空间中的平行关系方法总结
- 格式:docx
- 大小:12.53 KB
- 文档页数:1
空间几何的平行与垂直关系知识点总结空间几何是研究点、线、面等几何形体在空间中的相互关系和特性的学科。
在空间几何中,平行和垂直是两种重要的关系。
本文将总结空间几何中的平行与垂直关系的知识点。
一、平行关系平行是指两条直线或两个平面在空间中永远不会相交的关系。
平行关系在日常生活和工程建设中经常被应用到。
1. 平行关系的性质- 平行线与同一平面内的直线交线的两个内角是同位角,即两个内角之和等于180度。
- 平行线与同一平面外的直线交线的两个内角也是同位角,同位角性质适用于平行于同一平面内的两条直线。
2. 判定平行关系的方法- 平行线的判定:如果两条直线上有一点与第三条直线上的两个点重合,并且这两条直线分别与第三条直线平行,则这两条直线是平行线。
- 平行面的判定:如果两个平面上有一条直线与第三个平面上的两条直线重合,并且这两个平面分别与第三个平面平行,则这两个平面是平行面。
3. 平行线的性质- 平行线投影性质:平行于同一平面内的两条直线的等角投影相等。
- 平行线的方向性:平行线有确定的方向,可以延长或缩短,但方向不会改变。
二、垂直关系垂直是指两条直线或两个平面相交成直角的关系。
垂直关系在几何学、建筑学和物理学中都有广泛应用。
1. 垂直关系的性质- 垂直关系性质一:两个直角相等。
- 垂直关系性质二:两个互相垂直的直线或两个互相垂直的平面,其中一个与第三个垂直,则它们与第三个也是垂直关系。
- 垂直关系性质三:垂直于同一面的直线与该面的交线垂直。
2. 判定垂直关系的方法- 判定直线垂直关系的方法:如果两条直线上有一点与第三条直线上的两个点重合,并且这两条直线分别与第三条直线垂直,则这两条直线是垂直的。
- 判定面垂直关系的方法:如果两个平面上有一条直线与第三个平面上的两条直线相交成直角,并且这两个平面分别与第三个平面垂直,则这两个平面是垂直的。
三、平行和垂直关系的应用平行和垂直关系在日常生活和工程建设中具有广泛的应用。
空间中的平行与垂直例题和知识点总结在立体几何的学习中,空间中的平行与垂直关系是非常重要的内容。
理解和掌握这些关系,对于解决相关的几何问题具有关键作用。
下面我们通过一些例题来深入探讨,并对相关知识点进行总结。
一、平行关系(一)线线平行1、定义:如果两条直线在同一平面内没有公共点,则这两条直线平行。
2、判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。
例 1:在正方体 ABCD A₁B₁C₁D₁中,E,F 分别是 AB,BC 的中点,求证:EF∥A₁C₁。
证明:连接 AC,因为 E,F 分别是 AB,BC 的中点,所以 EF∥AC。
又因为正方体中,AC∥A₁C₁,所以 EF∥A₁C₁。
(二)线面平行1、定义:如果一条直线与一个平面没有公共点,则称这条直线与这个平面平行。
2、判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
例 2:已知四棱锥 P ABCD 的底面是平行四边形,M 是 PC 的中点,求证:PA∥平面 MBD。
证明:连接 AC 交 BD 于 O,连接 MO。
因为四边形 ABCD 是平行四边形,所以 O 是 AC 的中点。
又因为 M 是 PC 的中点,所以MO∥PA。
因为 MO⊂平面 MBD,PA⊄平面 MBD,所以 PA∥平面MBD。
(三)面面平行1、定义:如果两个平面没有公共点,则称这两个平面平行。
2、判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
例 3:在正方体 ABCD A₁B₁C₁D₁中,求证:平面 A₁BD∥平面 B₁D₁C。
证明:因为 A₁B∥D₁C,A₁D∥B₁C,且 A₁B 和 A₁D 是平面A₁BD 内的两条相交直线,D₁C 和 B₁C 是平面 B₁D₁C 内的两条相交直线,所以平面 A₁BD∥平面 B₁D₁C。
二、垂直关系(一)线线垂直1、定义:如果两条直线所成的角为 90°,则这两条直线垂直。
空间几何的平行与垂直判定空间几何是数学中的一个重要分支,涉及到直线、平面、点等概念的研究。
其中,平行和垂直是空间几何中常见的关系,本文将对平行和垂直的判定方法进行详细介绍。
一、平行的判定方法在空间几何中,平行是指两个线(线段)或两个平面永远不会相交的关系。
下面将介绍几种常见的平行判定方法。
1. 直线的平行判定给定两条直线l1和l2,如果它们的斜率相等且不相交,则可以判定l1与l2平行。
即若直线l1的斜率为k1,直线l2的斜率为k2,且k1≠k2时,则l1和l2平行。
2. 平面的平行判定对于两个平面P1和P2,如果它们的法向量相等或平行,则可以判定P1与P2平行。
二、垂直的判定方法在空间几何中,垂直是指两个线(线段)或两个平面之间的相互垂直关系。
下面将介绍几种常见的垂直判定方法。
1. 直线的垂直判定给定两条直线l1和l2,如果它们的斜率互为倒数且不相交,则可以判定l1与l2垂直。
即若直线l1的斜率为k1,直线l2的斜率为k2,并且k1·k2=-1时,则l1和l2垂直。
2. 平面的垂直判定对于两个平面P1和P2,如果它们的法向量互为倒数且不平行,则可以判定P1与P2垂直。
三、平行与垂直的应用举例平行和垂直关系在实际问题中经常被应用。
以下是几个应用举例。
1. 平行线与垂直线的交点问题当两条平行线相交时,它们的交点无穷多个;而当两条垂直线相交时,它们的交点只有一个。
这一性质在导弹拦截等领域具有重要意义。
2. 平行四边形及其性质平行四边形是指具有两对平行边的四边形。
它们的特点是相对边相等、对角线相交于对角线的中点、对角线互相平分等。
平行四边形的性质在建筑设计等领域有广泛应用。
3. 垂直投影与三视图在工程绘图中,垂直投影是指将物体在垂直方向上的投影。
根据垂直投影可以得到物体的平面图、前视图、左视图、右视图等,这些视图通常用于工程设计、建筑规划等领域。
4. 共线与共面条件若一条直线与一个平面相交,那么这条直线上的任意一点与该平面上的任意一点以及该平面上的任意一条直线都共线。
