一次函数第一课时教学设计
- 格式:doc
- 大小:105.26 KB
- 文档页数:7
19.2.2 一次函数(第一课时)教学详案【设计说明】.一次函数是中学阶段接触到的最简单、最基本的函数,它在实际生活中有着广泛的应用.一次函数的学习是建立在学习了平面直角坐标系、变量与函数和正比例函数的基础上的.一次函数的第一课时主要内容是一次函数的有关概念,本课是在学习正比例函数的基础上,进一步学习一次函数的概念.一次函数的概念是在观察一类具体函数的解析式的特点的基础上,通过抽象得到的函数模型.【教学目标】1.结合具体情境理解一次函数的意义,能结合实际问题中的数量关系写出一次函数的解析式;2.能辨别正比例函数与一次函数的区别与联系;3.初步体会用待定系数法求一次函数解析式的方法.【教学重难点】重点:一次函数的概念.难点:求一次函数解析式.【课前准备】多媒体、图片【教学过程】(-)导入新课1、什么是正比例函数?能举例说明吗?2、购买一枝钢笔需5.6元,付款总数y(元)随所购枝数x(枝)的变化而变化,用解析式表示为:.3、问题:某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y•与x的关系.师生共同分析:从大本营向上当海拔每升高1km时,气温从5℃就减少6℃,那么海拔增加xkm时,气温从5℃减少6x℃.因此y与x的函数关系式为:y=5-6x(x≥0)当然,这个函数也可表示为:y=-6x+5 (x≥0)当登山队员由大本营向上登高0.5km时,他们所在位置气温就是当x=0.5时函数y=-6x+5的值,即y=-6×0.5+5=2(℃).这个函数叫什么函数,它与我们上节所学的正比例函数有何不同?我们这节课将学习这些问题.(二)探究新知4、下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式,这些函数解析式有哪些共同特征?(1).有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(单位:℃)有关,即C•的值约是t的7倍与35的差.(2).一种计算成年人标准体重G(单位:kg)的方法是,以厘米为单位量出身高值h,再减常数105,所得差是G的值.(3).某城市的市内电话的月收费额y(单位:元)包括月租费22元和拨打电话xmin的计时费(按0.1元/min收取).(4).把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的面积y(单位:cm2)随x的值而变化.师生活动:学生先独立思考,然后小组交流,可以得到这些问题的函数解析式分别为:(1).C=7t-35.(20≤t≤25)(2).G=h-105.(3).y=0.1x+22.(4).y=-5x+50(0≤x≤10).教师引导观察后请学生代表归纳:它们的形式与y=-6x+5一样,这些函数都是常数k与自变量的积与常数b的和的形式.师:确实如此,如果我们用b 来表示这个常数的话.•这些函数形式就可以写成:y=kx+b (k≠0)教师出示一次函数的定义: 一般地,形如y=kx+b (k 、b 是常数,k≠0•)的函数,•叫做一次函数(•linearfunction ). 教师引导学生继续思考 当b =0时,y =kx +b 是什么函数?学生思考后回答:当b=0时,y=kx+b 即y=kx .所以说正比例函数是一种特殊的一次函数.5、同桌合作探究:请写出若干个变量y 与x 之间的函数解析式,让同桌判断是否是一次函数;如果是,请说出其一次项系数与常数项. (三)新知应用例1 下列函数中哪些是一次函数,哪些又是正比例函数?师生活动:学生先独立思考,然后小组讨论,教师根据学生讨论情况加以点拨:如(7)和(8)这两种形式需要加以整理,最后根据学生的回答情况得出答案;解:一次函数:(4)、(5)、(7)、(8)。
苏科版数学八年级上册6.2《一次函数》教学设计1一. 教材分析苏科版数学八年级上册 6.2《一次函数》是学生在学习了初中数学基础知识后,对函数概念的进一步理解。
本节内容主要让学生掌握一次函数的定义、性质和图像,以及如何运用一次函数解决实际问题。
教材通过丰富的实例和生动的语言,引导学生探究一次函数的本质特征,培养学生的数学思维能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了实数、方程、不等式等基础知识,对数学概念有一定的理解能力。
但部分学生对函数概念的理解可能仍存在模糊之处,对一次函数的应用能力和解决实际问题的能力有待提高。
因此,在教学过程中,要关注学生的个体差异,针对不同学生的学习需求进行有针对性的指导。
三. 教学目标1.理解一次函数的定义和性质,掌握一次函数的图像特点。
2.能够运用一次函数解决实际问题,提高学生的数学应用能力。
3.培养学生的数学思维能力和团队合作精神。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数图像的特点。
3.运用一次函数解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入一次函数,让学生感受数学与生活的紧密联系。
2.合作学习法:引导学生分组讨论,共同探究一次函数的性质和图像特点。
3.启发式教学法:教师提问,引导学生思考,激发学生的学习兴趣和探究欲望。
4.反馈评价法:及时了解学生的学习情况,针对性地进行指导。
六. 教学准备1.教学课件:制作一次函数的相关课件,包括图片、动画和实例等。
2.练习题:准备一次函数的相关练习题,包括基础题、应用题和拓展题。
