需要我们结合题⽬中的条件,来分析出问题是不是轨迹问题,是哪种轨迹问题,它们常见的处理⽅法⼜是什么呢?在随后的讲解中,将逐步为⼤家揭开谜底。
敬请您的期待。
⾸先我们先给轨迹下个定义,简单的说就是:动点在空间或者平⾯内移动,它所通过的全部路径叫做这个点的轨迹。
我们在理解这个定义时,可从下列⼏个⽅⾯考虑:(1)符合⼀定条件的动点所形成的图形,或者说,符合⼀定条件的点的全体所组成的集合,叫做满⾜该条件的点的轨迹。
(2)凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性)。
(3)另外凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。
我们要记住两点:平⾯轨迹⼀般是曲线,空间轨迹⼀般是曲⾯。
常见的平⾯内点的轨迹1.到定点的距离等于定长的点的轨迹,是以定点为圆⼼,定长为半径的圆。
2.到已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线。
3.到已知⾓的两边距离相等的点的轨迹,是这个⾓的⾓平分线。
4.到直线L的距离等于定长D的点的轨迹,是平⾏于这条直线,并且到这条直线的距离等于定长的的两条直线。
5.到两条平⾏线距离相等的点的轨迹,是和这两条平⾏线平⾏且距离相等的⼀条直线。
6.到两定点距离和等于常数(⼤于两定点的距离)的点的轨迹是以两定点为焦点的椭圆。
7.到两定点的距离的差的绝对值等于常数(⼩于两定点的距离)的点的轨迹,是以两定点为焦点的双曲线。
微专题19立体几何中的动点及其轨迹问题求空间图形中点的轨迹既是中学数学学习中的一个难点,也是近几年高考的一个热点,是立体几何与解析几何相交汇的问题,既考查空间想象能力,同时又考查如何将空间几何的轨迹问题转化为平面几何的轨迹问题来处理的数学思想,常用方法主要有:(1)定义法(如圆锥曲线定义);(2)解析法;(3)交轨法.类型一定性的研究动点的轨迹立体几何中与动点轨迹有关的问题归根还是利用线面的平行、垂直关系,在此类问题中要么容易看出动点符合什么样的轨迹(定义),要么通过计算(建系)求出具体的轨迹表达式.例1 (1)如图,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P 满足∠P AB=30°,则点P的轨迹是()A.直线B.抛物线C.椭圆D.双曲线的一支(2)(多选)(2022·济南质检)已知正方体ABCD-A1B1C1D1的棱长为4,M为DD1的中点,N为ABCD所在平面上一动点,则下列命题正确的是()A.若MN与平面ABCD所成的角为π4,则点N的轨迹为圆B.若MN=4,则MN的中点P的轨迹所围成图形的面积为2πC.若点N到直线BB1与直线DC的距离相等,则点N的轨迹为抛物线D.若D1N与AB所成的角为π3,则点N的轨迹为双曲线答案(1)C(2)ACD解析(1)由题可知,当P点运动时,在空间中,满足条件的AP绕AB旋转形成一个圆锥,用一个与圆锥高成60°角的平面截圆锥,所得图形为椭圆.(2)如图所示,对于A,根据正方体的性质可知,MD⊥平面ABCD,所以∠MND为MN与平面ABCD所成的角,所以∠MND=π4,所以DN=DM=12DD1=12×4=2,所以点N的轨迹为以D为圆心,2为半径的圆,故A正确;对于B,在Rt△MDN中,DN=MN2-MD2=42-22=23,取MD的中点E,因为P为MN的中点,所以PE∥DN,且PE=12DN=3,DN⊥ED,所以PE⊥ED,即点P在过点E且与DD1垂直的平面内,又PE=3,所以点P的轨迹为以3为半径的圆,其面积为π·(3)2=3π,故B 不正确; 对于C ,连接NB ,因为BB 1⊥平面ABCD , 所以BB 1⊥NB ,所以点N 到直线BB 1的距离为NB ,所以点N 到点B 的距离等于点N 到定直线CD 的距离, 又B 不在直线CD 上,所以点N 的轨迹为以B 为焦点,CD 为准线的抛物线,故C 正确;对于D ,以D 为原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,则A (4,0,0),B (4,4,0),D 1(0,0,4),设N (x ,y ,0), 则AB →=(0,4,0),D 1N →=(x ,y ,-4), 因为D 1N 与AB 所成的角为π3, 所以|cos 〈AB →,D 1N →〉|=cos π3, 所以|4y |4x 2+y 2+16=12,整理得3y 216-x 216=1,所以点N 的轨迹为双曲线,故D 正确.