空间中的平行一、知识梳理<一>线线平行与线面平行1.线线平行:定义:空间中两直线共面且没有交点,则两直线平行.证明两直线平行的主要方法是:①三角形中位线平行并等于底边的一半;②平行四边形两组对边分别平行;③梯形的一组对边平行;④直线平行的传递性:若a//b,b//c,则a//c.2.线面平行定义:若直线和平面没有交点,则称直线和平面平行.判定1:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.(只需在平面内找一条直线和平面外的直线平行就可以)////a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭判定2:两平面平行,一平面上的任一条直线与另一个平面平行.a a a a αβαββααβ⇒⇒⊂⊂⎫⎫⎬⎬⎭⎭或线面平行的性质:如果一条直线平行于一个平面,经过这条直线的平面与这个平面相交,那么这条直线和它们的交线平行.<二>面面平行1.定义:若两个平面没有交点,则两个平面平行2.判断:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.,,a b a b A a b αααβββ⊂⊂⎫⎪=⇒⎬⎪⎭,,,a b a b A a a b b a b ααββ⊂⎫⎪=⎪⇒⎬''⎪⎪''⊂⎭判定定理的推论: 一个平面内的两条相交直线与另一个平面上的两条直线分别平行,两平面平行.3.两平面平行的性质: 性质Ⅰ:如果一个平面与两平行平面都相交,那么它们的交线平行.a ab b αβαγβγ=⇒=⎫⎪⎬⎪⎭性质Ⅱ:平行于同一平面的两平面平行;性质Ⅲ:夹在两平行平面间的平行线段相等;,,A C AC BD B D AB CD αβαβ∈⇒=∈⎫⎪⎪⎬⎪⎪⎭二、典例精析【例1】如图所示的几何体中,△ABC 是任意三角形,AE ∥CD ,且AE =AB =2a ,CD =a ,F 为BE 的中点.求证:DF ∥平面ABC .【练习】如图,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别是AB 、PC 的中点.求证:MN ∥平面P AD .【例2】已知正方形ABCD 所在的平面和正方形ABEF 所在的平面相交与AB ,M 、N 分别是AC 、BF 上的中点.求证:MN//平面BCE .【练习】如图,在四棱锥P-ABCD 中,底面ABCD 为矩形,E 为PD 的上一点,且PE=2ED .若F 为PE 的中点.求证:BF ∥平面AEC .【例3】如图,四棱锥P-ABCD 中,底面ABCD 为梯形,AB ∥DC ,AB ⊥BC .AB =BC=22AD ,点E 在棱PB 上,且PE=2EB .求证:PD ∥平面EAC .【练习】如图,正四棱锥P-ABCD 中,PA=AB ,点M ,N 分别在PA ,BD 上,且31==BD BN PA PM .求证:MN ∥平面PBC .2【例4】a ,b ,c 为三条不重合的直线,α,β,γ为三个不重合平面,现给出六个命题①a ∥c ,b ∥c ⇒a ∥b ②a ∥γ ,b ∥γ ⇒a ∥b ③α∥c ,β∥c ⇒α∥β④ α∥γ ,β∥γ ⇒α∥β ⑤α∥c ,a ∥c ⇒α∥a ⑥α∥γ ,a ∥γ ⇒α∥a其中正确的命题是( )A.①②③⑥ B .①④⑤ C .①④ D .①④⑥【练习】下面六个命题中正确命题的个数是( )①如果a 、b 是两条直线,b a //,那么a 平行于经过b 的任何一个平面;②如果直线a 和平面α满足a //α,那么a 与平面α内的任何一条直线平行;③如果直线a //α,b //α,那么b a //;④如果直线a 、b 和平面α满足b a //,a //α,α⊄b ,那么b //α;⑤如果直线a 与平面α上的无数条直线平行,则a //α;⑥如果平面α的同侧有两点A 、B 到平面α的距离相等,则AB //α.A. 0B. 1C. 2D. 3【例5】一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是( )A .异面B .相交C .平行D .不能确定【练习】直线a //平面α,α内有n 条直线交于一点,这n 条直线直线中与直线a 平行的直线( )A.至少有一条 B .至多有一条 C .有且只有一条 D .没有三、课后练习1.已知直线a ∥平面α,P α∈,那么过点P 且平行于α的直线( )A .只有一条,不在平面α内B .有无数条,不一定在α内C .只有一条,且在平面α内D .有无数条,一定在α内 2.若夹在两个平面间的三条平行线段相等,则这两个平面位置关系是( )A .平行B .相交C .相交或平行D .以上答案都不对3.下列结论中正确的是( ) ①α∥β,β∥γ,则α∥γ;②过平面外一条直线有且只有一个平面与已知平面平行;③平面外的两条平行线中,如果有一条和平面平行,那么另一条也和这个平面平行;④如果一条直线与两个平行平面中一个相交,那么它与另一个必相交.A .①②③B .②③④C .①③④D .①②③④4.a ,b 是两条异面直线,A 是不在a ,b 上的点,则下列结论成立的是( )A .过A 且平行于a 和b 的平面可能不存在B .过A 有且只有一个平面平行于a 和bC .过A 至少有一个平面平行于a 和bD .过A 有无数个平面平行于a 和b5.如果平面α外有两点A 、B ,它们到平面α的距离都是a ,则直线AB 和平面α的位置关系是( )A .平行B .相交C .平行或相交D .AB ⊂α6.如图所示,在棱长为a 的正方体1111ABCD A BC D -中,E ,F ,P ,Q 分别是BC ,11C D ,1AD ,BD 的中点.(1)求证:PQ //平面11DCC D ;(2)在DC 上找一点H ,使EFH //平面11BB D D .7.如图,在空间四边形ABCD 中,P 、Q 分别是ABC ∆和BCD ∆的重心.求证:PQ ∥平面ACD .8.如图所示,已知三棱锥BCD A -被一平面所截,截面为平行四边形EFGH ,求证:(1)//EF 平面BCD ;(2)CD EF //.。
空间直线平行的判定定理空间直线平行的判定定理引言在空间几何中,直线是一种基本的几何对象。
而直线的平行是一个重要的概念,它在许多问题中都有着重要的应用。
