有限元板壳单元
- 格式:ppt
- 大小:1.99 MB
- 文档页数:39
单元类型的选择单元类型的选择,跟你要解决的问题本身密切相关。
在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。
1.该选杆单元(Link)还是梁单元(Beam)?这个比较容易理解。
杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。
梁单元则既可以承受拉,压,还可以承受弯矩。
如果你的结构中要承受弯矩,肯定不能选杆单元。
对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于:1)beam3是2D的梁单元,只能解决2维的问题。
2)beam4是3D的梁单元,可以解决3维的空间梁问题。
3)beam188是3D梁单元,可以根据需要自定义梁的截面形状。
2.对于薄壁结构,是选实体单元还是壳单元?对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。
而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell 单元计算准确。
实际工程中常用的shell单元有shell63,shell93。
shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。
对于一般的问题,选用shell63就足够了。
除了shell63,shell93之外,还有很多其他的shell单元,譬如shell91,shell131,shell163等等,这些单元有的是用于多层铺层材料的,有的是用于结构显示动力学分析的,一般新手很少涉及到。
一、板壳弯曲理论简介1. 板壳分类按板面内特征尺寸与厚度之比划分:当L/h < (5~8) 时为厚板,应采用实体单元。
当(5~8) < L/h < (80~100) 时为薄板,可选2D 实体或壳单元当L/h > (80~100) 时为薄膜,可采用薄膜单元。
壳类结构按曲率半径与壳厚度之比划分:当R/h >= 20 时为薄壳结构,可选择薄壳单元。
当6 < R/h < 20 时为中厚壳结构,选择中厚壳单元。
当R/h <= 6 时为厚壳结构。
上述各式中h 为板壳厚度,L 为平板面内特征尺度,R 为壳体中面的曲率半径。
2. 薄板理论的基本假定薄板所受外力有如下三种情况:①外力为作用于中面内的面内荷载。
弹性力学平面应力问题。
②外力为垂直于中面的侧向荷载。
薄板弯曲问题。
③面内荷载与侧向荷载共同作用。
所谓薄板理论即板的厚度远小于中面的最小尺寸,而挠度又远小于板厚的情况,也称为古典薄板理论。
薄板通常采用Kirchhoff-Love 基本假定:①平行于板中面的各层互不挤压,即σz = 0。
②直法线假定:该假定忽略了剪应力和所引起的剪切变形,且认为板弯曲时沿板厚方向各点的挠度相等。
③中面内各点都无平行于中面的位移。
薄板小挠度理论在板的边界附近、开孔板、复合材料板等情况中,其结果不够精确。
3. 中厚板理论的基本假定考虑横向剪切变形的板理论,一般称为中厚板理论或Reissner(瑞斯纳)理论。
该理论不再采用直法线假定,而是采用直线假定,同时板内各点的挠度不等于中面挠度。
自Reissner 提出考虑横向剪切变形的平板弯曲理论后,又出现了许多精化理论。
但大致分为两类,如Mindlin(明特林)等人的理论和Власов(符拉索夫)等人的理论。
厚板理论是平板弯曲的精确理论,即从3D 弹性力学出发研究弹性曲面的精确表达式。
4. 薄壳理论的基本假定也称为Kirchhoff-Love(克希霍夫-勒夫)假定:①薄壳变形前与中曲面垂直的直线,变形后仍然位于已变形中曲面的垂直线上,且其长度保持不变。
nastran单元类型Nastran是一款广泛使用的有限元分析软件,广泛应用于航空航天、汽车工程、结构工程等领域。
在Nastran中,不同类型的单元用于模拟不同种类的物理情况和结构问题。
本文将介绍Nastran中常用的单元类型及其应用。