训练1 (1)如图,AB 是平面α的斜线段,A 为斜足,若点P 在平面α内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )A.圆B.椭圆C.一条直线D.两条平行直线(2)已知在平行六面体ABCD -A 1B 1C 1D 1中,AA 1与底面A 1B 1C 1D 1垂直,且AD =AB ,E 为CC 1的中点,P 在对角面BB 1D 1D 内运动,若EP 与AC 成30°角,则点P的轨迹为()A.圆B.抛物线C.双曲线D.椭圆答案(1)B(2)A解析(1)由题意知,点P到线段AB的距离为定值,则点P为在以AB为旋转轴的圆柱表面上一点,故平面α斜截圆柱,所得图形为椭圆.(2)因为在平行六面体ABCD-A1B1C1D1中,AA1与底面A1B1C1D1垂直,且AD=AB,所以该平行六面体ABCD-A1B1C1D1是一个底面为菱形的直四棱柱,所以对角面BB1D1D⊥底面ABCD,AC⊥对角面BB1D1D.取AA1的中点F,连接EF,则EF∥AC.因为EP与AC成30°角,所以EP与EF成30°角.设EF与对角面BB1D1D的交点为O,则EO⊥对角面BB1D1D,所以点P的轨迹是以EO为轴的一个圆锥的底面圆周,故选A.类型二定量的研究动点的轨迹当涉及动点轨迹的长度、图形的面积和图形的体积以及体积的最值,一般要用未知变量表示轨迹,然后借助于函数的性质求解.例2 (1)在棱长为22的正方体ABCD-A1B1C1D1中,E,F分别为棱AB,AD的中点,P为线段C1D上的动点,则直线A1P与平面D1EF的交点Q的轨迹长度为()A.2153 B.433C.2133 D.423(2)(多选)(2022·南京质检)如图,在正方体ABCD -A 1B 1C 1D 1中,P 为线段A 1B 上的动点(不包含端点),若正方体棱长为1,则下列结论正确的有( )A.直线D 1P 与AC 所成角的取值范围是⎣⎢⎡⎦⎥⎤π6,π2B.存在P 点,使得平面APD 1∥平面C 1BDC.三棱锥D 1-CDP 的体积为16D.平面APD 1截正方体所得的截面可能是直角三角形 答案 (1)C (2)BC解析 (1)如图,连接B 1D 1,因为E ,F 分别为棱AB ,AD 的中点, 所以B 1D 1∥EF ,则B 1,D 1,E ,F 四点共面.连接A 1C 1,A 1D ,设A 1C 1∩B 1D 1=M ,A 1D ∩D 1F =N ,连接MN , 则点Q 的轨迹为线段MN , 易得A 1D =A 1D 21+DD 21=4,△A 1ND 1∽△DNF ,且A 1D 1FD =2,所以A 1N =23A 1D =83. 易知A 1C 1=C 1D =A 1D =4,所以∠C 1A 1D =60°,又A 1M =2,所以在△A 1MN 中,由余弦定理可得MN 2=A 1N 2+A 1M 2-2A 1N ·A 1M cos ∠MA 1N =529,所以MN =2133,即点Q 的轨迹长度为2133.(2)对于A 选项,如图①,连接AC ,D 1P ,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D -xyz ,则A (1,0,0),B (1,1,0),A 1(1,0,1),D (0,0,0),D 1(0,0,1),C (0,1,0).则有AC →=(-1,1,0),D 1P →=D 1A 1→+λA 1B →=(1,0,0)+λ(0,1,-1)=(1,λ,-λ),λ∈(0,1), 所以|cos 〈AC →,D 1P →〉|=|-1+λ|2·2λ2+1=(1-λ)24λ2+2.