3.教学工具:准备黑板、粉笔、直尺等教学工具。
七. 教学过程1.导入(5分钟)利用生活实例引入一次函数的概念,如“某商品的原价是80元,打8折后的价格是多少?”引导学生思考,激发学生的学习兴趣。
2.呈现(10分钟)展示一次函数的定义和性质,如y=kx+b(k≠0,k、b为常数)。
通过动画和实例,让学生直观地感受一次函数的图像特点,如直线、斜率、截距等。
课题:一次函数(第1课时)一、教学内容分析【地位与作用】一次函数是初中阶段学生学习的最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一。
因此,一次函数是学生今后进一步学习初、高中其它函数和高中解析几何中的曲线方程的基础.一次函数蕴含着重要的数学思想和方法,不仅与二元一次方程组、一元一次不等式、二次函数、反比例函数等数学知识有着密切的联系,同进还在生活实际中有着极为广泛的应用,对学生基本数学思想和素养的形成有很好的促进作用.【教学设计理念】为了更好地体现新课程理念,采取了对文本知识进行探究性重组,放手让学生在数学活动中去经历、体验、内化知识的做法,使知识更具有生长性.教学过程力求突出第一轮复习的基础性和系统性,与学生积极互动、共同发展,关注个体差异,满足不同学生的学习需要.在具体的教学过程中,不是简单地进行知识点的复习和习题训练,而是利用“问题串”加深学生对函数性质的理解及应用,促进其函数建模、数形结合等重要数学思想方法的形成.【复习目标】目标是复习课教学的出发点和归宿,是课堂教学的风向标,本着从“四基”着手,改变传统复习课教师“一言堂”的现状,设计如下教学目标:1.知识与技能: ①进一步了解一次函数的定义;②能画出一次函数的图象,并能利用函数图象解决有关问题;③会利用待定系数法求一次函数的解析式;④进一步体会一次函数与方程(组)和不等式的关系,能根据函数的图象求出二元一次方程组的解和一元一次不等式的解集.2.过程与方法: ①通过先基础再提升的复习过程,使学生理解研究函数的一般方法;②通过对零散知识点的系统整理,让学生的知识体系更加完善;③使学生进一步体会“数形结合”、“转化思想”,强化数学的建模意识.3.情感与态度: 通过问题的不断深入拓展,让学生在问题情境中经历探究、思考,渗透与他人合作的意识,培养学生数学学习的兴趣和信心.【教学重点】进一步巩固一次函数的定义、图象和性质.【教学难点】读图、识图的能力以及结合一次函数的图象解决数学问题.【教学辅助】微课、多媒体课件、一副三角板等.【教法学法】教法分析:本着学生为主体的原则,让教最大限度的让位于学.形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于反思,侧重于学生能力提高的思维训练.同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,“让不同的学生在数学上得到不同的发展”.学法指导: 复习中,不局限于知识的传授,更重要的是学生学会如何去学.学生突出自主学习、研讨发现,知识是通过学生自己动口、动脑,积极思考、主动探索获得,学生在交流、合作、数学活动中总结方法和规律,培养学生学习的主动性和积极性.二、教学过程设计:(一)知识导航【活动1】1.出示学习要求:五会求①会求一次函数解析式;②会确定一次函数图象的位置;③会求点的坐标;④会求直线围成的图形面积;⑤会根据函数图象写出方程(组)的解和不等式的解集.2.观看微课:《一次函数》【设计意图】出示学习要求,是让学生做到“心中有数”,对本节课要解决的问题了然于胸.通过微课,让学生快速回忆一次函数的定义、图象及性质,将知识的内在联系和平时相对独立的知识点进行整合,串成线、结成网,不仅有利于“弄清家底”,而且要有助于理解与记忆,便于提取与应用.(二)基础再现【活动2】关于一次函数483y x=-+你能提出哪些问题或者能得到什么结论?1.一次函数483y x=-+的图象是什么形状?2.一次函数483y x=-+的图象经过哪些象限?3.若点Q(-6,b)在一次函数483y x=-+的图象上,求b值.4.若点M (4,b 1),N (5,b 2)在一次函数483y x =-+的图象上,比较 b 1 和b 2大小. 5.你能画出一次函数483y x =-+的图象吗? 【设计意图】引导学生对一次函数图象的形状、性质等知识进行提取、反思、加工.使学生进一步明确一次函数解析式中k 与b 的作用,真正理解k 、b 是如何影响一次函数位置的.较自然地经历知识的再现和巩固过程,理解一次函数及其图象的有关性质.使学生会根据点与直线的关系确定点的坐标.引导学生回忆一次函数的比例系数k 是如何决定函数的增减性的.问题4学生可能会有不同的方法,注意引导学生选择优法.(三)综合运用【活动3】 6.你能求出直线 4:83l y x =-+与两坐标轴的交点坐标吗? 7.你能求出图中哪些线段的长?哪些角的度数?8.你能求出直线4:83l y x =-+与两坐标轴围成的三角形面积吗 ? 9.设点H 是直线4:83l y x =-+上的一个动点,当S △AOH =12时, 求点H 的坐标. 【设计意图】引导学生明确点的坐标与线段长度之间的关系,知道求线段和角度时要关注几何背景.第6-8题主要考察学生是否会求一次函数与坐标轴交点的坐标,学生都应该能解答;但求角度时个别学生可能会被形式所迷惑,引导学生关注背景.复习课同样要面向全体学生,题目的选择应有层次性,由浅入深,进行“题组”训练,体现渐进性原则,加强复习的有效性.学生对于第9题可能会出现漏解的情况,引导学生明确点到x(y)轴的距离是纵(横)坐标的绝对值,使学生把握各知识点的内在联系,构建知识网络,为下一步的探究做好准备.【活动4】10.