统计综合-数据处理与多指标评价方法
- 格式:ppt
- 大小:1.73 MB
- 文档页数:125
二、企业经营综合统计评价的程序与方法企业经营综合统计评价的基本步骤为:①选择评价指标,建立评价指标体系;②选择综合评价方法,即根据被评价现象的实际情况和特点,选定所用的无量纲化方法和合成方法;③根据综合评价方法和研究目的的要求确定评价标准值,即确定指标的有关阈值和参数;④确定合成时所使用的反映评价指标重要程度不同的权数;⑤将指标实际值转化为指标评价值,即无量纲化;⑥将各指标评价值合成为综合评价值,并依据综合评价值的大小,进行排序和其它分析研究。
综合统计评价的具体方法不同,步骤和内容也略有不同.上述六个步骤中,前四步是准备工作,后两步是实际操作。
下面介绍其主要步骤及其内容。
(一)评价指标体系的确定在企业经营综合统计评价中,科学地确定评价指标体系是综合评价能否准确反映全面情况的前提.评价指标的选择要在对评价现象定性研究的基础上,结合定量测定方法进行分析.确定评价指标体系的基本原则有:1.目的性。
选择指标,构造评价指标体系,首先要注意从评价目的出发。
例如,要评价企业经济效益,就应对企业经济效益的含义及层次进行科学界定,在此基础上选取经济效益指标;要研究企业活力状况,就应在正确理解企业活力含义的基础上,确定反映企业竞争力的指标.总之,评价指标体系的设置要能够反映不同评价对象的含义及特征,符合特定的研究目的.2.全面性.企业经营综合统计评价是一种全面性的评价,因而选取的指标应具有代表性,指标体系的扫描范围要力求全面,从不同的侧面,不同的角度全面反映其被评价对象的整体情况。
全而性并不是包括所有的指标,而应根据精简、效能的原则,选择既能反映全面状况,又能体现被研究对象本质特征的概括性强的指标,使指标体系形成一个极大无关组,尽量减少指标间的相关影响.3.可行性.设计评价指标体系时,要考虑到指标数据是否容易取得,数据质量是否真实可靠.例如,对企业及产品的竞争能力进行综合评价,一般可以用竞争对手的相应资料作为对比标准,由于存在着竞争,这些资料的取得是比较困难的。
多指标综合评价理论与方法问题研究一、本文概述在现代社会,随着科技的快速发展和全球化的深入推进,我们面临着越来越多的复杂问题,这些问题往往涉及多个指标、多个维度和多个利益相关者。
因此,如何有效地对这些问题进行综合评价,成为了一个重要的研究课题。
本文旨在探讨多指标综合评价的理论与方法问题,通过深入研究和分析,提出一套科学、合理、实用的综合评价模型和方法,为解决实际问题提供理论支持和实践指导。
本文将对多指标综合评价的基本概念进行界定,明确其研究范围和对象。
然后,我们将回顾和评价现有的多指标综合评价方法,分析它们的优点和不足,为构建新的评价模型和方法提供借鉴和参考。
接着,本文将深入探讨多指标综合评价的理论基础,包括综合评价的基本原理、评价指标体系的构建原则和方法、评价方法的选择和优化等。
在此基础上,我们将提出一种基于多维度分析和多方法集成的综合评价模型,该模型能够充分考虑问题的多个方面和多个利益相关者,提高评价的准确性和可靠性。
我们将通过案例分析和实证研究,对所提出的综合评价模型和方法进行验证和应用,探讨其在解决实际问题中的效果和价值。
本文的研究不仅具有重要的理论意义,也具有广泛的应用价值。
通过深入研究多指标综合评价的理论与方法问题,我们可以为政府决策、企业管理、社会评价等领域提供更加科学、合理、实用的评价工具和方法,推动社会经济的可持续发展和人类的全面进步。
二、多指标综合评价理论基础多指标综合评价理论与方法问题研究的核心在于构建一个全面、科学、有效的评价框架,用以处理复杂系统中的多个指标。
这一理论框架不仅要求我们能够理解和量化各个指标,而且需要研究指标之间的关系,以及如何将这些关系整合到一个综合的评价体系中。
多指标综合评价的理论基础建立在系统科学之上。
系统科学强调整体性和关联性,认为一个系统是由多个相互关联、相互作用的要素所组成。
在多指标综合评价中,这些“要素”就是各个评价指标,而“整体性”和“关联性”则要求我们在评价过程中,不仅要考虑单个指标的表现,更要关注指标之间的内在联系和相互影响。
二、权重的确定方法在统计理论和实践中,权重是表明各个评价指标(或者评价项目)重要性的权数,表示各个评价指标在总体中所起的不同作用。
权重有不同的种类,各种类别的权重有着不同的数学特点和经济含义,一般有以下几种权重.按照权重的表现形式的不同,可分为绝对数权重和相对数权重。
相对数权重也称比重权数,能更加直观地反映权重在评价中的作用。
按照权重的形成方式划分,可分为人工权重和自然权重。