因此,研究如何判定空间直线是否平行,是空间几何中重要的一部分。
定义在空间几何中,两条直线如果在同一平面内且不相交,则这两条直线互相平行。
定理有以下三种方法可以判定空间直线是否平行:方法一:向量法向量法是判定两条空间直线是否平行最常用的方法之一。
具体步骤如下:1. 求出两条直线上任意两点构成的向量;2. 判断这两个向量是否共线;3. 如果这两个向量共线,则这两条直线平行;否则不平行。
方法二:斜率法斜率法是判定两条空间直线是否平行另外一种常用的方法。
具体步骤如下:1. 对于每一条直线,求出其在某个坐标系下的方程;2. 求出每一条直线在该坐标系下的斜率;3. 如果两条直线斜率相等,则这两条直线平行;否则不平行。
方法三:距离法距离法是判定两条空间直线是否平行的另外一种方法。
具体步骤如下:1. 求出两条直线上任意一点的坐标;2. 求出这两个点之间的距离;3. 如果这两个点之间的距离为0,则这两条直线平行;否则不平行。
应用空间直线的平行在许多问题中都有着重要的应用。
例如,在建筑设计中,需要对建筑物进行测量和设计,而在测量和设计过程中需要考虑到空间直线的平行关系。
再如,在工程制图中,需要将三维物体投影到二维纸面上,而在投影过程中也需要考虑空间直线的平行关系。
结论通过向量法、斜率法和距离法可以判定空间直线是否平行。
在实际问题中,可以根据具体情况选择不同的方法进行判定。
空间直线的平行关系在许多问题中都有着重要的应用,在实际问题中需要注意其合理性和准确性。
空间中的平行与垂直关系一、知识梳理1、 平行关系(1)直线与平面平行的判定定义:直线与平面没有公共点,称这条直线与这个平面平行。
判定定理:若l α⊄,a α⊂,l ∥a ,则l ∥α。
(2)直线与平面的平行性质定理:判定定理:若l ∥α,l β⊂,a αβ=,则l ∥a 。
(3)平面与平面的平行的判定定义:没有公共点的两个平面叫做平行平面。
判定定理1:若, a b αα⊂⊂,a b P =,a ∥β,b ∥β,则α∥β;判定定理2:若, l l αβ⊥⊥,则α∥β;判定定理3:若α∥β,β∥γ,则α∥γ。
(4)平面与平面的平行性质定理:性质定理1:若α∥β,a α⊂,则a ∥β;性质定理2:若α∥β,且a γα=,b γβ=,则a ∥b ;性质定理3:若α∥β,且l α⊥,则l β⊥。
2、补充结论:如果一个平面内的两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行。
3、线线平行的常用证明方法(1)利用平面几何的结论,如三角形的中位线平行于底边、平行四边形的对边平行、利用比例,等;(2)利用公理4:平行于同一条直线的两条直线平行;(3)利用线面平行的性质定理、面面平行的性质定理、线面垂直的性质定理4、垂直关系(1)直线与平面垂直的判定定义:如果一条直线和一个平面相交,并且和这个平面内的所有直线垂直。
判定定理:若, , m n mn P αα⊂⊂=,, l m l n ⊥⊥,则l α⊥。
(2)直线与平面的垂直性质定理:符号表示:若l α⊥,对任意的a α⊂,都有l a ⊥。
(3)平面与平面的垂直的判定定义:两个平面所成的二面角为直角,那么这两个平面垂直。
判定定理:若, a a αβ⊂⊥,则l α⊥。
(4)平面与平面的垂直性质定理:性质定理1:若, , , l a a l αβαβα⊂=⊂⊥,则a β⊥。
性质定理2:若, , l αβαγβγ=⊥⊥,则l γ⊥。
5、补充定理(1)若, l αα⊥∥β,则l β⊥;(2)若, l a α⊥∥l ,则a α⊥。
空间几何中的平行关系在空间几何中,平行关系是一种重要的几何关系,指的是两条直线或两个平面在空间中永远不会相交的关系。
平行关系在几何学和实际应用中都具有广泛的应用价值。
一、直线的平行关系在空间几何中,两条直线间的平行关系具有以下特点:1. 定义:两条直线平行意味着它们在同一平面上,且不会相交。
即使无限延长,其距离也始终保持相等。
2. 判定方法:有多种方法可以判定两条直线的平行关系,其中常用的方法包括:a. 利用角度:如果两条直线被一条横直线割,且交角为180度,则这两条直线平行。
b. 利用距离:通过测量两条直线上的任意两点之间的距离,如果这些距离都相等,则这两条直线平行。
c. 利用斜率:对于平面直角坐标系中的直线,如果两条直线的斜率相等,则它们平行。
斜率可以通过直线上两个点的坐标来计算。
二、平面的平行关系空间几何中,两个平面间的平行关系具有以下特点:1. 定义:两个平面平行意味着它们没有交点,且两个平面的法向量方向相同或相反。
2. 判定方法:通常使用以下方法判断两个平面的平行关系:a. 利用两个平面上的法向量:如果两个平面的法向量方向相同或相反,则这两个平面平行。
b. 利用平面与直线的关系:若一条直线与两个平面都平行,则这两个平面平行。
c. 利用距离:通过测量两个平面上的任意一对平行线的距离,如果这些距离都相等,则这两个平面平行。
三、平行关系的实际应用平行关系在实际生活和工程中有着广泛的应用。
以下是一些实例:1. 建筑设计:在建筑设计中,平行关系用于确定建筑物的结构和平面。
例如,平行的墙面可以使建筑物的立面更加美观。
2. 道路规划:平行关系可应用于道路规划和设计中,以确保道路与建筑物等结构物保持相对平行。
3. 电路布线:在电路设计中,平行关系可以用于布线,以减少不必要的干扰和电磁辐射。
4. 制图和制图艺术:平行线和平行面在制图和制图艺术中经常出现,通过运用平行线和平行面的原则,可以制作出美观且准确的图纸。
空间里的平行关系引言在几何学中,平行是一个十分重要的概念。
在数学中,平行指的是两条线、平面或者其他几何体在没有交点的情况下保持在固定的距离上。
平行关系是几何学中的基础概念之一,不仅在几何学中有重要应用,也广泛应用于物理学、计算机科学等领域。
本文将介绍空间中的平行关系,并探讨相关的性质和应用。
一、平行线的定义在平面几何中,平行线定义为永不相交的两条线。
这意味着平行线上的任意两点都不会重合。
可以通过以下几个方式来判断两条线是否平行:•相邻内角相等法则:若两条线被横截线所切,而相邻的内角相等,则两条线是平行的。
•同位角相等法则:若两条直线被一横截线所分,同位角相等,则两条线是平行的。
