增压器匹配
- 格式:ppt
- 大小:1.87 MB
- 文档页数:31
第1章 增压器及其进气增压系统的结构和原理1.1概述1.1.1 发动机进气增压技术简介近年来,发动机进气增压技术已经成为国内外内燃机发展的重要方向之一。
这是因为发动机进气增压技术具有许多优点:1.能够提高发动机的升功率——提高了发动机的动力性;2.能够降低发动机比油耗和比质量——提高了发动机经济性;3.能够减轻发动机的排放污染——提高了发动机的排放性;4.能够扩大发动机变型系列等。
当前,由于汽车一方面在向高速、重载方向发展,对发动机的动力性和燃料经济性提出了更高的要求;另一方面发动机尾气的排放污染,各国排放法规的日益苛刻,使人们极力寻求减小大气污染的措施。
这种种方面的原因,使汽车发动机进气增压技术获得迅速发展,其中以美国、德国、瑞典等国家发展较快。
在美国,10L以上排量的柴油机几乎全部采用增压技术,小排量柴油机和汽油机采用增压技术也占相当大的比重。
欧洲和日本近年来增压发动机也发展迅速,特别是柴油机。
发动机增压方法很多,其中涡轮增压器在技术上最为成熟,并且有很多突出的优点,因此涡轮增压成为汽车发动机增压的主要类型而获得广泛应用。
此外,在研究和发展涡轮增压系统的同时,其他增压系统也相继有所发展,例如气波增压系统。
本指南主要讲述涡轮增压系统,其他增压系统仅简单介绍。
1.1.2发动机进气增压的基本原理(1)发动机进气增压的基本理论进气增压是提高发动机升功率的有效方法之一。
所谓增压器,就是利用专门的装置(增压器)将空气或者可燃混合气预先进行压缩,再送入发动机汽缸的过程。
虽然汽缸的工作容积不变,但因增压后,每个循环进入汽缸的新气密度增大,使实际充气量增加,这样可以向缸内喷入更多的燃料而获得充分燃烧,因此提高了发动机的升功率和总输出功率。
一般来讲,增压压力愈高,充入汽缸的新气密度愈大,发出的功率也就愈高。
增压可以提高发动机的功率,但增压器本身所消耗的功率和增压器效率直接影响发动机的有效功率和燃料经济性。
机械增压器要消耗一部分曲轴功,因此其燃料消耗一般高于非增压的发动机。
1、涡轮增压器与发动机的匹配概述总的来说,发动机与增压器的匹配有三个方面,即发动机与压气机匹配、发动机与涡轮的匹配和压气机与涡轮的匹配。
细分的话,应该包括:增压器的压气机、增压器的废气涡轮、发动机的排气管系统、发动机的进气系统、中冷器、空气滤清器、消音器、进排气配气相位、运转工况参数、环境参数等。
2、发动机对压气机的要求a、发动机对压气机的要求:1)、压气机不但要求达到预定的压比,而且要具有高的效率。
即压气机效率越高,在同一增压压力时,空气温度越低,从而得到的增压空气的密度就越高,增压效果就越好。
2)、不同用途的发动机对压气机特性的要求也不同。
对于发电用的固定式发动机及按螺旋桨特性工作的船用发动机一般的压气机特性均能满足要求,而车用发动机由于转速范围宽广,故就要求相应的压气机特性具有宽广的流量范围,而且要有较宽的高效区。
怎样评价发动机与压气机的匹配:1)、需要经试验得出的压气机特性曲线,同时要有发动机各转速下耗气特性曲线,将发动机的耗气特性曲线与压气机的特性曲线相叠合就可以看出匹配情况。
2)、发动机的特性曲线应穿过压气机的高效区,而且最好使发动机的运行线与压气机的高效率的等效率圈相平行。
对于车用发动机,则要求最大扭矩点正好位于压气机最高效率区附近。
如果发动机运行线整个位于压气机特性右侧,则表明所选的压气机流量偏小,使联合工作时压气机处于低效区工作,在这种情况下就要重选较大型号的增压器,或加大压气机通流部分尺寸,使压气机特性向右移动。
如果向反,发动机运行线整个偏于压气机特性左侧,则一方面发动机低转速时压气机效率降低,同时有可能出现喘振。
在这种情况下就要重选择较小型号的增压器或减小压气机通流部分尺寸,使压气机特性向左移动。
3)、发动机的气耗特性线离开压气机喘振线有一定的距离。
否则如发动机耗气特性曲线离喘振线太近或甚至与之相交的话,在联合工作时就可能出现喘振。
一般,要求发动机低转速的耗气特性曲线离开压气机喘振线的距离也即所谓的喘振裕度约为10%Gcmin(喘振流量)。
发动机增压器匹配计算通常要考虑两方面的因素,一是空气流量匹配,再者就是增压压力匹配;前者保证了增压器出口流量大于发动机增压后所需流量,后者则保证增压器出口压力大于发动机正常吸气时的进气压力(即大气压力)。