令f (λ)=(1-λ)24λ2+2,λ∈(0,1), f ′(λ)=8λ2-4λ-4(4λ2+2)2=4(2λ+1)(λ-1)(4λ2+2)2<0,所以f (λ)=(1-λ)24λ2+2在(0,1)上单调递减.因为f (0)=12,f (1)=0,所以0<|cos 〈AC →,D 1P →〉|<22,又〈AC →,D 1P →〉∈⎣⎢⎡⎦⎥⎤0,π2, 故〈AC →,D 1P →〉∈⎝ ⎛⎭⎪⎫π4,π2,故A 选项错误.图①对于B选项,当P为A1B的中点时,有AP∥C1D,AD1∥C1B,易证平面APD1∥平面C1BD,故B选项正确.对于C选项,三棱锥D1-CDP的体积VD1-CDP=VP-CDD1=13×S△CDD1×AD=1 3×12×1×1×1=16,故C选项正确.对于D选项,设A1B的中点为O,连接AP,AD1,D1P.当P点在线段OB(不包含端点)上时,此时平面APD1截正方体所得的截面为梯形AEFD1,如图②;当P点在O点时,此时平面APD1截正方体所得的截面为正三角形AB1D1;当P点在线段OA1(不包含端点)上时,此时平面APD1截正方体所得的截面为等腰三角形AD1G,如图③,且AG2+D1G2≠AD21,所以该三角形不可能为直角三角形,故D选项错误.故选BC.训练2 (1)如图所示,正方体ABCD-A1B1C1D1的棱长为2,E,F为AA1,AB的中点,点M是正方形ABB1A1内的动点,若C1M∥平面CD1E,则点M的轨迹长度为()A.22 B.1C. 2D.3(2)(多选)(2022·重庆诊断)如图,点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列四个结论中,正确的结论是()A.三棱锥A-D1PC的体积不变B.A1P与平面ACD1所成的角大小不变C.DP⊥BC1D.DB1⊥A1P答案(1)C(2)ABD解析(1)如图所示,取A1B1的中点H,B1B的中点G,连接EF,FC,GH,C1H,C1G,EG,HF可得四边形EGC1D1是平行四边形,∴C1G∥D1E,又D1E⊂平面CD1E,C1G⊄平面CD1E,∴C1G∥平面CD1E,同理可得C1H∥CF,又CF⊂平面CD1E,C1H⊄平面CD1E,∴C1H∥平面CD1E,又C1H∩C1G=C1,∴平面C1GH∥平面CD1E,又M点是正方形ABB1A1内的动点,若C1M∥平面CD1E,∴点M在线段GH上,∴M点轨迹的长度GH=12+12= 2.(2)如图,因为BC1∥AD1,AD1⊂平面D1AC,BC1⊄平面D1AC,所以BC1∥平面D1AC,故点P在BC1上运动时,点P到平面D1AC的距离d是定值,所以V A-D1PC =V P-AD1C=13S△AD1C×d是定值,A项正确.连接A1B,A1C1,如图所示.易知平面A1BC1∥平面ACD1,A1P⊂平面A1BC1,所以A1P∥平面ACD1,故A1P与平面ACD1所成的角大小不变,B项正确.易知DP在平面BCC1B1内的射影是CP,若DP⊥BC1,则CP⊥BC1,故点P在BC1上运动时,不一定有DP⊥BC1,C项错误.易知DB1⊥平面A1BC1,而A1P⊂平面A1BC1,所以DB1⊥A1P,D项正确.故选ABD.一、基本技能练1.如图,在正方体ABCD-A1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC与到直线C1D1的距离相等,则动点P的轨迹为()A.直线B.圆C.双曲线D.抛物线答案D解析点P到直线C1D1的距离即为点P到点C1的距离,所以在平面BB1C1C中,点P到定点C1的距离与到定直线BC的距离相等,由抛物线的定义可知,动点P的轨迹为抛物线,故选D.2.如图,正方体ABCD-A1B1C1D1中,P为底面ABCD上的动点.PE⊥A1C于E,且P A=PE,则点P的轨迹是()A.线段B.圆弧C.椭圆的一部分D.抛物线的一部分答案A解析由题意知,△A1AP≌△A1EP,则点P为在线段AE的中垂面上运动,从而与底面ABCD 的交线为线段.3.