如图,直线1l 过原点,且1l ∥l ,请直接写出直线1l 的解析式.11将14:3l y x =- 怎样平移可以得到直线4:83l y x =-+ ? 12.你能直接写出方程483x -+=0的解吗? 13.﹤0的解集吗?【设计意图】使学生掌握平移的规律及通过平移确定解析式的方法,切忌将数学学习变成了死记口决.引导学生观察关键点如何运动,使知识发生迁移,成为新的知识的生长点与固着点.本题以读图、识图为前提,本题是想让学生再次通过一次函数图象这个载体识别函数与方程、不等式之间的关系,从而会根据图象来确定方程(不等式)的解(集).个别学生可能会通过计算来确定方程的解或不等式的解集.要引导学生数形结合,将数的问题转化为形的问题,不仅能让问题简化,更能让结果准确.【活动5】14.若直线2l 的解析式为y=mx+n ,那么直线y=nx+m15.若直线2l 经过点E (0,15)和F (-15,0),你能提出什么问题或者得出什么结论?【设计意图】让学生再次加深理解k 、b 是如何影响一次函数位置的.同时一次函数的位置也决定了k 、b 的符号.使学生进一步明确一次函数解析式中k 与b 的作用.16.已知直线4:83l y x =-+与直线2:15l y x =+交于点G , 你能求出点G 的坐标吗?(见右图)【设计意图】主要渗透转化、数形结合的思想方法让学生体验利用一次函数及其图象解决问题的过程,体验函数图象信息的识别与应用过程,发展学生的形象思维能力.当学生的思路受阻的时候,教师适当的进行点拨,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考.17.已知两条直线483y x =-+和15y x =+,请直接说出不等式41583x x +≥-+的解集. 【设计意图】主要渗透转化、数形结合的思想方法以及函数与方程(组)思想方法,进一步加强学生的识图能力,引导学生学会数形结合分析问题.(四)能力提升如图,直线483y x=-+与x轴、y轴分别交于A、B两点,点D在线段OB上,将△AOD沿着直线AD折叠,使点O刚好落在直线AB上的点C处.1.你能提出哪些问题或得出结论?2.在直线AD上是否存在一点P,使PC+PB的值最小,若存在,请写出符合条件的点的坐标.若不存在,说明理由.3.在y轴上是否存在点K,使△KAC为直角三角形,若存在,请写出所有符合条件的点的坐标.若不存在,说明理由.【设计意图】复习课要想达到高效高质,必须要分层次教学,关注不同层次的学生知识技能的发展和需求.这个题的的设置主要解决学生对综合性、开放性题目有些无从下手,思维不灵活,应变能力弱等问题.通过一个折叠的问题,使抽象的性质直观化.以开放式的问题激发学生的学习兴趣、探求欲望,落实学生主体地位.让学生将本章的主要知识点串联起来,最大限度地让学生暴露问题和认知误差,及时发现和弥补教与学中的遗漏和不足,从而及时调控教学.(五)回顾总结1.课堂小结通过本节课的学习,你有哪些收获要与同学分享?你还有哪些困惑要向老师和同学请教?【设计意图】依照本节课的教学目标引导学生自己小结本节课的知识要点,强化一次函数的定义、方法、性质等基础知识.教师引导学生回忆本节课的内容,明确本节课的学习要求,同时鼓励学生大胆提出自己仍然存在的困惑,培养学生的质疑精神和反思能力.2.布置作业让学生继续围绕问题的内容进行探究,将学生的数学学习兴趣延伸到课外,让学生每节课带着问题来,又带着新的问题走.。
一次函数第一课时的教案教案标题:一次函数第一课时的教案教学目标:1. 了解一次函数的定义和特征;2. 掌握一次函数的图像、表达式和性质;3. 能够应用一次函数解决实际问题。
教学准备:1. 教师准备:教案、黑板、白板、彩色粉笔或白板笔、教学PPT等;2. 学生准备:课本、笔记本、铅笔、直尺等。
教学过程:一、导入(5分钟)1. 教师通过提问或展示一幅图片引起学生对一次函数的兴趣,激发学生思考。
2. 引导学生回顾前一节课关于函数的知识,复习函数的定义和性质。
二、讲授(20分钟)1. 教师通过示意图向学生介绍一次函数的定义和特征,强调一次函数的表达式形式为y=ax+b,其中a和b为常数,a≠0。
2. 教师通过实例向学生展示一次函数的图像和表达式之间的关系,并解释图像上的斜率和截距的含义。
3. 教师引导学生观察一次函数图像的特点,如直线、斜率、截距等,并总结一次函数的性质。
三、练习(15分钟)1. 学生个人练习:学生根据给定的一次函数表达式,画出对应的图像,并标注斜率和截距。
2. 学生小组合作练习:学生分组完成一些简单的应用题,如求解一次函数的零点、求解实际问题等。
四、讲评(10分钟)1. 教师和学生共同讨论练习中出现的问题,并解答学生的疑惑。
2. 教师对学生的练习情况进行评价,鼓励优秀表现并指出需要改进之处。
五、拓展(5分钟)1. 教师引导学生思考一次函数在实际生活中的应用,如速度、距离、成本等问题。
2. 教师提供一些拓展问题,让学生进一步思考和探索一次函数的更多应用。
六、总结(5分钟)1. 教师对本节课的内容进行总结,强调一次函数的定义、特征和性质。
2. 鼓励学生将所学知识运用到实际问题中,并提出相关问题供学生思考。
七、作业布置(5分钟)1. 布置相关的课后作业,如完成课本上的习题或设计一些实际问题。
2. 提醒学生预习下一节课的内容,做好相关准备。
教学反思:本节课通过导入、讲授、练习、讲评、拓展、总结和作业布置等环节,全面展示了一次函数的定义、特征和性质。
《一次函数》第一课时教课方案☆【概括】1、《一次函数》选自人教版义务教育教科书八年级下册;2、本节主要研究一次函数的看法,并类比于正比率函数,研究一次函数的图像和增减变化规律。
