车用发动机与涡轮增压器匹配
- 格式:docx
- 大小:25.53 KB
- 文档页数:5
废气涡轮增压与发动机匹配的理论计算研究随着工业发展的不断深入,涡轮增压技术的应用在发动机的领域中日益重要,特别是在柴油发动机中。
涡轮增压可以提高发动机的动力和效率,使发动机可以在较低的温度和气压条件下运行,减少污染物的排放。
特别是在使用涡轮增压的柴油发动机中,匹配发动机和涡轮增压的性能是很重要的。
本文旨在通过理论计算探讨废气涡轮增压及发动机匹配的理论计算研究。
涡轮增压技术最常用的是柴油发动机,它们均采用通用的方法,即使用增压器将空气压缩到一定的比例,以提高气体的温度和压力,从而提高发动机的压燃比。
增压器是通过旋转叶片抽送空气的设备,通常涡轮增压器可分为两类:固定增压器和变动增压器。
固定增压器可以根据发动机的不同额定负荷下的不同转速,空气入口前压力保持相对稳定,而变动增压器可以根据发动机的负荷及运行转速调节入口前压力,以满足不同工况下发动机的需要。
在相同工况下,涡轮增压器的负荷调节范围通常比固定增压器小得多,使发动机的特性更稳定。
涡轮增压器的设计具有若干特征,如压气机的排量、增压比、转子形状和材料等,这些特征是影响涡轮增压器性能的主要因素,涡轮增压器的性能受其影响,这也是决定涡轮增压器与发动机性能匹配的关键。
涡轮增压及发动机相互匹配设计,是一种基于发动机参数、系统参数、变量参数等进行计算的一种方法。
设计发动机涡轮增压系统时,首先要考虑增压器(涡轮增压器)与发动机之间的刚度匹配,以保证涡轮增压器的转速能满足发动机的转速要求,并且能够有效地调节涡轮增压器的转速、压缩比等参数,使发动机的性能得到改善。
涡轮增压系统的涡轮和发动机的转速有一定的相关性,如果涡轮转速太低或太高,就会使发动机的性能受到影响,发动机的整体性能因此受到影响,涡轮转速过高会使发动机运行时出现过载现象,并降低发动机的燃油效率与动力性;涡轮转速过低会导致发动机怠速下的燃油效率不高,而且发动机全过程的动力性也会下降。
另外,涡轮增压系统中的压气机压力比也与发动机的性能有关,正常的涡轮增压系统中,压气机压力比一般为2~2.2,当压气机压力比太低或太高时,都会对发动机的性能产生负面影响,当压气机压力比过高时,会使发动机在某些工况出现过载情况,燃油效率也会稍低,而当压力比过低时,发动机性能就会受到影响,全过程分配率也会降低。
废气涡轮增压与发动机匹配的理论计算研究废气涡轮增压是一种利用发动机废气能量来提高发动机进气压力和排气量的技术。
它通过在发动机排气系统中增加一个涡轮增压器,将废气能量转化为机械能,驱动涡轮增压器的涡轮,使其旋转并带动压气机,将大量的空气压缩后送入发动机,提高了空气密度和进气压力,从而增加了发动机的输出功率和扭矩。
废气涡轮增压器与发动机之间的匹配是提高发动机性能和效率的关键。
好的匹配能够确保涡轮增压器和发动机的最优工作状态,最大限度地提高增压效果和发动机的输出性能。
因此,进行废气涡轮增压与发动机匹配的理论计算研究非常重要。
首先,需要进行发动机的性能参数测量和数据分析,包括发动机的排气量、气缸数、气缸直径和冲程等。
这些参数将决定涡轮增压器的尺寸和特性,以及增压器的选择范围。
其次,需要确定涡轮增压器的性能参数,包括涡轮增压器的压气机和涡轮的尺寸、叶片数目、进出口面积等。
这些参数将决定涡轮增压器的增压效果和压气机的压缩效率,从而影响发动机的输出性能。