如图,圆锥的底面直径AB =2,母线VA =3,点C 在母线VB 上,且VC =1,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是( )A.13B.7C.433D.332答案 B解析 在圆锥侧面的展开图中,AA ′=2π,所以∠AVA ′=AA ′︵VA =23π, 所以∠AVB =12∠AVA ′=π3,由余弦定理得AC 2=VA 2+VC 2-2VA ·VC ·cos ∠AVB =32+12-2×3×1×12=7, 所以AC =7.所以这只蚂蚁爬行的最短距离是7,故选B.4.如图所示,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,长为2的线段MN 的一个端点M 在棱DD 1上运动,另一端点N 在正方形ABCD 内运动,则MN 中点轨迹的面积为( )A.4πB.2πC.πD.π2答案 D解析 易知DD 1⊥平面ABCD ,∠MDN =90°,取线段MN 的中点P ,则DP =12MN =1,所以点P 的轨迹是以D 为球心,1为半径的18球面,故S =18×4π×12=π2. 5.已知MN 是长方体外接球的一条直径,点P 在长方体表面上运动,长方体的棱长分别是1,1,2,则PM →·PN →的取值范围为( )A.⎣⎢⎡⎦⎥⎤-12,0B.⎣⎢⎡⎦⎥⎤-34,0 C.⎣⎢⎡⎦⎥⎤-12,1 D.⎣⎢⎡⎦⎥⎤-34,1 答案 B解析 根据题意,以D 为坐标原点,DA →为x 轴正方向,DC →为y 轴正方向,DD 1→为z 轴正方向,建立空间直角坐标系,如图所示.设长方体外接球球心为O , 则DB 1为外接球的一条直径,设O 为DB 1的中点,不妨设M 与D 重合,N 与B 1重合. 则外接球的直径长为12+12+(2)2=2,所以半径r =1,所以PM →·PN →=(PO →+OM →)·(PO →+ON →)=(PO →+OM →)·(PO →-OM →)=|PO →|2-|OM →|2=|PO →|2-1,由P 在长方体表面上运动,所以|PO →|∈⎣⎢⎡⎦⎥⎤12,1,即|PO →|2∈⎣⎢⎡⎦⎥⎤14,1,所以|PO→|2-1∈⎣⎢⎡⎦⎥⎤-34,0, 即PM →·PN →∈⎣⎢⎡⎦⎥⎤-34,0.6.点P 为棱长是25的正方体ABCD -A 1B 1C 1D 1的内切球O 球面上的动点,点M 为B 1C 1的中点,若满足DP ⊥BM ,则动点P 的轨迹的长度为( ) A.π B.2π C.4π D.25π答案 C解析 根据题意知,该正方体的内切球半径为r =5, 如图,取BB 1的中点N ,连接CN ,则CN ⊥BM , 在正方体ABCD -A 1B 1C 1D 1中,CN 为DP 在平面B 1C 1CB 中的射影,∴点P 的轨迹为过D ,C ,N 的平面与内切球的交线, ∵正方体ABCD -A 1B 1C 1D 1的棱长为25, ∴O 到过D ,C ,N 的平面的距离为1, ∴截面圆的半径为(5)2-1=2,∴点P 的轨迹的长度为2π×2=4π.7.(2022·北京卷)已知正三棱锥P -ABC 的六条棱长均为6,S 是△ABC 及其内部的点构成的集合.设集合T ={Q ∈S |PQ ≤5},则T 表示的区域的面积为( ) A.3π4 B.π C.2π D.3π答案 B解析 设顶点P 在底面上的投影为O ,连接BO ,则O 为△ABC 的中心, 且BO =23×6×32=23, 故PO =36-12=2 6.因为PQ =5,故OQ =1,故Q 的轨迹为以O 为圆心,1为半径的圆,而△ABC 内切圆的圆心为O ,半径为2×34×363×6=3>1,故Q 的轨迹圆在△ABC 内部, 故其面积为π.8.如图,三角形P AB 所在的平面α和四边形ABCD 所在的平面β垂直,且AD ⊥α,BC ⊥α,AD =4,BC =8,AB =6,∠APD =∠CPB ,则点P 在平面α内的轨迹是( )A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案 A解析 由条件易得AD ∥BC ,且∠APD =∠CPB ,AD =4,BC =8, 可得tan ∠APD =AD P A =CBPB =tan ∠CPB , 即PB P A =CBAD =2,在平面P AB 内以AB 所在的直线为x 轴,AB 的中点O 为坐标原点,建立直角坐标系(图略),则A (-3,0),B (3,0), 设P (x ,y ),则有PBP A =(x -3)2+y 2(x +3)2+y2=2, 整理可得x 2+y 2+10x +9=0(x ≠0). 