模糊数学2009-4(分布函数、贴近度)讲解
- 格式:ppt
- 大小:15.09 MB
- 文档页数:98
数学建模方法详解--模糊数学在生产实践、科学实验以及日常生活中,人们经常会遇到模糊概念(或现象)。
例如,大与小、轻与重、快与慢、动与静、深与浅、美与丑等都包含着一定的模糊概念。
随着科学技术的发展,各学科领域对于这些模糊概念有关的实际问题往往都需要给出定量的分析,这就需要利用模糊数学这一工具来解决。
模糊数学是一个较新的现代应用数学学科,它是继经典数学、统计数学之后发展起来的一个新的数学学科。
统计数学是将数学的应用范围从确定性的领域扩大到了不确定性的领域,即从必然现象到偶然现象,而模糊数学则是把数学的应用范围从确定性的领域扩大到了模糊领域,即从精确现象到模糊现象。
在各科学领域中,所涉及的各种量总是可以分为确定性和不确定性两大类。
对于不确定性问题,又可分为随机不确定性和模糊不确定性两类。
模糊数学就是研究属于不确定性,而又具有模糊性的量的变化规律的一种数学方法。
本章对于实际中具有模糊性的问题,利用模糊数学的理论知识建立数学模型解决问题。
1.1 模糊数学的基本概念1.1.1 模糊集与隶属函数 1. 模糊集与隶属函数一般来说,我们对通常集合的概念并不陌生,如果将所讨论的对象限制在一定的范围内,并记所讨论的对象的全体构成的集合为U ,则称之为论域(或称为全域、全集、空间、话题)。
如果U 是论域 ,则U 的所有子集组成的集合称之为U 的幂集,记作)(U F 。
在此,总是假设问题的论域是非空的。
为了与模糊集相区别,在这里称通常的集合为普通集。
对于论域U 的每一个元素U x ∈和某一个子集U A ⊂,有A x ∈或A x ∉,二者有且仅有一个成立。
于是,对于子集A 定义映射}1,0{:→U A μ即⎩⎨⎧∉∈=,0,,1)(A x A x x A ,μ则称之为集合A 的特征函数,集合A 可以由特征函数唯一确定。
所谓论域U 上的模糊集A 是指:对于任意U x ∈总以某个程度)]1,0[(∈A A μμ属于A ,而不能用A x ∈或A x ∉描述。
模糊数学方法在自然科学或社会科学研究中,存在着许多定义不很严格或者说具有模糊性的概念。
这里所谓的模糊性,主要是指客观事物的差异在中间过渡中的不分明性,如某一生态条件对某种害虫、某种作物的存活或适应性可以评价为“有利、比较有利、不那么有利、不利”;灾害性霜冻气候对农业产量的影响程度为“较重、严重、很严重”,等等。
这些通常是本来就属于模糊的概念,为处理分析这些“模糊”概念的数据,便产生了模糊集合论。
根据集合论的要求,一个对象对应于一个集合,要么属于,要么不属于,二者必居其一,且仅居其一。
这样的集合论本身并无法处理具体的模糊概念。
为处理这些模糊概念而进行的种种努力,催生了模糊数学。
模糊数学的理论基础是模糊集。
模糊集的理论是1965年美国自动控制专家查德(L. A. Zadeh)教授首先提出来的,近10多年来发展很快。
模糊集合论的提出虽然较晚,但目前在各个领域的应用十分广泛。
实践证明,模糊数学在农业中主要用于病虫测报、种植区划、品种选育等方面,在图像识别、天气预报、地质地震、交通运输、医疗诊断、信息控制、人工智能等诸多领域的应用也已初见成效。
从该学科的发展趋势来看,它具有极其强大的生命力和渗透力。
在侧重于应用的模糊数学分析中,经常应用到聚类分析、模式识别和综合评判等方法。
在DPS系统中,我们将模糊数学的分析方法与一般常规统计方法区别开来,列专章介绍其分析原理及系统设计的有关功能模块程序的操作要领,供用户参考和使用。