自然权重是由于变换统计资料的表现形式和统计指标的合成方式而得到的权重,也称为客观权重。
人工权重是根据研究目的和评价指标的内涵状况,主观地分析、判断来确定的反映各个指标重要程度的权数,也称为主观权重.按照权重形成的数量特点的不同划分,可分为定性赋权和定量赋权。
如果在统计综合评价时,采取定性赋权和定量赋权的方法相结合,获得的效果更好。
按照权重与待评价的各个指标之间相关程度划分,可分为独立权重和相关权重。
独立权重是指评价指标的权重与该指标数值的大小无关,在综合评价中较多地使用独立权重,以此权重建立的综合评价模型称为“定权综合”模型。
相关权重是指评价指标的权重与该指标的数值具有函数关系,例如,当某一评价的指标数值达到一定水平时,该指标的重要性相应的减弱;或者当某一评价指标的数值达到另一定水平时,该指标的重要性相应地增加。
相关权重适用于评价指标的重要性随着指标取值的不同而发生变化的条件下,基于相关权重建立的综合评价模型被称为“变权模型”。
比如评估环境质量多采用“变权综合”模型。
确定权重的方法较多,这里介绍统计平均法、变异系数法和层次分析法,这些也是实际工作种常用的方法。
(一)统计平均法统计平均数法(Statistical average method)是根据所选择的各位专家对各项评价指标所赋予的相对重要性系数分别求其算术平均值,计算出的平均数作为各项指标的权重.其基本步骤是:第一步,确定专家.一般选择本行业或本领域中既有实际工作经验、又有扎实的理论基础、并公平公正道德高尚的专家;第二步,专家初评。
数据统计分析常用方法目录1 统计学基础知识 (3)1.1 统计的含义 (3)1.2 统计的分类 (3)1.3 样本 (3)2 数据的概括性度量 (4)2.1 总规模度量 (4)2.1.1 总量指标 (4)2.2 比较度量 (5)2.2.1 相对指标 (5)2.3 平均度量 (6)2.3.1 概念 (6)2.3.2 平均数的种类和计算方法 (6)2.4 离散变量 (8)2.4.1 变异指标 (8)2.5 数据的标准化 (11)2.5.1 Min-max标准化 (11)2.5.2 Z-score标准化 (11)3 相关分析 (11)3.1 概念 (11)3.2 分类 (12)3.3 相关分析的作用 (12)3.4 相关系数的计算 (12)3.5 相关系数的性质 (12)3.5.1 相关性类型 (12)3.5.2 相关性强弱 (12)4 数据分析 (13)4.1 数据分析的含义 (13)4.2 数据分析的作用 (13)4.3 数据分析方法 (13)4.3.1 对比分析法 (13)4.3.2 分组分析法 (14)4.3.3 结构分析法 (15)4.3.4 平均分析法 (15)4.3.5 交叉分析法 (15)4.3.6 综合评价分析法 (16)4.3.7 漏斗图分析法 (17)4.3.8 抽样分析法 (17)4.3.9 相关分析 (18)4.3.10 时间序列预测 (20)1统计学基础知识1.1统计的含义“统计”一词在各种实践活动和科学研究领域中都经常出现。
然而,不同的人或在不同的场合,对其理解是有差异的。
比较公认的看法认为统计有三种含义,即统计活动、统计数据和统计学。
●统计活动统计活动又称统计工作,是指收集、整理和分析统计数据,并探索数据的内在数量规律性的活动过程。
●统计资料统计资料又称统计数据,即统计活动过程所获得的各种数字资料和其他资料的总称。
表现为各种反映社会经济现象数量特征的原始记录、统计台账、统计表、统计图、统计分析报告、政府统计公报、统计年鉴等各种数字和文字资料。
16种统计分析方法-统计分析方法有多少种16种常用的数据分析方法汇总2015-11-10分类:数据分析评论(0)经常会有朋友问到一个朋友,数据分析常用的分析方法有哪些,我需要学习哪个等等之类的问题,今天数据分析精选给大家整理了十六种常用的数据分析方法,供大家参考学习。
一、描述统计描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。
1、缺失值填充:常用方法:易9除法、均值法、最小邻居法、比率回归法、决策树法。
2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。
常用方法:非参数检验的K-量检验、P-P 图、Q-Q图、W检验、动差法。
二、假设检验1、参数检验参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。