一次函数是一种最基本的初等函数,研究它的看法和图像性质,对它的函数分析式与函数图像的相互联系与转变能发挥重要作用,这是“数形联合”的思想方法的表现,它对此后进一步研究其余种类的函数拥有启迪作用。
☆【教课目的】依照以上剖析,拟订了以下三维目标:理解一次函数的看法和意义,能画出详细一次函数的图像,研究并理解一次函数的单一性和一次函数的图像所过的特别知识与技术点;认识表示函数关系的三种方法:分析法、列表法、图像法,并会用分析法表示数目关系。
1、经历由实质问题引出一次函数分析式的过程,领会数学与现实生活的联系;过程与方法2、进一步体验函数图像的画法和性质,会应用数形联合的思想剖析问题,感悟函数分析式与函数图像的相互联系与转变。
经过一次函数的看法和图像的学习,进一步形成学生利用函数的看法认识现实世界的意识和能力,培育学生研究,合作感情态度价值观学习的习惯。
并在运用数学知识解答问题的活动中获取成功的体验,成立学习的自信心。
☆【教课要点、难点】要点:一次函数的看法和一次函数图像的性质;难点:一次函数的图像及其性质。
☆【学生特色剖析】认知基础:学生以前对变量与函数、函数的看法、正比率函数及分析式、图像有了初步认识,为本节内容的学习确立了优秀的基础。
学习特色:学生处于八年级第二学期阶段,对于变量与函数、正比率函数的知识已经掌握,对它们的进一步的推行运用表现出思想活跃,有激烈的好奇心,而且拥有必定的察看总结推理能力,以及文字转变为数学的符号的能力,具备必定的数形联合思想意识。
☆【教课策略选择与设计】教法:经过设置实质问题让学生研究一次函数的一般形式,获取一次函数的概念,而后用类比的方法降低新知识的难度,促使知识之间的联系,启迪指引学生由正比率函数图像探访一次函数的图像及其规律,使学生领会到数形联合的数学思想。
第四章一次函数3 一次函数的图象第1课时一、教学目标1.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线,能熟练画出正比例函数的图象.2.能根据正比例函数的图象和表达式y=kx(k≠0)理解k>0和k<0时,函数的图象特征与增减性,培养学生数形结合的意识和能力.3.理解一次函数的代数表达式与图象之间的一一对应关系.4.掌握正比例函数的性质,并能灵活运用解答有关问题.二、教学重难点重点:能熟练画出正比例函数的图象.难点:理解函数的图象特征与增减性,掌握正比例函数的性质.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计(1)y =2πx ; (2)y =2x -5; (3)147y x =+; (4)y =8x ; (5)y =5x 2-4x +1. (6)y =(x +1)2 预设答案:(1)(2)(4)是一次函数.(1)(4)是正比例函数.问题3:若函数y =(6-3m )x +4n -4是一次函数,则m ,n 满足什么条件?若是正比例函数,则m ,n 应满足什么条件?预设答案:解:根据y =(6-3m )x +4n -4是一次函数得:6-3m ≠0,则m ≠2,n 取任何实数;若是正比例函数,得6-3m ≠0且4n -4=0, 则m ≠2,n =1. 【思考】把摩天轮上一点的高度h (m )与旋转时间t (min )之间的函数关系通过下列图形表示:教师活动:如何定义这种图形?【探究】把一个函数自变量的每一个值与对应的函数值分别作为点的横坐标和纵坐标,在直角坐标系内描出相应的点,所有这些点组成的图形叫做该函数的图象.教师活动:这是摩天轮上一点的高度h 与旋转时间t之间函数关系的图象.【例1】画出正比例函数y=2x的图象.解:列表:描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:把这些点依次连接起来,得到y=2x的图象,它是一条直线.画函数图象的步骤可以概况为三步:教师活动:这种画函数图象的方法叫做描点法.【做一做】画出正比例函数y=-3x的图象.列表:描点:连线:在所画的图象上任意取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y=-3x.教师活动:通过两个点(-1.5,4.5),(0.5,-1.5)得出结论:它们都满足关系y=-3x.正比例函数的表达式与图象是一一对应的.【议一议】(1) 满足关系式y=-3x的x,y所对应的点(x,y)都在正比例函数y=-3x的图象上吗?预设答案:都在正比例函数y=-3x的图象上.(2) 正比例函数y=-3x的图象上的点(x,y)都满足关系式y=-3x吗?预设答案:都满足.(3) 正比例函数y=kx的图象有何特点?你是怎样理解的?预设答案:都经过原点.【探究】观察上述两组正比例函数图象,说一说正比例函数y=kx的图象有何特征?特征:正比例函数y=kx的图象是一条经过原点(0,0)的直线.因此,画正比例函数图象时,只要再确定一个点,过这点与原点画直线就可以了.不同点:函数y=2x的比例系数k>0,图象经过第一、三象限;函数y=-3x的比例系数k<0,图象经过第二、四象限.【归纳】教师活动:由于两点确定一条直线,画正比例函数图象时我们只需描点(0,0)和点(1,k),连线即可.【做一做】在同一直角坐标系内画出正比例函数y=x,y=3x,12y x=-和y=-4x的图象.教师活动:这四个函数中,随着x的增大,y 的值分别如何变化?相应图象上的点的变化趋势如何?当k>0时,x增大时,y的值也增大;y随x的增大而增大.当k<0时,x增大时,y的值反而减小;y随x的增大而减小.【归纳】在正比例函数y=kx中:1. 当k>0时,y的值随着x值的增大而增大,相应图象上的点从左往右呈上升趋势;2. 