•钝角异侧法则:若两条线被横截线所切,其中一条直线上的钝角和另一条直线上的锐角在同侧,则两条线是平行的。
二、平行平面的定义在空间几何中,平行平面定义为永不相交的两个平面。
类似于平行线的定义,我们可以通过以下的性质来判断两个平面是否平行:•法向量平行法则:若两个平面的法向量平行,则这两个平面是平行的。
•截线平行法则:若两个平面分别与一条直线相交并且相交线平行,则这两个平面是平行的。
三、平行关系的性质在平行关系中,存在一些重要的性质,这些性质对于解决实际问题十分有用。
以下是一些平行关系的性质:1.平行关系具有传递性,即如果线段A平行于线段B,而线段B又平行于线段C,则可以推断出线段A平行于线段C。
2.平行关系具有对称性,即如果线段A平行于线段B,则线段B也平行于线段A。
3.平行关系具有自反性,即一条线段和自身平行。
4.平行线与平行平面的交线也是平行于这两个平面的。
四、平行关系的应用平行关系在各个领域都有广泛的应用,以下是一些常见的应用场景:1.建筑设计中,在制定建筑结构时,平行关系可以用来确保墙壁、天花板等构件的平行性,从而使建筑结构更加稳定。
2.机械工程中,平行关系可以用来设计零件的装配关系,确保零件之间的平行关系,保证机械设备的正常运行。
平行关系的知识点总结图一、概念平行关系是指在一个平面上的两个直线、两个平面或一个直线和一个平面之间具有特定的关系,这种特定的关系是它们互相不相交的关系。
在几何学中,平行关系是一个基本概念,具有重要的意义。
二、平行直线1. 定义两条直线在同一个平面内,如果它们不相交,且在这个平面上无论如何延长,它们也不能相交,则这两条直线互相平行。
2. 性质(1)平行直线所在的平面是共面的,即两条平行直线所在的平面不相交。
(2)两条平行直线间的距离是恒定的,平行直线间的任意两点之间的最短距离是相等的。
3. 符号表示两条平行直线常用“//”来表示,如AB//CD。
4. 判定平行直线的判定有多种方法,常见的有以下几种:(1)同位角相等:若两条直线AB和CD被截割成两对同位角,且这两对同位角都相等,则直线AB与CD平行。
(2)内错角相等:若两条直线AB和CD被一直线EF截割,使得同侧的内错角相等,则直线AB与CD平行。
(3)垂直线截线法:若两条直线AB和CD被一条直线EF截割,使得截线和其中一直线的垂线互相平行,则直线AB与CD平行。
5. 平行线的性质(1)同位角相等性质:若两条直线AB和CD被一条直线EF截割,形成的同位角相等。
(2)内错角相等性质:若两条直线AB和CD被一条直线EF截割,形成的同侧内角相等。
(3)对应角相等性质:若两条直线AB和CD被一条直线EF截割,形成的对应角相等。
三、平行线的判定1. 直线截线法若两条平行线被一条直线截断,所得的对应角相等,则这两条直线平行。
2. 角平分线法若一条直线与两条平行线相交,使得所得的对应角相等,则这条直线垂直于这两条平行线。
四、平行线间的距离1. 点到直线的距离点到直线的距离是指从这个点到这条直线上的垂足的距离。
以点A到直线l的距离为例,设点A到直线l上的垂足为H,则点A到直线l的距离为AH。
2. 点与直线间的距离点到直线距离的求解可以通过点到直线的垂线来计算,或者通过公式进行计算。
空间几何中的平面平行关系在空间几何学中,平面平行关系是一个重要的概念。
当两个平面永远不相交,无论它们延伸到无穷远,都不会相交,我们就可以说这两个平面是平行的。
平面平行关系有一些性质和判定方法,本文将对这些内容进行详细讨论。
一、定义和性质1. 定义:如果两个平面不相交,则它们是平行的。
2. 性质:a. 平行的平面在任意方向上的截线是平行线。
b. 平面平行关系是对称关系,即如果平面A与平面B平行,则平面B与平面A也平行。
c. 平面平行关系是传递关系,即如果平面A与平面B平行,平面B与平面C平行,则平面A与平面C也平行。
二、平面平行的判定方法1. 通过两个平面的法向量判定:如果两个平面的法向量是平行的,则这两个平面平行。
2. 通过平面上的一组向量判定:如果两个平面上的相同向量比值相等,则这两个平面平行。
3. 通过平面上的直线与另一平面的交点判定:如果一条直线与一个平面平行于另一个平面,则这两个平面平行。
三、平行平面的性质和相关定理1. 平行平面的截距:平行平面的任意两个截距之比相等。
2. 平行平面的夹角:平行平面之间的夹角等于它们的法向量夹角的余角。
3. 平行线与平面的垂直关系:如果一条直线平行于一个平面,那么该直线上的任意一条直线都与该平面垂直。
4. 平行平面的平行线:平行平面上的平行线在空间中保持平行关系。
根据上述性质和判定方法,我们可以在空间几何中确定两个平面之间的平行关系。
在实际生活中,平面平行关系有广泛的应用,比如建筑设计、地理测量等领域都需要考虑平面平行关系。
理解和掌握平行关系的概念和判定方法对于解决实际问题非常重要。
总结:空间几何中的平面平行关系是一种重要的关系概念,具有一定的性质和判定方法。
理解和应用平面平行关系对于解决各种实际问题以及在相关领域中的应用具有重要意义。
通过本文的介绍,希望读者能够对平面平行关系有更深入的理解,并能够灵活应用于实际问题中。
1.平行直线平行公理:过直线外一点有且只有一条直线和已知直线平行.基本性质4:平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边与另一个角的两边分别对应平行,并且方向相同,那么这两个角相等.2.直线与平面平行判定性质定义定理图形条件a∩α=∅a⊂α,b⊄α,a∥b a∥αa∥α,a⊂β,α∩β=b结论a∥αb∥αa∩α=∅a∥b3.平面与平面平行判定性质定义定理图形条件α∩β=∅a⊂β,b⊂β,a∩b=P,a∥α,b∥αα∥β,α∩γ=a,β∩γ=b α∥β,a⊂β结论α∥βα∥βa∥b a∥α【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(×)(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.(×)(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.