发动机进气流量公式 111Q Q N εη=⋅⋅⋅ε过量充气系数η1 充气效率 N1 发动机转数 Q 发动机工作容积增压器出口流量公式 22222Q V N η=⋅⋅⋅ V2 增压器每转排量 N2 增压器转速 η2 增压器容积效率21Q Q ≥122223000.7 5.1521 1.294.80.8N V i N Q ηεη⋅⋅⨯⨯===⋅⋅⨯⨯ 由上述公式计算出来的增压传动比范围为0~5.15,但是,范围太大,本项目最终要找到一个相对合适的传动比,所以这个范围没有什么参考价值;我们采用以下方法来寻找合适的传动比。
先介绍一个参数:增压比——增压后增压器排气口压力与自然进气状态下进气口压力之比(即大气压力),增压比小于1.4为低增压,介于1.4到2.0为中增压,高于2.0为高增压;根据上述定义,增压比在数值上与增压器排气口压力相等。
由于一般的增压发动机增压比差不多都选择中增压,设置三组增压器排气口压力值,分别为1.3、1.5、2.0(单位bar )由下列公式进行计算:221112N V P V N ⋅=⋅⋅(经验公式,用来估算增压器排气口压力) N2 增压器转速 V2 增压器每转排量 N1 发动机转速 V1 发动机排量 P1 增压器出口压力 1P H P R T I εη⋅⋅≈⋅⋅ P ε 发动机平均有效压力 η 内燃机有效效率 I 空燃比 R 气体常数0.287KJ/(kg*k) H 燃料低热值 44000KJ/kg1e 30c n V P P ετ⋅⋅⋅=⋅ e P 发动机有效功率 C 气缸数n 转速 τ冲程数tq T 有效转矩对上述公式进行如下处理令z=-321102V V ⋅⋅=0.00158,m=H R T I η⋅⋅⋅=5.28655533,y=33010π⋅=9550, G=0.1(单位换算系30e tq P T n π=⋅数),K=0.2(增压器消耗率)e P =m ×z ×n × 1P ×G ×(1-K )tq T =m ×z ×y × 1P ×G ×(1-K )将上述公式带入数据,通过Excel 表格,计算出相应的结果,并生成折线图,做出该发动机理论速度特性,完成理论计算:以上是以上以上为数据参考,结合发动机仿真,在上述数据范围内寻找合适的传动比作为结果。
涡轮增压汽油机匹配计算及性能预测涡轮增压汽油机是一种采用涡轮增压器提高气缸进气压力的汽油机。
它具有高功率、高扭矩、低油耗、低废气排放等优点,因此广泛应用于高性能汽车、赛车以及航空航天领域。
涡轮增压汽油机的匹配计算是设计高性能发动机的关键之一,本文将探讨涡轮增压汽油机的匹配计算及性能预测。
涡轮增压汽油机的匹配计算可分为三个步骤:参数选择、涡轮增压器匹配和喷油器匹配。
第一步骤是参数选择,需要确定涡轮增压汽油机的基本参数,包括气缸数、缸径、行程、压缩比、气门数量和排量等。
这些参数将直接影响发动机性能及涡轮增压器选择。
第二步骤是涡轮增压器匹配,需要根据发动机参数选择合适的涡轮增压器。
涡轮增压器的主要参数包括压缩比、进出口直径、转子直径和转速等。
选取合适的涡轮增压器可使发动机性能得到最大化,同时也需要考虑选用涡轮增压器的成本、重量和可靠性等因素。
第三步骤是喷油器匹配,需要根据发动机的最大输出功率和最大输出扭矩来计算出所需的燃油量和喷油器喷油量。
喷油器的选择需要考虑油品质量、喷雾效果、喷油形状和喷油压力等参数,以确保发动机能够稳定运行。
涡轮增压汽油机的性能预测主要涉及功率、扭矩、燃油消耗量、废气排放量等方面的预测。
常用方法包括流动模拟计算和试验验证两种。
流动模拟计算主要采用CFD(Computational Fluid Dynamics)软件,计算出涡轮增压器、进气道和排气道等部位流场分布、压力分布和温度分布等参数,进而预测出发动机的性能参数。
试验验证则是采用实验方法测量涡轮增压汽油机的关键性能参数,包括功率、扭矩、燃油消耗量、废气排放量等。
试验流程繁琐,成本较高,但是结果更加精确可靠。
总之,涡轮增压汽油机匹配计算及性能预测是设计高性能发动机必不可少的环节。
通过合理选取涡轮增压器、喷油器等部件并结合合适的流动模拟计算和试验验证方法可提高发动机性能,同时也能降低成本和优化设计。
另外,涡轮增压汽油机在匹配计算和性能预测过程中,还需要考虑一些限制因素,如冷却、机油供应、噪声和振动等。