接下来,需要进行涡轮增压器与发动机的匹配计算。
这包括气缸压力比、进气温度和进气流量等的计算,以确定涡轮增压器的选型和工作工况。
基于涡轮增压器的性能参数和发动机的性能需求,可以通过计算模型和实验数据,确定最佳的涡轮增压器尺寸和特性。
最后,还需要进行增压系统的流动仿真和热力学分析,以评估涡轮增压器的增压效率和热力学性能。
这些分析可以提供理论基础和实验指导,优化涡轮增压器和发动机的匹配,进一步提高发动机的性能和效率。
总之,废气涡轮增压与发动机匹配的理论计算研究是一项复杂而重要的工作。
它能够为涡轮增压器和发动机的设计优化提供理论指导和技术支持,为发动机性能的提升和排放的减少作出贡献。
1、涡轮增压器与发动机的匹配概述总的来说,发动机与增压器的匹配有三个方面,即发动机与压气机匹配、发动机与涡轮的匹配和压气机与涡轮的匹配。
细分的话,应该包括:增压器的压气机、增压器的废气涡轮、发动机的排气管系统、发动机的进气系统、中冷器、空气滤清器、消音器、进排气配气相位、运转工况参数、环境参数等。
2、发动机对压气机的要求a、发动机对压气机的要求:1)、压气机不但要求达到预定的压比,而且要具有高的效率。
即压气机效率越高,在同一增压压力时,空气温度越低,从而得到的增压空气的密度就越高,增压效果就越好。
2)、不同用途的发动机对压气机特性的要求也不同。
对于发电用的固定式发动机及按螺旋桨特性工作的船用发动机一般的压气机特性均能满足要求,而车用发动机由于转速范围宽广,故就要求相应的压气机特性具有宽广的流量范围,而且要有较宽的高效区。
怎样评价发动机与压气机的匹配:1)、需要经试验得出的压气机特性曲线,同时要有发动机各转速下耗气特性曲线,将发动机的耗气特性曲线与压气机的特性曲线相叠合就可以看出匹配情况。
2)、发动机的特性曲线应穿过压气机的高效区,而且最好使发动机的运行线与压气机的高效率的等效率圈相平行。
对于车用发动机,则要求最大扭矩点正好位于压气机最高效率区附近。
如果发动机运行线整个位于压气机特性右侧,则表明所选的压气机流量偏小,使联合工作时压气机处于低效区工作,在这种情况下就要重选较大型号的增压器,或加大压气机通流部分尺寸,使压气机特性向右移动。
如果向反,发动机运行线整个偏于压气机特性左侧,则一方面发动机低转速时压气机效率降低,同时有可能出现喘振。
在这种情况下就要重选择较小型号的增压器或减小压气机通流部分尺寸,使压气机特性向左移动。
3)、发动机的气耗特性线离开压气机喘振线有一定的距离。
否则如发动机耗气特性曲线离喘振线太近或甚至与之相交的话,在联合工作时就可能出现喘振。
一般,要求发动机低转速的耗气特性曲线离开压气机喘振线的距离也即所谓的喘振裕度约为10%Gcmin(喘振流量)。
- 55 -工 业 技 术0 引言涡轮增压器技术是提高发动机效率、降低燃油消耗、减少废气排放的有效手段。
增压发动机在减小排量的情况下通过提升进气压力能够使相同排量的发动机动力性能提升,同时增压发动机的燃油经济性与自然吸气的发动机相比有所提升。
根据整车车型动力性、经济性的目标要求,该文设计开发了节能高效的涡轮增压发动机。
1 发动机匹配目标的确定影响增压发动机性能的设计开发内容包括控制系统的标定、进气歧管总成及排气歧管总成的走向、整车进气系统压降和排气系统背压等,但是涡轮增压器的匹配是否优良是最为关键的[1]。