(×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(√)(5)若直线a与平面α内无数条直线平行,则a∥α.(×)(6)若α∥β,直线a∥α,则a∥β.(×)1.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是()A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α答案 D解析当距离不为零时,l∥α,当距离为零时,l⊂α.2.设α,β,γ为三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有()A.①或②B.②或③C.①或③D.①或②或③答案 C解析由面面平行的性质定理可知,①正确;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.故选C.3.(教材改编)下列命题中正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α答案 D解析A中,a可以在过b的平面内;B中,a与α内的直线可能异面;C中,两平面可相交;D中,由直线与平面平行的判定定理知,b∥α,正确.4.(教材改编)如图,正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.答案平行解析连接BD,设BD∩AC=O,连接EO,在△BDD1中,O为BD的中点,所以EO为△BDD1的中位线,则BD 1∥EO ,而BD 1⊄平面ACE ,EO ⊂平面ACE , 所以BD 1∥平面ACE .5.过三棱柱ABC -A 1B 1C 1任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有________条. 答案 6解析 各中点连线如图,只有面EFGH 与面ABB 1A 1平行,在四边形EFGH 中有6条符合题意.题型一 直线与平面平行的判定与性质 命题点1 直线与平面平行的判定例1 如图,四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点. (1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面P AD . 证明 (1)连接EC , ∵AD ∥BC ,BC =12AD ,∴BC 綊AE ,∴四边形ABCE 是平行四边形, ∴O 为AC 的中点.又∵F 是PC 的中点,∴FO ∥AP , FO ⊂平面BEF ,AP ⊄平面BEF , ∴AP ∥平面BEF . (2)连接FH ,OH ,∵F ,H 分别是PC ,CD 的中点, ∴FH ∥PD ,∴FH ∥平面P AD .又∵O 是BE 的中点,H 是CD 的中点, ∴OH ∥AD ,∴OH ∥平面P AD .又FH ∩OH =H ,∴平面OHF ∥平面P AD .又∵GH ⊂平面OHF ,∴GH ∥平面P AD . 命题点2 直线与平面平行性质定理的应用例2 (2014·安徽)如图,四棱锥P -ABCD 的底面是边长为8的正方形,四条侧棱长均为217.点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥平面ABCD ,BC ∥平面GEFH . (1)证明:GH ∥EF ;(2)若EB =2,求四边形GEFH 的面积.(1)证明 因为BC ∥平面GEFH ,BC ⊂平面PBC , 且平面PBC ∩平面GEFH =GH , 所以GH ∥BC .同理可证EF ∥BC ,因此GH ∥EF .(2)解 如图,连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK . 因为P A =PC ,O 是AC 的中点,所以PO ⊥AC , 同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 都在底面内, 所以PO ⊥底面ABCD .又因为平面GEFH ⊥平面ABCD , 且PO ⊄平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK ,所以PO ∥GK ,且GK ⊥底面ABCD ,从而GK ⊥EF . 所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4, 从而KB =14DB =12OB ,即K 为OB 的中点.再由PO ∥GK 得GK =12PO ,即G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6, 所以GK =3.故四边形GEFH 的面积 S =GH +EF 2·GK =4+82×3=18.如图所示,在四棱锥P -ABCD 中,∠ABC =∠ACD =90°,∠BAC=∠CAD =60°,E 为PD 的中点,AB =1,求证:CE ∥平面P AB .证明由已知条件有AC=2AB=2,AD=2AC=4,CD=2 3.如图所示,延长DC,AB,设其交于点N,连接PN,因为∠NAC=∠DAC=60°,AC⊥CD,所以C为ND的中点,又因为E为PD的中点,所以EC∥PN,因为EC⊄平面P AB,PN⊂平面P AB,所以CE∥平面P AB.思维升华判断或证明线面平行的常用方法:(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α);(3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);(4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).题型二平面与平面平行的判定与性质例3如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别是AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.引申探究1.在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.