第3章模糊集合的度量∑∫∑∫∑∫b
- 格式:pdf
- 大小:198.30 KB
- 文档页数:9
第三章 模糊关系在第二章中介绍了模糊集合的基本概念,本章将进一步讨论集合之间,或集合中元素之间的模糊关系。
事实上,模糊关系是普通关系概念的扩展。
3.1 模糊关系基本概念由普通关系的讨论可知它们都是二值的,换言之,对于任意两个元素,在它们之间或者存在关系,或者不存在关系,两者必居且仅居其一。
这种关系适合于描述“清晰确定”的关系。
但是,在实际中,有不少关系很难简单的用“有”或“无”来衡量,而必须引入一定的量来表示两元素间具有这种关系的程度。
例如,正常人的身高与体重之间是有一定关系的,但这个关系是不清晰的。
譬如对于一个169厘米高的健康人来说,一般不能断定他的体重必定是多少,而只能根据正常人身高与体重的关系表估计他的体重大约是多少。
又如,正方形的四边是等长的,但在日常生活中,我们判断一个四边形物体的形状通常并不总是用尺子度量四条边后才给出是否为正方形的结论的。
当四条边的长度在一定范围内有差异时,很可能不同的人会得出不同的结论。
另外,“远远大于”、“充分小”等都是些“不清晰”的关系。
这类需要有描述关系程度的量来补充描述的关系就是模糊关系,而其中的关系程度通过隶属度来表示。
定义3-1 集合X 到集合Y 的一个“二元模糊关系”R 是给定论域X ×Y 中的模糊集合,并可记为:Y X R−→−模糊关系R 的隶属函数R (x , y )是X ×Y 到实数区间[0 , 1]的一个映射。
特别的,当Y=X时,称R 为“论域X 中的模糊关系”。
对于任意x ∈X ,y ∈Y ,隶属函数R (x ,y )事实上表示了x 、y 之间存在关系R 的程度。
在同一个论域上,可以存在着各种各样的模糊关系。
例如,在人与人的关系中,可以有“相互理解”、“友好”、“性格相似”、“程度相当”等模糊关系。
例3-1 设X 、Y 均为实数集合,对于任意x ∈X ,y ∈Y ,“x 远大于y ”是X 到Y 的一个模糊关系R ,它的隶属函数可以描述为:R (x ,y )⎩⎨⎧-+≤-yx y x y x 12)/(1001[0例3-2 在医学上通常用公式体重(公斤)=身高(厘米)-100来描述正常人的体重与身高间的关系。
模糊测度与积分及不确定性建模现代科学与工程领域中的许多问题都存在着不确定性,即使利用概率论也不能完全解决。
为了应对这种不确定性,人们引入了模糊概念,使用模糊测度和积分来进行不确定性建模。
本文将从模糊测度的定义及性质入手,探讨模糊积分的概念和计算方法,并进一步讨论如何运用模糊测度与积分建立不确定性模型。
一、模糊测度的定义及性质模糊测度是描述模糊集合上的不确定性的一种数学工具,常用于处理无法准确刻画的概念。
模糊测度的定义基于不精确性和不确定性的量化。
一个模糊测度是一个从模糊集合的幂集到实数集的映射,它满足以下性质:1. 非负性:对于任意的模糊集合A,模糊测度μ(A)大于等于0。
2. 规范性:空集的模糊测度为0。
3. 可加性:对于任意两个不相交的模糊集合A和B,它们的模糊测度之和等于它们的并集的模糊测度。
通过定义和性质,模糊测度可以提供关于不确定性的量化和度量,为不确定性建模提供了数学基础。
二、模糊积分的概念和计算方法模糊积分是模糊测度的一种扩展,它用于描述模糊集合上的模糊量的积分运算。
与传统的积分不同,模糊积分允许模糊集合在积分区间上的取值为模糊的。
1. 上积分:对于一个模糊集合A和一个定义在A上的函数f,上积分的定义如下:∫[A] f(x) dμ = sup {∫[A] φ(x) dμ | φ(x) ≤ f(x), φ(x)是可测函数}其中,φ(x)是定义在A上的可测函数。
2. 下积分:对于一个模糊集合A和一个定义在A上的函数f,下积分的定义如下:∫[A] f(x) dμ = inf {∫[A] φ(x) dμ | f(x) ≤ φ(x), φ(x)是可测函数}通过上积分和下积分,我们可以得到模糊集合上的模糊量的积分结果,从而实现对不确定性的建模和处理。
三、不确定性建模中的应用模糊测度与积分在不确定性建模中具有广泛的应用。
以下是几个典型的应用场景:1. 决策分析:在决策分析中,人们常常需要处理各种类型的不确定性。
模糊逻辑中的模糊关系与模糊度量方法在模糊逻辑中,模糊关系与模糊度量方法是非常重要的概念。
本文将介绍模糊关系的基本概念,以及常用的模糊度量方法。
一、模糊关系的概念模糊关系是指在模糊集合的基础上,通过模糊集合上的运算来建立起来的关系。
与传统的二值关系(如等于、不等于等)不同,模糊关系中的元素之间的关系不再是唯一确定的,而是通过模糊集合的隶属度来描述的。
在模糊关系中,有两个基本概念:模糊集合和隶属度函数。
模糊集合是指每个元素都有一定的隶属度,表示该元素与该集合的关系的强度。
隶属度函数则是用来描述元素与模糊集合之间的隶属关系的函数,通常用一个曲线来表示。
二、模糊度量方法模糊度量方法是用来评估模糊关系中元素之间的模糊程度的方法。
常用的模糊度量方法有以下几种:1.隶属度平均法隶属度平均法是指将模糊关系中每个元素的隶属度进行平均,得到整个模糊关系的模糊度量值。
这种方法简单直观,适用于一般情况。
2.隶属度方差法隶属度方差法是指将模糊关系中每个元素的隶属度与平均隶属度的差值进行平方,并求和得到方差值作为模糊度量值。
这种方法可以衡量模糊关系中元素之间的差异程度。
3.最大隶属度法最大隶属度法是指选择模糊关系中隶属度最大的元素作为模糊度量值。
这种方法适用于希望忽略其他元素的情况,只关注最强的隶属度。
4.模糊熵法模糊熵法是指通过隶属度的分布情况来评估模糊关系的模糊度量值。
具体来说,可以通过计算隶属度的熵值来衡量模糊关系中的不确定性程度。
通过以上的模糊度量方法,可以对模糊关系进行量化分析,帮助人们更好地理解和应用模糊逻辑。
总结:模糊关系与模糊度量方法是模糊逻辑中的重要概念。
模糊关系通过模糊集合和隶属度函数来描述元素之间的关系,而模糊度量方法则可以评估模糊关系的模糊程度。
在实际应用中,选择合适的模糊度量方法可以帮助人们更好地理解和分析复杂模糊关系的特性。