由于点P 不在直线AB 上,故此轨迹为圆的一部分,故答案选A.9.已知正方体ABCD -A ′B ′C ′D ′的棱长为1,点M ,N 分别为线段AB ′,AC 上的动点,点T 在平面BCC ′B ′内,则MT +NT 的最小值是( ) A. 2 B.233 C.62 D.1答案 B解析 A 点关于BC 的对称点为E ,M 关于BB ′的对称点为M ′,记d 为直线EB ′与AC 之间的距离,则MT +NT =M ′T +NT ≥M ′N ≥d ,由B ′E ∥D ′C ,d 为E 到平面ACD ′的距离,因为V D ′-ACE =13×1×S △ACE =13×1×1=13,而V D ′-ACE =V E -ACD ′=13×d ×34×(2)2=36d =13,故d =233.10.如图,长方体ABCD -A ′B ′C ′D ′中,AB =BC =2,AA ′=3,上底面A ′B ′C ′D ′的中心为O ′,当点E 在线段CC ′上从C 移动到C ′时,点O ′在平面BDE 上的射影G 的轨迹长度为( )A.2π3B.3π3C.π3D.3π6答案 B解析 如图,以CA ,CC ′分别为x 轴,y 轴正方向建立平面直角坐标系,则有C (0,0),O (1,0),O ′(1,3),设G (x ,y ), 由O ′G ⊥OG ,可得y x -1·y -3x -1=-1,整理可得⎝⎛⎭⎪⎫y -322+(x -1)2=34,所以点O ′在平面BDE 上的射影G 的轨迹是以F ⎝ ⎛⎭⎪⎫1,32为圆心,半径为32的OG ︵.因为tan ∠GOF =O ′C ′OO ′=33, 所以O ′G =O ′O ·sin ∠GOF =32, 所以△O ′GF 是等边三角形, 即∠GFO =2π3,所以圆弧OG 的长l =2π3×32=3π3.11.如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD (只要填写一个你认为是正确的条件即可).答案 DM ⊥PC (或BM ⊥PC )解析 连接AC ,BD ,则AC ⊥BD ,因为P A ⊥底面ABCD ,BD ⊂平面ABCD ,所以P A ⊥BD .又P A ∩AC =A ,所以BD ⊥平面P AC ,PC ⊂平面P AC , 所以BD ⊥PC ,所以当DM ⊥PC (或BM ⊥PC )时,有PC ⊥平面MBD ,PC ⊂平面PCD ,所以平面MBD⊥平面PCD.12.如图,P是棱长为1的正方体ABCD-A1B1C1D1表面上的动点,且AP=2,则动点P的轨迹的长度为________.答案3π2解析由已知AC=AB1=AD1=2,在平面BC1,平面A1C1中,BP=A1P=DP=1,所以动点P的轨迹是在平面BC1,平面A1C1,平面DC1内分别以B,D,A1为圆心,1为半径的三段圆弧,且长度相等,故轨迹长度和为π2×3=3π2.二、创新拓展练13.在棱长为3的正方体ABCD-A1B1C1D1中,E是AA1的中点,P是底面ABCD 所在平面内一动点,设PD1,PE与底面ABCD所成的角分别为θ1,θ2(θ1,θ2均不为0),若θ1=θ2,则三棱锥P-BB1C1体积的最小值是()A.92 B.52C.32 D.54答案C解析以D为坐标原点建立如图所示空间直角坐标系,因为正方体的棱长为3, 则E ⎝ ⎛⎭⎪⎫3,0,32,D 1(0,0,3),设P (x ,y ,0)(x ≥0,y ≥0),则PE →=⎝ ⎛⎭⎪⎫3-x ,-y ,32,PD 1→=(-x ,-y ,3). 