涡轮增压器的匹配结果直接影响燃油经济性和发动机的动力性能(功率、扭矩)。
增压器的匹配内容主要包括方案匹配和性能匹配。
1.1 发动机设计目标1.1.1 发动机设计目标参数确定根据整车目标的确定,要求发动机有很好的低速扭矩和中速中负荷的燃油经济性[2]。
具体设计开发的技术目标参数见表1。
1.1.2 确定压缩比该款发动机为汽油发动机,发动机和涡轮增压器匹配的关键主要避免爆震的产生,所以要控制好发动机排气温度、进气压力、增压器转速范围。
由于增压后排温易升高,所以增压发动机的压缩比要比自然吸气发动机的低,保证燃烧稳定性。
通过对比研究最后确定为压缩比为9∶1。
1.1.3 确定中冷技术由于增加发动机提升了进气的压力,导致进气温度的升高,为了保证燃烧的稳定性,必须采用冷却系统将进气温度降下来,同时对发动机的动力性、经济性均有提高,经过研究确定采用空对空中冷器冷却增压后的空气温度。
1.1.4 确定涡轮机的叶片大小涡轮机的大小直接影响了整车的使用性能,影响发动机随油门提升扭矩的 响应速度,由于小涡轮质量轻,低速响应性较好,但这可能要损失高速段的动力性。
通过对于匹配目标的研究确定选择小涡轮增压器进行匹配。
2 涡轮增压器匹配方案确定2.1 涡轮增压器匹配方案选择为了保证涡轮增压器匹配的合理性,确定了3款涡轮增压器进行匹配选择,并统一进行编号,具体方案见表2。
第五章柴油机与涡轮增压器的匹配山东大学学院能源与动力工程学院能源与动力工程第五章柴油机与涡轮增压器的匹配本章的主要教学内容:1.增压特性匹配及联合运行线的调节2.增压柴油机的热负荷及解决途径3.增压柴油机的机械负荷及解决途径4.改善增压柴油机低工况及瞬态特性的途径第五章柴油机与涡轮增压器的匹配教学目的与要求:要求比较系统地掌握:增压特性匹配及联合运行线的调节;增压柴油机的热负荷及解决途径;增压柴油机的机械负荷及解决途径;改善增压柴油机低工况及瞬态特性的途径。
5.1 增压特性匹配及联合运行线的调节在压气机特性曲线上,将该工况下以增压比和空气流量表征的增压器和柴油机联合运 5.1.1 联合运行线行点确定下来,柴油机按某一特性运行时的所有工况点都可在压气机特性曲线上确定下来,形成增压器和柴油机联合工作后的联合运行线。
5.1 增压特性匹配及联合运行线的调节5.1.2 涡轮增压器与柴油机配合运行的基本要求5.1 增压特性匹配及联合运行线的调节5.1 增压特性匹配及联合运行线的调节5.1 增压特性匹配及联合运行线的调节5.1 增压特性匹配及联合运行线的调节5.1.3 联合运行线的调节5.1.3.1 涡轮喷嘴环出口通流面积的调整改变涡轮喷嘴环出口通流面积的方法是用改变运行线的方法适应压气机特性5.1 增压特性匹配及联合运行线的调节最佳喷嘴环出口流通面积寻找方法5.1 增压特性匹配及联合运行线的调节5.1.3.2 改变压气机扩压器的进口角改变压气机特性线的方法的方法适应运行线5.2 增压柴油机的热负荷及解决途径5.2.1 增压柴油机的热负荷问题5.2.2 热负荷的一种表达式5.2增压柴油机的热负荷及解决途径5.2 增压柴油机的热负荷及解决途径5.2.3 影响热负荷大小的主要因素分析5.2.4 降低热负荷的主要措施5.2 增压柴油机的热负荷及解决途径5.2.4.1 适当增大进、排气门叠开角5.2 增压柴油机的热负荷及解决途径5.2.4.2 增大叠开期内的进、排气管压力差5.2 增压柴油机的热负荷及解决途径5.2 