1. 杆单元 (Beam elements)杆单元通常用于模拟线性材料的柱形或梁形结构。
它们是一维元素,适用于在某一方向上承受轴向、剪切力和弯曲力的构件。
常见的杆单元包括一维梁单元、梁壳单元和混合梁单元。
杆单元广泛应用于建筑结构、桥梁设计和机械设备等领域。
2. 壳单元 (Shell elements)壳单元用于模拟薄壁结构,例如壳体、板和薄膜。
壳单元是二维元素,具有较高的计算效率和适用性。
Nastran提供了多种类型的壳单元,如四节点和八节点壳单元,用于模拟不同形状和性质的结构。
壳单元广泛应用于汽车车身、飞机机翼和各种外壳设计中。
3. 固体单元 (Solid elements)固体单元用于模拟三维实体结构,例如实体零部件、机械设备和建筑物。
它们是三维元素,能够有效地处理复杂的力学特性和变形行为。
Nastran提供了多种类型的固体单元,如六面体单元和四面体单元,用于模拟不同类型的实体结构。
固体单元广泛应用于汽车发动机、建筑结构分析和材料研究等领域。
4. 声振单元 (Acoustic elements)声振单元用于模拟声学特性和振动问题。
它们是一种特殊类型的元素,适用于分析声场传播、噪声控制和声学振动等问题。
Nastran提供了声压、声速和声强等不同类型的声振单元。
声振单元广泛应用于汽车噪声、航空航天设备噪声和声学材料研究等领域。
5. 连接单元 (Connector elements)连接单元用于模拟不同结构之间的连接和约束关系,如焊缝、螺栓和弹簧等。
连接单元允许模拟结构件之间的刚性连接或柔性连接,以便更好地分析结构件之间的相互作用。
Nastran提供了多种类型的连接单元,用于模拟不同类型的连接关系。
一、板壳弯曲理论简介1. 板壳分类按板面内特征尺寸与厚度之比划分:当L/h < (5~8) 时为厚板,应采用实体单元。
当(5~8) < L/h < (80~100) 时为薄板,可选2D 实体或壳单元当L/h > (80~100) 时为薄膜,可采用薄膜单元。
壳类结构按曲率半径与壳厚度之比划分:当R/h >= 20 时为薄壳结构,可选择薄壳单元。
当6 < R/h < 20 时为中厚壳结构,选择中厚壳单元。
当R/h <= 6 时为厚壳结构。
上述各式中h 为板壳厚度,L 为平板面内特征尺度,R 为壳体中面的曲率半径。
2. 薄板理论的基本假定薄板所受外力有如下三种情况:①外力为作用于中面内的面内荷载。
弹性力学平面应力问题。
②外力为垂直于中面的侧向荷载。
薄板弯曲问题。
③面内荷载与侧向荷载共同作用。
所谓薄板理论即板的厚度远小于中面的最小尺寸,而挠度又远小于板厚的情况,也称为古典薄板理论。
薄板通常采用Kirchhoff-Love 基本假定:①平行于板中面的各层互不挤压,即σz = 0。
②直法线假定:该假定忽略了剪应力和所引起的剪切变形,且认为板弯曲时沿板厚方向各点的挠度相等。
③中面内各点都无平行于中面的位移。
薄板小挠度理论在板的边界附近、开孔板、复合材料板等情况中,其结果不够精确。
3. 中厚板理论的基本假定考虑横向剪切变形的板理论,一般称为中厚板理论或Reissner(瑞斯纳)理论。
该理论不再采用直法线假定,而是采用直线假定,同时板内各点的挠度不等于中面挠度。
自Reissner 提出考虑横向剪切变形的平板弯曲理论后,又出现了许多精化理论。
但大致分为两类,如Mindlin(明特林)等人的理论和Власов(符拉索夫)等人的理论。
厚板理论是平板弯曲的精确理论,即从3D 弹性力学出发研究弹性曲面的精确表达式。
4. 薄壳理论的基本假定也称为Kirchhoff-Love(克希霍夫-勒夫)假定:①薄壳变形前与中曲面垂直的直线,变形后仍然位于已变形中曲面的垂直线上,且其长度保持不变。
abaqus单元形状Abaqus软件是一种用于模拟和分析实体的有限元分析软件,使用者可以选择不同的单元类型来描述物体的形状和行为。
Abaqus提供了多种不同的单元类型,以适应不同类型的问题和目标。
下面我将介绍几种常见的Abaqus单元形状。
1. 线单元(Beam elements): 线单元用于描述长而细的结构物,如梁和柱。