当k<0时,y的值随着x值的增大而减小,相应图象上的点从左往右呈下降趋势.【想一想】正比例函数y=x和y=3x中,随着x值的增【典型例题】教师活动:教师提出问题,学生先独立思考,然后再小组交流探讨.教师板书一道例题书写过程,其余题目可由学生代表板书完成,最终教师展示答题过程.【例2】 在同一直角坐标系内画出正比例函数12y x =与13y x =-的图象,并指出随着x 值的增大,y 的值分别如何变化?解:画图:对于函数12y x =,y 的值随着x 值的增大而 增大;对于函数13y x =-,y 的值随着x 值的增大而减小.所以-6=4k,解得32k=-,所以32y x=-.当x=-4时,y=6,所以点(-4,6)在此正比例函数图象上.故选B.4.在正比例函数y=-3mx中,y随x的增大而增大,则点P(m,5)在()A.第一象限B.第二象限C.第三象限D.第四象限答案:B.解析:因为y随x的增大而增大,所以-3m>0,所以m<0,所以点P(m,5)在第二象限.故选B.5.画出函数y=-2x的图象.解:列表,描点、连线,得到y=-2x的图象如图所示:6.已知正比例函数y=mx的图象经过点(m,9),且y的值随着x值的增大而减小,求m的值.解:因为正比例函数y=mx的图象经过点(m,9)所以9=m∙m,解得m=±3.又因为y的值随着x值的增大而减小,所以m<0,故m=-3.。
八年级《一次函数》教学设计(5篇)八年级《一次函数》教学设计篇一教学目标:(知识与技能,过程与方法,情感态度价值观)(一)教学知识点1、一元一次不等式与一次函数的关系、2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较、(二)能力训练要求1、通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识、2、训练大家能利用数学知识去解决实际问题的能力、(三)情感与价值观要求体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用、教学重点了解一元一次不等式与一次函数之间的关系、教学难点自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答、教学过程创设情境,导入课题,展示教学目标1、张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。
你能帮帮张大爷选择一种电话卡吗?2、展示学习目标:(1)、理解一次函数图象与一元一次不等式的关系。
(2)、能够用图像法解一元一次不等式。
(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。
积极思考,尝试回答问题,导出本节课题。
阅读学习目标,明确探究方向。
从生活实例出发,引起学生的好奇心,激发学生学习兴趣学生自主研学指出探究方向,巡回指导学生,答疑解惑探究一:一元一次不等式与一次函数的关系。
问题1:结合函数y=2x-5的图象,观察图象回答下列问题:(1) x取何值时,2x-5=0?(2) x取哪些值时,2x-50?(3) x取哪些值时,2x-50?(4) x取哪些值时,2x-53?问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y1 ?你是怎样求解的?与同伴交流让每个学生都投入到探究中来养成自主学习习惯小组合作互学巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。
一次函数的图象教学设计(第一课时)一、教学设计思想本节课共两课时,第1课时本节交代了函数图象的概念和作图的一般步骤,目的是为后继学习反比例函数、二次函数的图像作必要的知识准备。
根据教学目标,结合学生心理特点,这节课采用在教师引导下,学生主动探索发现的教学方法.即教师创设问题情景,引导学生观察、比较、自学、思考并展开讨论,使学生作为学习主体参与知识发生、发展的全过程,体验揭示规律,发现真理的乐趣,从而产生巨大的内驱力,提高课堂教学效率,充分发挥教师主导作用和学生的主体作用.二、教学目标知识与技能1.总结作一次函数图像的一般步骤,能熟练作出一次函数图像.2.总结归纳出一次函数的性质———k>0或k<0时图像变化的情况.过程与方法经历作图过程,归纳总结作作函数图像的一般步骤,发展总结概括能力,培养数形结合的意识.情感态度与价值观加强新旧知识的联系,促进新的认知结构的建构.三、教学重点1.能熟练地作出一次函数的图象.2.归纳作函数图象的一般步骤.3.理解一次函数的代数表达式与图象之间的对应关系.四、教学难点理解一次函数的代数表达式与图象之间的对应关系.五、教学方法讲、议结合法.六、教具准备投影片两张:第一张:补充练习(§6.3.1 A );第二张:补充练习(§6.3.1 B).七、教学过程Ⅰ.导入新课[师]上节课我们学习了一次函数及正比例函数的概念,正比例函数与一次函数的关系,并能根据已知信息列出x与y的函数关系式,本节课我们来研究一下一次函数的图象及性质.Ⅱ.讲授新课 一、函数图象的概念[师]要研究一次函数的图象,首先应知道什么叫图象?把一个函数的自变量x 与对应的因变量y 的值作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph ). 假设在代数表达式y =2x 中,自变量x 取1时,对应的因变量y =2,则我们可在直角坐标系内或描出表示(1,2)的点,再给x 的另一个值,对应又一个y ,又可知直角坐标系内描出一个点,所有这些点组成的图形叫该函数y =2x 的图象.