1)U验使用条件:当样本含量n较大时,样本值符合正态分布2)T检验使用条件:当样本含量n较小时,样本值符合正态分布A单样本t检验:推断该样本来自的总体均数卩与已知的某一总体均数卩0常为理论值或标准值)有无差别;B配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;C两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。
2、非参数检验非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。
适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的A 虽然是连续数据,但总体分布形态未知或者非正态;B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10 以下;主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。
三、信度分析检査测量的可信度,例如调查问卷的真实性。
分类:1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。
多指标综合评价方法汇总在许多领域,我们需要对各种不同指标进行综合评价。
例如,在经济学中,我们可能希望综合考虑国内生产总值、消费水平和就业率等指标,来评估一个国家的经济状况。
多指标综合评价方法可以帮助我们更全面地了解问题,并做出更准确的决策。
1. 加权平均法(Weighted Average Method)加权平均法是一种简单且常用的多指标综合评价方法。
它通过为不同指标分配不同的权重,将各个指标的值加权求和,得到综合评价结果。
这种方法的优点是简单易用,而且可以灵活地根据具体需求调整权重。
然而,它也存在一些问题,比如权重的选择可能存在主观性,并且无法处理指标之间的复杂关系。
2. 灰色关联度法(Grey Relational Degree Method)灰色关联度法是一种基于灰色关联度理论的综合评价方法。
它可以用于处理指标之间的非线性关系。
这种方法首先将指标数据进行标准化处理,然后计算每个指标与其他指标的关联度。
最后,通过加权求和计算出各指标的综合关联度。
这种方法适用于指标之间关系复杂的情况,但需要事先确定权重和关联度计算方法。
3. 层次分析法(Analytic Hierarchy Process)层次分析法是一种常用的多指标综合评价方法,特别适用于层次结构复杂的问题。
它通过将指标划分为不同的层次,并采用配对比较的方式来确定各个指标的权重。
该方法实现了主体的主观判断与客观分析的结合,具有较强的可操作性。
但是,层次分析法在实际应用中存在一定的主观性和复杂性。
4. 顶层单一评价法(Top-Level Single Evaluation Method)顶层单一评价法是一种将多个指标综合为一个综合评价指标的方法。
它通过建立一个综合评价函数,将各个指标的值作为输入,综合评价结果作为输出。
这种方法适用于需要将多个指标综合为一个指标来进行决策的情况,但在实际应用中可能存在不同指标之间的度量单位不同的问题。
5. 熵权法(Entropy Method)熵权法是一种基于信息熵概念的多指标综合评价方法。
多指标综合评价方法及权重系数的选择来源:中国论文下载中心 [ 09-02-01 10:17:00 ] 编辑:studa20作者:王晖,陈丽,陈垦,薛漫清,梁庆【摘要】由于计算机的发展及一些相关领域的不断深入研究,综合评价方法得到了不断的发展和改进。
而指标权重系数的确定方法作为综合评价中的重中之重,近几年来也取得了一些新的进展。
本文对多指标评价方法和权重系数的选择进行概括介绍。
【关键词】多指标综合评价;评价方法;权重系数;选择基金项目:广东药学院引进人才科研启动基金资助项目( 2005ZYX12)、广州市科技计划项目( 2007J1-C0281)、广东省科技计划项目(2007A060305006)综合评价是利用数学方法(包括数理统计方法)对一个复杂系统的多个指标信息进行加工和提炼,以求得其优劣等级的一种评价方法。
本文就近年来国内外有关多指标综合评价及权重系数选择的方法进行综述,以期为药理学多指标的研究提供一些方法学的资料。
1 多指标综合评价方法1.1 层次分析加权法(AHP法)[1]AHP法是将评价目标分为若干层次和若干指标,依照不同权重进行综合评价的方法。
根据分析系统中各因素之间的关系,确定层次结构,建立目标树图→ 建立两两比较的判断矩阵→ 确定相对权重→ 计算子目标权重→ 检验权重的一致性→ 计算各指标的组合权重→计算综合指数和排序。
该法通过建立目标树,可计算出合理的组合权重,最终得出综合指数,使评价直观可靠。