第1节模糊聚类分析1. 模糊集的概念对于一个普通的集合A,空间中任一元素x,要么x A,要么x — A,二者必居其一。
这一特征可用一个函数表示为:1 0x三A x三AA(x)即为集合A的特征函数。
将特征函数推广到模糊集,在普通集合中只取0、1两值推广到模糊集中为[0, 1]区间。
定义1设X为全域,若A为X上取值[0, 1]的一个函数,则称A为模糊集。
如给5个同学的性格稳重程度打分,按百分制给分,再除以100,这样给定了一个从域X= { X1 , x2 , X3 , X4, X5}到[0, 1]闭区间的映射。
模糊贴近度matlab模糊贴近度是一种用于衡量两个模糊集之间相似性的方法,它是模糊数学中的一个重要概念。
在实际应用中,模糊贴近度被广泛应用于图像处理、模式识别、数据挖掘等领域。
本文将介绍如何使用MATLAB计算模糊贴近度。
首先,我们需要了解模糊集的基本概念。
模糊集是一种描述不确定性的数学工具,它将一个元素分配给一个模糊集合,而不是一个明确的类别。
模糊集的元素属于集合的程度可以用一个隶属度函数来表示。
模糊集的隶属度函数可以是线性的、非线性的或高斯的等多种形式。
模糊贴近度是衡量两个模糊集之间相似性的一种方法。
给定两个模糊集A和B,它们的模糊贴近度定义为:贴近度(A, B) = min{max(a * b')}其中,a和b分别表示A和B的隶属度函数,'表示取反。
这个公式的意义是,我们计算A和B之间的最大隶属度乘积的最小值,作为它们的贴近度。
接下来,我们将介绍如何使用MATLAB计算模糊贴近度。
首先,我们需要定义两个模糊集的隶属度函数。
这里我们以高斯隶属度函数为例:function [a, b] = gaussian_membership_function(x, mu,sigma)a = exp(-((x - mu).^2) / (2 * sigma^2));b = exp(-((x - mu).^2) / (2 * sigma^2));end然后,我们可以使用这个函数来计算两个模糊集的隶属度函数:mu1 = 0; % 模糊集A的均值sigma1 = 1; % 模糊集A的标准差mu2 = 1; % 模糊集B的均值sigma2 = 1; % 模糊集B的标准差[a, b] = gaussian_membership_function(linspace(-3, 3, 100), mu1, sigma1);[c, d] = gaussian_membership_function(linspace(-3, 3, 100), mu2, sigma2);最后,我们可以计算两个模糊集之间的模糊贴近度:similarity = min([max(a .* c') max(b .* d')]);dissimilarity = 1 - similarity;这样,我们就得到了两个模糊集之间的模糊贴近度。
模糊数学法模糊数学法是一门处理模糊数量、模糊概念、模棱两可性和模糊逻辑的研究,它是研究现实世界模糊问题的理论和方法,是一种实用日常生活中模糊事物和问题表述、解释和推理的方法,也可以称之为模糊算法学。
它由三位日本科学家在1949年提出,经历了几十年的发展,成为一门前沿的学科,广泛应用于地质学、经济学及生物学等多个领域。
模糊数学法的基本思想是模糊集和模糊函数,即把复杂的问题分割成若干简单的子问题,找出每个子问题的解,并将这些解组合成全局的解,这样就能够更容易理解和解决模糊问题。
模糊集是模糊数学法的基础,它是一种描述一定对象属于或不属于某一集合的抽象概念,是一个可表示概率的数学模型。