由此看来,函数图象是满足函数表达式的所有点的集合.那么应如何作函数的图象呢? 二、作一次函数的图象 [例1]作出一次函数y =21x +1的图象. [师]根据图象的定义,需要先找点.所以要先列表,找满足条件的点,再描点,连线. 解:列表x … -2 -1 0 1 2 …y =21x +1 021 123 2 …描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点. 连线:把这些点依次连接起来,得到y =21x +1的图象如下,它是一条直线.[师]从刚才我们作图的情况来总结一下,作一次函数的图象有哪些步骤呢? [生]①列表;②描点;③连线. 三、做一做(1)作出一次函数y =-2x +5的图象.(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足关系式y =-2x +5.[生]列表x …-2 -1 0 1 2 …y=-2x+5 …9 7 5 3 1 …描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:把这些点依次连接起来,得到y=-2x+5的图象,它是一条直线.图象如下:在图象上找点A(3,-1),B(4,-3)当x=3时,y=-2×3+5=-1.当x=4时,y=-2×4+5=-3.∴(3,-1),(4,-3)满足关系式y=-2x+5.四、议一议(1)满足关系式y=-2x+5的x、y所对应的点(x,y)都在一次函数y=-2x+5的图象上吗?(2)一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5吗?(3)一次函数y=kx+b的图象有什么特点?[师]请大家分组讨论,然后回答.[生]满足关系式y=-2x+5的x,y所对应的点(x,y)都在一次函数y=-2x+5的图象上.(2)一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5.[师]由此看来,满足函数关系式y=-2x+5的x,y所对应的点(x,y)都在一次函数y= -2x+5的图象上;反过来,一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5.所以,一次函数的代数表达式与图象是一一对应的.即满足一次函数的代数表达式的点在图象上,图象上的每一点的横坐标x,纵坐标y都满足一次函数的代数表达式.(3)[生]一次函数的图象是一条直线.[师]非常正确.一次函数的图象是一条直线.由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了,一次函数y =kx +b 的图象也称为直线y =kx +b .Ⅲ.课堂练习 分别作出一次函数y =31x 与y =-3x +9的图象. [师]根据刚才的讨论可知,我们在画一次函数的图象时,只要确定两个点就可以了. [生]作函数y =31x 的图象时,找点(3,1),(6,2)图象如下.作函数y =-3x +9的图象时,找点(1,6),(2,3) 图象如下:补充练习投影片(§6.3.1A )(1)作出一次函数y =-x +21的图象. (2)在所作的图象上取几个点,找出它们的坐标,并验证其是否都满足关系式y =-x +21. [生](1)作一次函数y =-x +21的图象时,取点(0, 21)和(1,-21),然后过这两点作直线即可.图象如下:(2)在图象上取点A (23,-1),B (-1,23) 当x =23时,y =-23+ 21=-1 当x =-1时,y =1+21=23∴A 、B 两点的坐标都满足关系式y =-x +21. 投影片(§6.3.1 B ) (1)作出一次函数y =4x +3的图象;(2)判断下列各对数是不是满足关系式y =4x +3,如果是,请验证一下以这些数对为坐标的点是否在你所作出的函数图象上. (0,3),(-1,-1),(21,5),(1,7),(-23,-3) [生]解:(1)作一次函数y =4x +3的图象时,找点(0,3),(1,7),然后过这两点作直线即可.图象如下:(2)当x =0时,y =4×0+3=3; 当x =-1时,y =4×(-1)+3=-1; 当x =21时,y =4×21+3=5; 当x =1时,y =4×1+3=7;当x =-23时,y =4×(-23)+3=-3. ∴每对数都满足关系式y =4x +3.由前面的议一议可知,以这些数对为坐标的点在所作的函数图象上. Ⅳ.课时小结本节课主要学习了以下内容: 1.函数图象的概念;2.作一次函数图象的步骤以及熟练地作出一次函数的图象,并能验证某些数对是否在函数图象上. 3.明确一次函数的图象是一条直线,因此在作一次函数的图象时,不需要列表,只要确定两点就可以了.Ⅴ.课后作业 习题6.3 Ⅵ.活动与探究1.已知函数y =(m -2)x 552+-m m+m -4,问当m 为何值时,它是一次函数?解:根据一次函数的定义,有⎩⎨⎧≠-=+-021552m m m 解得⎩⎨⎧≠==241m m m 或∴m =1或m =42.如果y +3与x +2成正比例,且x =3时,y =7. ①写出y 与x 之间的函数关系式; ②求当x =-1时,y 的值; ③求当y =0时,x 的值.分析:①y +3与x +2成正比例,就是y +3=k ·(x +2),根据x =3时,y =7,求k 的值,从而确定y 与x 之间的函数关系式.②把x =-1代入所求函数关系式,求出y 的值. ③把y =0代入函数关系式,求出x 的值. 