证明如图所示,连接HD,A1B,∵D为BC1的中点,H为A1C1的中点,∴HD∥A1B,又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,∴HD∥平面A1B1BA.2.在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明如图所示,连接A1C交AC1于点M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵A1B⊂平面A1BD1,DM⊄平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知,D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,又∵DC1∩DM=D,DC1,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.思维升华证明面面平行的方法:(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”“线面平行”“面面平行”的相互转化.如图,在正方体ABCD—A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC、SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.证明(1)如图,连接SB,∵E,G分别是BC,SC的中点,∴EG∥SB.又∵SB⊂平面BDD1B1,EG⊄平面BDD1B1,∴直线EG∥平面BDD1B1.(2)连接SD,∵F,G分别是DC,SC的中点,∴FG∥SD.又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1,∴FG∥平面BDD1B1,又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.题型三平行关系的综合应用例4在正方体ABCD—A1B1C1D1中,如图.(1)求证:平面AB1D1∥平面C1BD;(2)试找出体对角线A1C与平面AB1D1和平面C1BD的交点E,F,并证明A1E=EF=FC.(1)证明因为在正方体ABCD—A1B1C1D1中,AD綊B1C1,所以四边形AB1C1D是平行四边形,所以AB1∥C1D.又因为C1D⊂平面C1BD,AB1⊄平面C1BD,所以AB1∥平面C1BD.同理,B1D1∥平面C1BD.又因为AB1∩B1D1=B1,AB1⊂平面AB1D1,B1D1⊂平面AB1D1,所以平面AB1D1∥平面C1BD.(2)解如图,连接A1C1交B1D1于点O1,连接AO1,与A1C交于点E.因为AO1⊂平面AB1D1,所以点E也在平面AB1D1内,所以点E就是A1C与平面AB1D1的交点.连接AC交BD于点O,连接C1O,与A1C交于点F,则点F就是A1C与平面C1BD的交点.下面证明A1E=EF=FC.因为平面A1C1C∩平面AB1D1=EO1,平面A1C1C∩平面C1BD=C1F,平面AB1D1∥平面C1BD,所以EO 1∥C 1F ,在△A 1C 1F 中,O 1是A 1C 1的中点, 所以E 是A 1F 的中点,即A 1E =EF .同理可证OF ∥AE ,所以F 是CE 的中点,即FC =EF , 所以A 1E =EF =FC .思维升华 (1)线面平行和面面平行的性质都体现了转化思想.(2)对较复杂的综合结论问题往往需要反复运用线面平行的判定定理和性质定理来进行证明,有如下方法: 线线平行―――――→在平面内找或作一直线线面平行 ―――――――――→经过直线找或作平面与已知平面的交线线线平行 如图所示,四棱锥P -ABCD 的底面是边长为a 的正方形,侧棱P A ⊥底面ABCD ,在侧面PBC 内,有BE ⊥PC 于E ,且BE =63a ,试在AB 上找一点F ,使EF ∥平面P AD .解 如图所示,在平面PCD 内,过E 作EG ∥CD 交PD 于G , 连接AG ,在AB 上取点F ,使AF =EG , ∵EG ∥CD ∥AF ,EG =AF , ∴四边形FEGA 为平行四边形, ∴FE ∥AG .又AG ⊂平面P AD ,FE ⊄平面P AD , ∴EF ∥平面P AD . ∴F 即为所求的点.又P A ⊥面ABCD ,∴P A ⊥BC , 又BC ⊥AB ,∴BC ⊥面P AB . ∴PB ⊥BC .∴PC 2=BC 2+PB 2=BC 2+AB 2+P A 2. 设P A =x 则PC =2a 2+x 2, 由PB ·BC =BE ·PC 得: a 2+x 2·a =2a 2+x 2·63a ,∴x =a ,即P A =a ,∴PC =3a . 又CE =a 2-(63a )2=33a ,∴PE PC =23,∴GE CD =PE PC =23, 即GE =23CD =23a ,∴AF =23a .即AF =23AB .故点F 是AB 上靠近B 点的一个三等分点.5.立体几何中的探索性问题典例 (12分)如图,在四棱锥S -ABCD 中,已知底面ABCD 为直角梯形,其中AD ∥BC ,∠BAD =90°,SA ⊥底面ABCD ,SA =AB =BC =2.tan ∠SDA =23.(1)求四棱锥S -ABCD 的体积;(2)在棱SD 上找一点E ,使CE ∥平面SAB ,并证明. 规范解答解 (1)∵SA ⊥底面ABCD ,tan ∠SDA =23,SA =2,∴AD =3.[2分]由题意知四棱锥S -ABCD 的底面为直角梯形,且SA =AB =BC =2,[4分] V S -ABCD =13×SA ×12×(BC +AD )×AB=13×2×12×(2+3)×2=103.[6分] (2)当点E 位于棱SD 上靠近D 的三等分点处时,可使CE ∥平面SAB .[8分] 证明如下:取SD 上靠近D 的三等分点为E ,取SA 上靠近A 的三等分点为F ,连接CE ,EF ,BF , 则EF 綊23AD ,BC 綊23AD ,∴BC 綊EF ,∴CE ∥BF .[10分] 又∵BF ⊂平面SAB ,CE ⊄平面SAB , ∴CE ∥平面SAB .