它们是一维元素,沿着长度方向进行分割,并通过节点连接。
这些单元可以模拟结构物的弯曲和扭转行为。
线单元通常使用于考虑结构物细长性质的工程问题。
2. 平面单元(Plane elements): 平面单元用于描述平面或轴对称物体。
它们是二维元素,通常用于平面应力和平面应变问题的分析。
平面单元可以分为三角形单元和四边形单元。
三角形单元更适用于不规则形状,而四边形单元更适用于规则形状。
3. 壳单元(Shell elements): 壳单元用于描述薄壁结构,如板、壳和薄膜等。
它们是二维元素,具有厚度。
壳单元可以包括模拟薄壁结构的平面应力、平面应变和轴对称问题。
壳单元分为四边形壳单元和三角形壳单元。
4. 体单元(Solid elements): 体单元用于描述实体结构,如块体或立方体。
它们是三维元素,用于分析三维应力和应变问题。
体单元可以分为四面体单元和六面体单元。
四面体单元适用于非规则形状,而六面体单元适用于规则形状。
5. 结合单元(Combined elements): 结合单元是使用不同类型单元进行组合的元素。
结合单元可以用于描述复杂的几何形状和行为。
例如,可以组合使用线单元、壳单元和体单元来模拟不同部分的结构。
6. 其他单元类型:除了上述常见的单元类型外,Abaqus还提供了许多其他单元类型,如弹簧单元、等效固体单元和连接单元等。
总之,Abaqus提供了丰富的单元形状选择,以满足不同类型的工程和科学问题的分析需求。
根据问题的性质和特点,使用者可以选择适合的单元类型来模拟和分析结构的形状和行为。
有限元单元类型
有限元软件中常见的单元类型有五种:力学单元,温度场单元,电场单元,磁场单元,以及多场耦合单元等。
力学单元自由度一般都是应力场相关的物理量,例如位移,应变,应力等。
温度场单元自由度自然是温度,电场自由度是电势,磁场就是棱边的磁矢势,或者节点上的标量势。
耦合单元自然是拥有多重自由度的单元。
总得来讲,固体力学单元可以按照自由度的物理场的不同区分为:连续介质单元和结构单元两类,连续介质单元一般就是只含有平动自由度的实体单元,结构单元则是含有转动自由度的梁、板、壳单元。
另外杆和膜单元虽然不含转动自由度,但也归类到结构单元中。
或者可以说,连续介质单元就是对空间尺度没有简化的单元,而结构单元就是在一个或两个空间坐标上进行了简化的单元。
二维的连续介质单元不算简化了空间尺度,因为空间本来就是二维。
扩展资料
有限元软件形成单元的算法有很多,最基本的是插值方式,比如常用的拉格朗日单元,hermite单元,serendipity单元等,这是按插值方法分。
按插值形函数的最高次数分,自然就有一阶,二阶,三阶单元了。
按照单元所采用的非线性格式分,又有TL单元,UL格式单元,CR格式单元(指corotation算法)。
还有一些更加具体的单元算法,包括但不限于,协调元和非协调元,应力杂交元,缩减积分单元,选择缩减积分单元等等等。
所以,完整的描述清楚一个单元,可能得说:一个基于UL格式的三维六面体一阶协调缩减积分沙漏控制拉格朗日形连续介质单元。
此外,还有一些特殊用途的单元,例如惯性点单元,连接单元(用来处理运动耦合等连接关系),接触单元,表面热单元(用来处理表面辐射和表面对流)等等等。
ANSYS上机实验报告实验三:板壳的有限元分析班级:姓名:学号:一、实验题目图示正方形平板,承受垂直于板面的均布载荷作用P=20KN/m*m,板厚t=0.1m,平板外缘各边采用固定约束方式,材料选用低碳钢,弹性模量E=210GPa,u=0.33。
二、实验过程1、确定所采用的单位制:N,m,Pa。
2、问题类型:板壳问题。
3、利用ANSYS构造实体模型:1/4模型(正对称)和整体分析。