因为θ1=θ2,平面ABCD 的一个法向量z =(0,0,1), 所以|PE →·z ||PE →|·|z |=|PD 1→·z ||PD 1→|·|z |,得32(3-x )2+y 2+94=3x 2+y 2+9,整理得x 2+y 2-8x +12=0, 即(x -4)2+y 2=4(0≤y ≤2), 则动点P 的轨迹为圆的一部分, 所以点P 到平面BB 1C 1的最小距离为1,所以三棱锥P -BB 1C 1体积的最小值是13×12×3×3×1=32.14.(多选)(2022·武汉模拟)如图,设正方体ABCD -A 1B 1C 1D 1的棱长为2,E 为A 1D 1的中点,F 为CC 1上的一个动点,设由点A ,E ,F 构成的平面为α,则( )A.平面α截正方体的截面可能是三角形B.当点F 与点C 1重合时,平面α截正方体的截面面积为26C.当点D 到平面α的距离的最大值为263D.当F 为CC 1的中点时,平面α截正方体的截面为五边形 答案 BCD解析 如图,建立空间直角坐标系,延长AE 与z 轴交于点P ,连接PF 并延长与y 轴交于点M , 则平面α由平面AEF 扩展为平面APM . 由此模型可知A 错误.当点F 与点C 1重合时,截面是一个边长为5的菱形,该菱形的两条对角线长度分别AC 1=22+22+22=23和22+22=22,则此时截面的面积为12×23×22=2 6.当F 为CC 1的中点时,平面α截正方体的截面为五边形,B ,D 正确.D (0,0,0),A (2,0,0),P (0,0,4),设点M 的坐标为(0,t ,0)(t ∈[2,4]), DA →=(2,0,0),AM →=(-2,t ,0),P A →=(2,0,-4), 则可知点P 到直线AM 的距离为d =|P A →|2-⎪⎪⎪⎪⎪⎪⎪⎪P A →·AM →|AM →|2=20t 2+644+t2, S △APM =12t 2+4·d =5t 2+16.S △P AD =12×2×4=4, 设点D 到平面α的距离为h ,利用等体积法V D -APM =V M -P AD ,即13·S △APM ·h =13·S △P AD ·t ,可得h =4t 5t 2+16,则h =45+16t 2, 由h =45+16t 2在t ∈[2,4]上单调递增,所以当t =4时,h 取到最大值为263.故选BCD.15.已知面积为23的菱形ABCD 如图①所示,其中AC =2,E 是线段AD 的中点.现沿AC 折起,使得点D 到达点S 的位置,此时二面角S -AC -B 的大小为120°,连接SB ,得到三棱锥S -ABC 如图②所示,则三棱锥S -ABC 的体积为________;若点F 在三棱锥的表面运动,且始终保持EF ⊥AC ,则点F 的轨迹长度为________.答案 32 3+32解析 依题意,12AC ·BD =BD =23,点S 到平面ABC 的距离为3sin 60°=32,△ABC 的面积为12×23=3,则三棱锥S-ABC的体积为13×3×32=32.如图,取AC边上靠近点A的四等分点G,取BA的中点为H,连接EH,EG,GH,故点F的轨迹长度即为△EHG的周长,又EG=GH=32,EH=12SB=32,故点F的轨迹长度为3+32.16.如图,三棱锥S-ABC的所有棱长均为1,SH⊥底面ABC,点M,N在直线SH上,且MN=33,若动点P在底面ABC内,且△PMN的面积为212,则动点P的轨迹长度为________.答案6π12解析设P到直线MN的距离为d,由题易得d=6 6,易知H为△ABC的中心,又MN⊥平面ABC,当点P在平面ABC内时,其轨迹是以H为圆心,66为半径的圆.∵△ABC内切圆的半径为3 6,∴圆H的一部分位于△ABC外,结合题意得,点P的轨迹为圆H位于底面△ABC 内的三段相等的圆弧(利用正三角形的性质判断出圆H有一部分在△ABC外,才能正确得到点P的轨迹),如图,过点H作HO⊥AC,垂足为O,则HO=36,记圆H与线段OC的交点为K,连接HK,可得HK=66,∴cos∠OHK=OHHK=3666=22,∴∠OHK=π4,∴点P的轨迹长度为圆H周长的14(利用圆及正三角形的对称性分析求解),∴点P的轨迹长度为14×2π×66=6π12.。