[12分]解决立体几何中的探索性问题的步骤 第一步:写出探求的最后结论. 第二步:证明探求结论的正确性. 第三步:给出明确答案.第四步:反思回顾,查看关键点、易错点和答题规范.温馨提醒(1)立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究,解决这类问题一般根据探索性问题的设问,假设其存在并探索出结论,然后在这个假设下进行推理论证,若得到合乎情理的结论就肯定假设,若得到矛盾的结论就否定假设.(2)这类问题也可以按类似于分析法的格式书写步骤:从结论出发“要使……成立”,“只需使……成立”.[方法与技巧]1.平行问题的转化关系2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面与面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β.[失误与防范]1.在推证线面平行时,一定要强调直线不在平面内,否则会出现错误.2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.3.解题中注意符号语言的规范应用.A组专项基础训练(时间:35分钟)1.平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是()A.AB∥CDB.AD∥CBC.AB与CD相交D.A,B,C,D四点共面答案 D解析充分性:A,B,C,D四点共面,由平面与平面平行的性质知AC∥BD.必要性显然成立.2.(2015·安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面解析 对于A ,α,β垂直于同一平面,α,β关系不确定,故A 错;对于B ,m ,n 平行于同一平面,m ,n 关系不确定,可平行、相交、异面,故B 错;对于C ,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C 错;对于D ,若假设m ,n 垂直于同一平面,则m ∥n ,其逆否命题即为D 选项,故D 正确.3.设l 为直线,α,β是两个不同的平面.下列命题中正确的是( )A.若l ∥α,l ∥β,则α∥βB.若l ⊥α,l ⊥β,则α∥βC.若l ⊥α,l ∥β,则α∥βD.若α⊥β,l ∥α,则l ⊥β答案 B解析 l ∥α,l ∥β,则α与β可能平行,也可能相交,故A 项错;由“同垂直于一条直线的两个平面平行”可知B 项正确;由l ⊥α,l ∥β可知α⊥β,故C 项错;由α⊥β,l ∥α可知l 与β可能平行,也可能l ⊂β,也可能相交,故D 项错.故选B.4.给出下列关于互不相同的直线l 、m 、n 和平面α、β、γ的三个命题:①若l 与m 为异面直线,l ⊂α,m ⊂β,则α∥β;②若α∥β,l ⊂α,m ⊂β,则l ∥m ;③若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n .其中真命题的个数为( )A.3B.2C.1D.0答案 C解析 ①中当α与β不平行时,也可能存在符合题意的l 、m ;②中l 与m 也可能异面;③中⎩⎪⎨⎪⎧ l ∥γl ⊂αα∩γ=n⇒l ∥n ,同理,l ∥m ,则m ∥n ,正确.5.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是( )A.①③B.①④C.②③D.②④解析①中易知NP∥AA′,MN∥A′B,∴平面MNP∥平面AA′B可得出AB∥平面MNP(如图).④中,NP∥AB,能得出AB∥平面MNP.6.在四面体A-BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________. 答案平面ABD与平面ABC解析如图,取CD的中点E,连接AE,BE.则EM∶MA=1∶2,EN∶BN=1∶2,所以MN∥AB.所以MN∥平面ABD,MN∥平面ABC.7.将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.给出下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一平面的两直线平行.其中是“可换命题”的是________.(填命题的序号)答案①③解析由线面垂直的性质定理可知①是真命题,且垂直于同一直线的两平面平行也是真命题,故①是“可换命题”;因为垂直于同一平面的两平面可能平行或相交,所以②是假命题,不是“可换命题”;由基本性质4可知③是真命题,且平行于同一平面的两平面平行也是真命题,故③是“可换命题”;因为平行于同一平面的两条直线可能平行、相交或异面,故④是假命题,故④不是“可换命题”.8.如图,在正四棱柱ABCD-A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,动点M在四边形EFGH上及其内部运动,则M满足条件________时,有MN∥平面B1BDD1.答案M∈线段FH解析因为HN∥BD,HF∥DD1,所以平面NHF∥平面B1BDD1,故线段FH上任意点M与N相连,都有MN∥平面B1BDD1.(答案不唯一)9.如图,ABCD与ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点. 求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明(1)如图,连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE的中位线,所以BE∥MO,又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB中点,所以MN为△ABD的中位线,所以BD∥MN,又BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG,又DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.10.