解:①∵y +3与x +2成正比例 ∴y +3=k (x +2)把x =3,y =7代入得:7+3=k (3+2) ∴k =2,∴y =2x +1②把x =-1代入y =2x +1中,得y =-2+1=-1③把y =0代入y =2x +1中,得 0=2x +1,∴x =-21. 说明:若y 与x 成一次函数关系式,那么函数关系式要写成y =kx +b (k ≠0)的形式. 3.如果y =mx 82-m是正比例函数,而且对于它的每一组非零的对应值(x ,y )有xy <0,求m 的值.分析:按正比例函数y =kx (k ≠0)中对于k 及x 的指数的要求决定m 的值. 解:根据题意得,y =mx 82-m 是正比例函数,故有:m 2-8=1且m ≠0即m =3或m =-3又∵xy <0,∴x ,y 是异号. ∴m =xy<0 ∴m =3不合题意,舍去. ∴m =-3.常见错误:忽略m ≠0的要求,在解题过程不写这一条件. 4.已知y +b 与x +a (a ,b 是常数)成正比例. 求证:y 是x 的一次函数.分析:由y +b 与x +a 成正比例,设立解析式,分析此解析式为x 的一次函数. 解:∵y +b 与x +a 成正比例 ∴可设y +b =k (x +a )(k ≠0) 整理,得y =kx +ka -b =kx +(ka -b ) ∵k ,a ,b 都是常数. ∴ka -b 也是常数. 又∵k ≠0∴y 是x 的一次函数.常见错误:整理得到y =kx +ka -b 时不会把ka -b 看作一个整式.说明:在叙述函数的,一定要说清楚谁是谁的什么名称函数,否则容易发生混淆现象.如本题中,y +b 是x +a 的正比例这个说法是正确的,同时,y 是x 的一次函数的说法也是正确的.八、板书设计§6.3.1 一次函数的图象(一)一、函数图象的概念二、如何作一次函数的图象归纳步骤三、做一做(作一次函数的图象)四、议一议(函数y=-2x+5的图象与满足y=-2x+5的x,y所对应的点(x,y)之间的关系)五、课堂练习六、课时小节七、课后作业。
《一次函数》教案(共5则)第一篇:《一次函数》教案《一次函数》教案马才义一.教学目标1、经历一般规律的探索过程,发展学生的抽象思维能力。
2、理解一次函数和正比例函数的概念,能根据所给的条件写出简单的一次函数表达式,发展学生的数学应用能力。
教学重点、难点重点:理解一次函数和正比例函数的概念。
难点:能根据所给的条件写出简单的一次函数表达式。
二。
教学过程(一)问题的提出题的提出饮料每箱12瓶,售价55元,求买饮料的总价Y(元)与所买瓶数X(瓶)的关系式。
2 某弹簧的自然长度为3厘米,在弹簧限度内,所挂物体的质量X每增加12千克,弹簧长度Y增加0。
5厘米。
(1)计算所挂物体的质量为1千克2千克3千克4千克5千克、、、、、、X千克弹簧长度,并填入下表;X/千克 0 1 2 3 4 5、、、X Y/厘米(2)你能写出X与Y的函数之间的关系吗?(二)做一做某汽车油箱中原有汽油100升,汽车每行驶50千米耗油9升。
(1)完成下表路程X/千米 0 50 100 150 200 300、、、余油Y/升(2)你能写出X与Y的函数之间的关系吗?说明:各题中的X 都有一定的限制。
问:观察上述关系式的特点,总结规律。
(三)一次函数定义、正比例函数的定义若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)则称y是x的一次函数(x是自变量,y是因变量)。
特别地,当b=0时,称y是x的正比例函数。
(四)讲例例1写出下列各题中x与y之间的关系式,并判断y是否为x一次函数?是否为正比例函数?(1)汽车以60千米/时的速度行使,行使路程y(千米)与行使时间x(时)之间的关系。
(2)圆的面积y (cm2)与它的半径x(cm)之间的关系。
(3)一棵树现高50cm,每个月长高2cm,x月后这棵树的高度为y(cm)。
分析:本题较为简单,由学生完成。
例2 我国现行个人工资、薪金所得税征收办法规定:月收入不超过800元的部分不收税;月收入超过800元但不超过1300元的部分征收5%的所得税……如某人月收入1160元,他应缴个人工资、薪金所得税为(1160—800)*5%=18(元)。
八年级数学下教学设计
一.授课课题: 14.2.2 一次函数(第1课时)
二.教学内容及其分析
(一) 内容:一次函数的概念,一次函数与正比例函数的关系.
(二) 分析:在对函数概念初步讨论后,本节课主要通过一些具体的实例来学习一次函数的概念、解析式的结构以及与正比例函数的关系,本节课的学习为后面讨论一次函数的性质奠定了基础.本节的教学重点是一次函数解析式的结构特点,这为后面的学习起着重要的作用,而一次函数与正比例函数关系则是本节课的教学难点.
三.教学目标及其分析
(一)目标
1.握一次函数解析式的特点及意义.
2.知道一次函数与正比例函数的关系.
3.过类比的方法学习一次函数,体会数学研究方法的多样性.
4.提高分析概括、总结归纳能力.
(二)分析
1. 本节课主要通过具体的实例来得出一次函数的概念,此概念重在解析式的形式上,在讲授过程中应多举例;
2.在得出了一次函数的概念后,让学生观察一次函数与前面刚学习的正比例函数在形式上有什么不同?它们之间有什么关系?
3.由于函数的概念是一个很抽象的概念,在讲授过程中主要采用从具体到抽象的学习模式得出一次函数的概念,然后再举例子将抽
象的概念具体化,这样安排的目的是让学生更容易接受.
四.教学问题分析
本节课主要是学习一次函数的概念,给出一个函数关系式,学生只要能判断它是否是一次函数就可以了.学生在学习过程中对一次函数的解析式的结构特点的认识上可能会出问题(主要是对字母k与b 的理解),因此,在教学过程中应多举例.