4、网格划分1)、定义材料属性:Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX: 210e9, PRXY: 0.33 →OK2)、定义单元类型:Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Shell Elastic 8node 63 →OK (back to Element Types window)3)、定义实常数(厚度):Main Menu: Preprocessor →Real Constants… →Add… →select Type 1→OK→input TK(I): 0.1 ,TK(J): 0.1 ,TK(K): 0.1 ,TK(L): 0.1 →OK→Close (the Real Constants Window)4)、划分网格:在size element edge length (单元边长值)处输入0.25、加载及求解。
加载(整体)过程:Main Menu: Solution →Define Loads →Apply →Structural →Displacement →On Nodes →拾取四个边线→OK →select Lab2:ALL OFF →OKMain Menu: Solution →Define Loads →Apply →Structural →pressure →On Areas →拾取面→OK →Value: 20000→OK加载(1/4)过程:Main Menu: Solution →Define Loads →Apply →Structural →Displacement →On Nodes →拾取右边线和上边线→OK →select Lab2:ALL OFF →Apply→拾取左边线→OK→select Lab2:UX→Apply→拾取下边线→OK→select Lab2:UY→OKMain Menu: Solution →Define Loads →Apply →Structural →pressure →On Areas →拾取面→OK →Value: 20000→OK求解:Main Menu: Solution →Solve →Current LS →OK(to close the solve Current Load Step window) →OK6、分析变形、位移和应力状况并抓图。
有限单元法知识点总结1. 有限元法概述有限单元法(Finite Element Method ,简称FEM)是一种数值分析方法,适用于求解工程结构、热传导、流体力学等领域中的强耦合、非线性、三维等问题,是一种求解偏微分方程的数值方法。
有限元法将连续的物理问题抽象为由有限数量的简单几何单元(例如三角形、四边形、四面体、六面体等)组成的离散模型,通过对单元进行适当的数学处理,得到整体问题的近似解。
有限元法广泛应用于工程、材料、地球科学等领域。
2. 有限元法基本原理有限元法的基本原理包括离散化、加权残差法和形函数法。
离散化是将连续问题离散化为由有限数量的简单单元组成的问题,建立有限元模型。
加权残差法是选取适当的残差形式,并通过对残差进行加权平均,得到弱形式。
形函数法是利用一组适当的形函数来表示单元内部的位移场,通过形函数的线性组合来逼近整体位移场。
3. 有限元法的步骤有限元法的求解步骤包括建立有限元模型、建立刚度矩阵和载荷向量、施加边界条件、求解代数方程组和后处理结果。
建立有限元模型是将连续问题离散化为由简单单元组成的问题,并确定单元的连接关系。
建立刚度矩阵和载荷向量是通过单元的应变能量和内力作用,得到整体刚度矩阵和载荷向量。
施加边界条件是通过给定位移或力的边界条件,限制未知自由度的取值范围。
求解代数方程组是将有限元模型的刚度方程和载荷方程组成一个大型代数方程组,通过数值方法求解。
后处理结果是对数值结果进行处理和分析,得到工程应用的有用信息。
4. 有限元法的元素类型有限元法的元素类型包括结构单元、板壳单元、梁单元、壳单元、体单元等。
结构单元包括一维梁单元、二维三角形、四边形单元、三维四面体、六面体单元。
板壳单元包括各种压力单元、弹性单元、混合单元等。
梁单元包括梁单元、横梁单元、大变形梁单元等。
壳单元包括薄壳单元、厚壳单元、折叠单元等。
体单元包括六面体单元、锥体单元、八面体单元等。
5. 有限元法的数学基础有限元法的数学基础包括变分法、能量方法、有限元插值等。