如图,E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.求证:(1)EG∥平面BB1D1D;(2)平面BDF∥平面B1D1H.证明(1)取B1D1的中点O,连接GO,OB,易证四边形BEGO为平行四边形,故OB∥GE,由线面平行的判定定理即可证EG∥平面BB1D1D.(2)由题意可知BD∥B1D1.如图,连接HB、D1F,易证四边形HBFD1是平行四边形,故HD1∥BF.又B1D1∩HD1=D1,BD∩BF=B,所以平面BDF∥平面B1D1H.B组专项能力提升(时间:20分钟)11.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β答案 D解析A中,m与n可垂直、可异面、可平行;B中m与n可平行、可异面;C中若α∥β,仍然满足m⊥n,m⊂α,n⊂β,故C错误;故D正确.12.空间四边形ABCD的两条对棱AC、BD的长分别为5和4,则平行于两条对棱的截面四边形EFGH在平移过程中,周长的取值范围是________.答案(8,10)解析 设DH DA =GH AC =k ,∴AH DA =EH BD=1-k , ∴GH =5k ,EH =4(1-k ),∴周长=8+2k .又∵0<k <1,∴周长的范围为(8,10).13.在三棱锥S -ABC 中,△ABC 是边长为6的正三角形,SA =SB =SC =15,平面DEFH 分别与AB ,BC ,SC ,SA 交于D ,E ,F ,H .D ,E 分别是AB ,BC 的中点,如果直线SB ∥平面DEFH ,那么四边形DEFH 的面积为________.答案 452解析 取AC 的中点G ,连接SG ,BG .易知SG ⊥AC ,BG ⊥AC ,SG ∩BG =G ,故AC ⊥平面SGB ,所以AC ⊥SB .因为SB ∥平面DEFH ,SB ⊂平面SAB ,平面SAB ∩平面DEFH =HD ,则SB ∥HD .同理SB ∥FE .又D ,E 分别为AB ,BC 的中点,则H ,F 也为AS ,SC 的中点,从而得HF 綊12AC 綊DE ,所以四边形DEFH 为平行四边形.又AC ⊥SB ,SB ∥HD ,DE ∥AC ,所以DE ⊥HD ,所以四边形DEFH 为矩形,其面积S =HF ·HD =(12AC )·(12SB )=452.14.(2015·四川改编)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG 与平面ACH 的位置关系.并证明你的结论.解 (1)点F ,G ,H 的位置如图所示.(2)平面BEG ∥平面ACH ,证明如下:因为ABCD-EFGH 为正方体,所以BC ∥FG ,BC =FG ,又FG ∥EH ,FG =EH ,所以BC ∥EH ,BC =EH ,于是BCHE 为平行四边形,所以BE ∥CH ,又CH ⊂平面ACH ,BE ⊄平面ACH ,所以BE ∥平面ACH ,同理BG ∥平面ACH ,又BE ∩BG =B ,所以平面BEG ∥平面ACH .15.如图,已知正方形ABCD 的边长为6,点E ,F 分别在边AB ,AD 上,AE =AF=4,现将△AEF 沿线段EF 折起到△A ′EF 位置,使得A ′C =2 6. (1)求五棱锥A ′-BCDFE 的体积; (2)在线段A ′C 上是否存在一点M ,使得BM ∥平面A ′EF ?若存在,求A ′M 的长;若不存在,请说明理由.解 (1)如图所示,连接AC ,设AC ∩EF =H ,连接A ′H .因为四边形ABCD 是正方形,AE =AF =4,所以H 是EF 的中点,且EF ⊥AH ,EF ⊥CH ,从而有A ′H ⊥EF ,CH ⊥EF ,又A ′H ∩CH =H ,所以EF ⊥平面A ′HC ,且EF ⊂平面ABCD ,从而平面A ′HC ⊥平面ABCD ,过点A ′作A ′O 垂直HC 且与HC 相交于点O ,则A ′O ⊥平面ABCD ,因为正方形ABCD 的边长为6,AE =AF =4,故A ′H =22,CH =42,所以cos ∠A ′HC =A ′H 2+CH 2-A ′C 22A ′H ·CH =8+32-242×22×42=12, 所以HO =A ′H ·cos ∠A ′HC =2,则A ′O =6,所以五棱锥A ′-BCDFE 的体积V =13×(62-12×4×4)×6=2863.(2)线段A′C上存在点M,使得BM∥平面A′EF,此时A′M=6 2.证明如下:连接OM,BD,BM,DM,且易知BD过O点.A′M=62=14A′C,HO=14HC,所以OM∥A′H,又OM⊄平面A′EF,A′H⊂平面A′EF,所以OM∥平面A′EF,又BD∥EF,BD⊄平面A′EF,EF⊂平面A′EF,所以BD∥平面A′EF,又BD∩OM=O,所以平面MBD∥平面A′EF,因为BM⊂平面MBD,所以BM∥平面A′EF.。
空间平行方法总结
平行关系:线线平行、线面平行、面面平行
线线平行:两直线平行必定共面,所以线线平行问题在空间中只是作为证明线面平行或者面面平行的工具使用,不会直接考查。
常见的线线平行有:(1)平行四边形对边平行;(2)三角形的中位线平行对应边;(3)两平行平面与第三个平面相交,则两条交线平行(面面平行的性质定理);(4)垂直于同一平面的两直线平行;(5)如果一条直线和一个平面平行,经过这条直线的平面和这条直线相交,那么这条直线和交线平行(线面平行的性质定理);(6)平行的传递性;
线面平行:线面平行判定定理为,平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
所以线面平行的核心归结为证明线线平行。
面面平行:面面平行的判定定理为,一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
既证明两平面平行只需证明两条相交线与一个平面平行即可,所以面面垂直归结为线线垂直。
总结:在空间平行关系中主要为:线线平行、线面平行、面面平行,考查题目主要类型为线面平行和面面平行,面面平行通过证明两组线面平行,线面平行通过证明线线平行,所以要熟练掌握线线平行的证明,也是空间中平行的核心内容。