采用三标度(-1,0,1)矩阵的方法对常规的层次分析加权法进行改进,通过相应两两指标的比较,建立比较矩阵,计算最优传递矩阵,确定一致矩阵(即判断矩阵)。
该方法自然满足一致性要求,不需要进行一致性检验,与其它标度相比具有良好的判断传递性和标度值的合理性;其所需判断信息简单、直观,作出的判断精确,有利于决策者在两两比较判断中提高准确性[2]。
1.2 相对差距和法[3]设有m项被评价对象,有n个评价指标,则评价对象的指标数据库为Kj=(K1j,K2j,……,Knj),j=1,2,……,m。
多指标综合评价方法综述一、本文概述在当前的学术研究和社会实践中,多指标综合评价方法的应用越来越广泛。
无论是企业管理、政策制定,还是科学研究、社会评价,都需要通过多指标综合评价来全面、客观地了解对象的特点和优劣。
本文旨在对多指标综合评价方法进行综述,梳理其发展历程、主要类型、优缺点以及应用前景,以期能为相关研究和实践提供参考。
本文首先介绍了多指标综合评价的基本概念和研究意义,阐述了其在各个领域中的应用情况。
然后,详细梳理了多指标综合评价的主要方法,包括层次分析法、模糊综合评价法、数据包络分析法等,并对每种方法的原理、步骤和应用案例进行了深入剖析。
在此基础上,本文进一步探讨了多指标综合评价方法的优缺点,以及在实际应用中需要注意的问题。
本文展望了多指标综合评价方法的发展趋势和未来研究方向,以期推动该领域的研究和实践不断向前发展。
通过本文的综述,读者可以全面了解多指标综合评价方法的基本知识和应用情况,掌握各种方法的优缺点和适用场景,为相关研究和实践提供有益的参考和借鉴。
本文也希望能够激发更多学者和实践者对该领域的兴趣和热情,共同推动多指标综合评价方法的创新和发展。
二、多指标综合评价的理论基础多指标综合评价方法主要基于统计学、经济学、管理学、心理学等多学科的理论,其核心在于将多个独立指标通过一定的方式转化为一个综合的评价指数,以便更全面、客观地反映评价对象的整体状况。
统计学基础:多指标综合评价方法运用了大量的统计学原理,如主成分分析、因子分析、聚类分析、判别分析等。
这些统计方法通过对原始数据的处理和分析,提取出能够反映评价对象主要特征的综合指标,为后续的评价工作提供数据支持。
经济学基础:多指标综合评价方法在经济学中得到了广泛应用,尤其是在资源分配、经济效益评价、社会福利评估等方面。
经济学中的供需理论、边际分析、效用理论等为综合评价提供了理论支持,帮助人们从经济角度出发,更科学地评价对象的优劣。
管理学基础:管理学的目标是提高组织的效率和效益,而多指标综合评价方法正是为了实现这一目标而发展起来的。
一、什么是多元统计分析❖多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广。
❖多元统计分析是研究多个随机变量之间相互依赖关系以及内在统计规律的一门统计学科。
二、多元统计分析的内容和方法❖1、简化数据结构(降维问题)将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。
(1)主成分分析(2)因子分析(3)对应分析等❖2、分类与判别(归类问题)对所考察的变量按相似程度进行分类。
(1)聚类分析:根据分析样本的各研究变量,将性质相似的样本归为一类的方法。
(2)判别分析:判别样本应属何种类型的统计方法。
例5:根据信息基础设施的发展状况,对世界20个国家和地区进行分类。
考察指标有6个:1、X1:每千居民拥有固定电话数目2、X2:每千人拥有移动电话数目3、X3:高峰时期每三分钟国际电话的成本4、X4:每千人拥有电脑的数目5、X5:每千人中电脑使用率6、X6:每千人中开通互联网的人数❖3、变量间的相互联系一是:分析一个或几个变量的变化是否依赖另一些变量的变化。
(回归分析)二是:两组变量间的相互关系(典型相关分析)❖4、多元数据的统计推断点估计参数估计区间估计统 u检验计参数 t检验推 F检验断假设相关与回归检验卡方检验非参秩和检验秩相关检验❖1、假设检验的基本原理小概率事件原理❖ 小概率思想是指小概率事件(P<0.01或P<0.05等)在一次试验中基本上不会发生。
反证法思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立;反之,则认为假设成立。
❖ 2、假设检验的步骤 (1)提出一个原假设和备择假设❖ 例如:要对妇女的平均身高进行检验,可以先假设妇女身高的均值等于 160 cm (u=160cm )。
这种原假设也称为零假设( null hypothesis ),记为 H 0 。