五.信息技术使用条件
本节课主要采用合作─探究,总结─归纳的教学方法进行有效的课堂教学.
六.教学过程设计
(一) 基本流程:
(二) 教学情景
提出问题,创设情境
问题:某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y•与x的关系.
设计意图:此问题是一个很形象的变化问题,并且此问题得到的解析式不是上节课学过的正比例函数,促使学生对函数特征的思考.
分析:y随x变化的规律是,从大本营向上当海拔每升高1km时,气温从5℃就减少6℃,那么海拔增加xkm时,气温从5℃减少6x℃.因此y与x的函数关系式为:
y=5-6x (x≥0)
当然,这个函数也可表示为:
y=-6x+5 (x≥0)
当登山队员由大本营向上登高0.5km时,他们所在位置气温就是x=0.5时函数y=-6x+5的值,即y=-6×0.5+5=2(℃).这个函数是正比例函数吗?它与我们上节所学的正比例函数有何不同?这种形式的函数还会有吗?我们这节课将学习这些问题.概念的形成
1.我们先来研究下列变量间的对应关系可用怎样的函数表示? (1)有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t (单位:℃)有关,即C•的值约是t的7倍与35的差.
(2)一种计算成年人标准体重G(单位:千克)的方法是,以厘米为单位量出身高值h,再减常数105,所得差是G的值.
(3)某城市的市内电话的月收费额y(单位:元)包括:月租费22元,拨打电话x分的计时费(按0.1元/分收取).(4)把一个长10cm,宽5cm的长方形的长减少xcm,宽不变,长方形的面积y(单位:cm2)随x的值而变化.
设计意图:这4个小问题表示变量的字母虽然不同,但结构相同,进一步揭示了函数的本质在于对变量间对应关系的反映,而与所取符号无关.
逐一出示题目并由学生完成.此处不必对自变量的取值范围作深入追究,重在正确得出关系式.
[生]通过思考分析,可以得到这些问题的函数解析式分别为:
(1) C=7t-35. (2) G=h-105.
(3) y=0.1x+22. (4) y=-5x+50.
2.思考:上面这些函数有什么共同点?
设计意图:在探索过程中,发展抽象思维及概括能力.理解抽象的符号揭示的是一般规律.
引导学生自己得出:它们的形式与y=-6x+15一样,函数的形式都是自变量x的k倍与一个常数的和.
[师]不错!确实如此,如果我们用b来表示这个常数的话.•这些函数形式就可以写成:
y=kx+b(k≠0)
3.抽取共性,形成概念
一般地,形如y=kx+b(k、b是常数,k≠0•)的函数,•叫做一次函数(•linearfunction).当b=0时,y=kx+b即y=kx.所以说正比例函数是一种特殊的一次函数.
4.回顾反思,追求统一
本节涉及的函数y=5-6x,C=7t-35, G=h-105, y=0.1x+22,y=-5x+50都不符合正比例函数的结构,都不是正比例函数,而是一次函数.那么像y=2x,y=1
x这些正比例函数是否符合一次函数的结构呢?在怎样
3
的情况下符合?这说明了什么?
设计意图:让学生知道一次函数与正比例函数的关系.
5.达成共识,完善认知
学生通过讨论达成共识:当b=0时, y=k x+b即y=k x,所以正比例函数其实是一种特殊的一次函数.
概念的辨析
教科书第114页练习:
1.下列函数中哪些是一次函数,哪些又是正比例函数?
(1)y=-8x; (2)y=8
x
-;
(3)y=5x2+6; (3)y=-0.5x-1.
设计意图:对解析式结构的分析与比较,加深对已有知识的理解,促进认知结构的完善.
特别注意:回答哪些是一次函数时需包含正比例函数, 正比例函数是特殊的一次函数.
应用与问题解决
已知函数
28
(3)3
m
y m x-
=-+
是一次函数,求其解析式
1、在一次函数y=-3x-5中,k =___,b =____.
2、若函数y=(m-3)x+2-m是一次函数,则m______ .
3、在一次函数y=-2x+3中,当x=3时,y=___ ;当x=____时,y=5。
4.若函数y=mx-(4m-4)的图象过原点,则m=___,此时函数是 ______函数.若函数y=mx-(4m-4)的图象经过(1,3)点,则m=______,此时函数是______函数.
5.仓库内原有粉笔400盒,如果每个星期领出36盒,则仓库内余下的粉笔盒数Q与星期数t之间的函数关系式是________________,它是__________函数。
目标检测
1.已知函数y=(2-m)x+2m-3.求当m为何值时,
(1)此函数为正比例函数?
(2)此函数为一次函数?
2、梯形的上底长x,下底长15,高8;
(1)写出梯形的面积y与上底x的关系式,是一次函数吗?
(2)当x每增加1时, y是如何变化的?
(3)当x=8时, y等于多少?此时y的意义是什么?
x
8
15
3、一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2 m/s,到达坡底时,小球速度达到40m/s.
(1)求小球速度v(m/s )与时间t(s)之间的函数解析式;(2)求t的取值范围;
(3)求3.5 s时,小球的速度;
(4)当t为何值时,小球的速度为16m/s.
课时小结
1.这节课我们主要学习了什么知识?
2.现在你知道什么样的函数是一次函数了吗?
3.一次函数与正比例函数有什么关系?
配餐作业(参看学案)
七.课后反思。