模糊集由模糊点组成,每个模糊点可以表示一个属于此集合的对象及其属性,用来表示集合元素在某个属性上的成度。
模糊函数是模糊数学法的核心,可以用于表示模糊集的内涵以及模糊性的函数,它通过对象的属性测量值与已知函数值之间的映射关系,将不同属性的对象分组,可以用来描述不同类别的对象及其相互之间的关系。
模糊逻辑也是模糊数学法的重要组成部分,也称为模糊推理。
它是根据人们思维习惯从有限的信息中推导出实际的概率、概念等的一种方法。
它能够很好地对模糊的概念和模糊的逻辑进行处理。
总之,模糊数学法是一门处理模糊数量、模糊概念、模棱两可性和模糊逻辑的研究,由三位日本科学家在1949年提出,经历了几十年的发展,广泛应用于地质学、经济学及生物学等多个领域。
它主要有模糊集、模糊函数和模糊逻辑三个部分组成,通过对象的属性测量值与已知函数值之间的映射关系,实现模糊的概念和模糊的逻辑的处理,使得我们能够更容易理解和解决模糊问题。
模糊数学法的应用越来越广泛,不仅在科学研究中有重要的作用,而且在工程应用中也有广泛的应用。
它可以用于知识表达和推理,被用于模糊控制,计算机视觉,智能决策,航空自动驾驶等很多领域。
模糊数学法能够很好地反映实际工程中的不确定性,使得设计出来的系统和控制算法更加稳定,使得人们能够准确、简单、高效地处理模糊的实际问题。
幻灯片1模糊数学绪论用数学的眼光看世界,可把我们身边的现象划分为:1.确定性现象:如水加温到100oC就沸腾,这种现象的规律性靠经典数学去刻画;2.随机现象:如掷筛子,观看那一面向上,这种现象的规律性靠概率统计去刻画;3.模糊现象:如“今天天气很热”,“小伙子很高”,…等等。
此话准确吗?有多大的水分?靠模糊数学去刻画。
幻灯片2模糊数学绪论年轻、重、热、美、厚、薄、快、慢、大、小、高、低、长、短、贵、贱、强、弱、软、硬、阴天、多云、暴雨、清晨、礼品。
共同特点:模糊概念的外延不清楚。
模糊概念导致模糊现象模糊数学——研究和揭示模糊现象的定量处理方法。
幻灯片3模糊数学绪论●产生1965年,L.A. Zadeh(扎德)发表了文章《模糊集》(Fuzzy Sets,Information and Control, 8, 338-353 )●基本思想用属于程度代替属于或不属于。
某个人属于高个子的程度为0.8, 另一个人属于高个子的程度为0.3等.幻灯片4模糊数学绪论●涉及学科模糊代数,模糊拓扑,模糊逻辑,模糊分析,模糊概率,模糊图论,模糊优化等模糊数学分支分类、识别、评判、预测、控制、排序、选择;人工智能、控制、决策、专家系统、医学、土木、农业、气象、信息、经济、文学、音乐●模糊产品洗衣机、摄象机、照相机、电饭锅、空调、电梯幻灯片5模糊数学绪论课堂主要内容一、基本概念模糊集,隶属函数,模糊关系与模糊矩阵二、主要应用1. 模糊聚类分析——对所研究的事物按一定标准进行分类例如,给出不同地方的土壤,根据土壤中氮磷以及有机质含量,PH值,颜色,厚薄等不同的性状,对土壤进行分类。
幻灯片6模糊数学绪论2.模糊模式识别——已知某类事物的若干标准模型,给出一个具体的对象,确定把它归于哪一类模型。
例如:苹果分级问题苹果,有{I级,II级,III级,IV级}四个等级。
现有一个具体的苹果,如何判断它的级别。
幻灯片7模糊数学绪论3.模糊综合评判——从某一事物的多个方面进行综合评价例如:某班学生对于对某一教师上课进行评价从{清楚易懂,教材熟练,生动有趣,板书清晰}四方面给出{很好,较好,一般,不好}四层次的评价最后问该班学生对该教师的综合评价究竟如何。