增压柴油机的热负荷及解决途径5.2.4.3 增大进、排气门的时间-截面5.2 增压柴油机的热负荷及解决途径5.2 增压柴油机的热负荷及解决途径5.2.4.4 增压中冷5.2 增压柴油机的热负荷及解决途径5.2.4.5 强化冷却系统5.2 增压柴油机的热负荷及解决途径5.2.4.6 改善供油系统及燃烧系统5.2 增压柴油机的热负荷及解决途径5.3 增压柴油机的机械负荷及解决途径5.3.1 增压柴油机的机械负荷问题5.3 增压柴油机的机械负荷及解决途径5.3.2 降低机械负荷的途径5.3.2.1 适当降低柴油机的压缩比5.3 增压柴油机的机械负荷及解决途径5.3.2.2 适当减小供油提前角5.3 增压柴油机的机械负荷及解决途径5.3.2.3 调整涡轮增压器5.3 增压柴油机的机械负荷及解决途径5.3.2.4 优化供油系统5.3 增压柴油机的机械负荷及解决途径5.4 改善增压柴油机低工况及瞬态特性的途径5.4.1增压柴油机低工况性能分析5.4 改善增压柴油机低工况及瞬态特性的途径5.4.1增压柴油机低工况性能分析5.4 改善增压柴油机低工况及瞬态特性的途径5.4 改善增压柴油机低工况及瞬态特性的途径5.4 改善增压柴油机低工况及瞬态特性的途径5.4 改善增压柴油机低工况及瞬态特性的途径5.4.2 改善增压柴油机低工况性能的措施5.4 改善增压柴油机低工况及瞬态特性的途径5.4.2.2 采用高工况放气对车用发动机来说,为解决低工况的性能问题,较多采用如图所示的高工况放气系统。
涡轮增压汽油机匹配计算及性能预测涡轮增压汽油机是一种采用涡轮增压器提高气缸进气压力的汽油机。
它具有高功率、高扭矩、低油耗、低废气排放等优点,因此广泛应用于高性能汽车、赛车以及航空航天领域。
涡轮增压汽油机的匹配计算是设计高性能发动机的关键之一,本文将探讨涡轮增压汽油机的匹配计算及性能预测。
涡轮增压汽油机的匹配计算可分为三个步骤:参数选择、涡轮增压器匹配和喷油器匹配。
第一步骤是参数选择,需要确定涡轮增压汽油机的基本参数,包括气缸数、缸径、行程、压缩比、气门数量和排量等。
这些参数将直接影响发动机性能及涡轮增压器选择。
第二步骤是涡轮增压器匹配,需要根据发动机参数选择合适的涡轮增压器。
涡轮增压器的主要参数包括压缩比、进出口直径、转子直径和转速等。
选取合适的涡轮增压器可使发动机性能得到最大化,同时也需要考虑选用涡轮增压器的成本、重量和可靠性等因素。
第三步骤是喷油器匹配,需要根据发动机的最大输出功率和最大输出扭矩来计算出所需的燃油量和喷油器喷油量。
喷油器的选择需要考虑油品质量、喷雾效果、喷油形状和喷油压力等参数,以确保发动机能够稳定运行。
涡轮增压汽油机的性能预测主要涉及功率、扭矩、燃油消耗量、废气排放量等方面的预测。
常用方法包括流动模拟计算和试验验证两种。
流动模拟计算主要采用CFD(Computational Fluid Dynamics)软件,计算出涡轮增压器、进气道和排气道等部位流场分布、压力分布和温度分布等参数,进而预测出发动机的性能参数。
试验验证则是采用实验方法测量涡轮增压汽油机的关键性能参数,包括功率、扭矩、燃油消耗量、废气排放量等。
试验流程繁琐,成本较高,但是结果更加精确可靠。
总之,涡轮增压汽油机匹配计算及性能预测是设计高性能发动机必不可少的环节。
通过合理选取涡轮增压器、喷油器等部件并结合合适的流动模拟计算和试验验证方法可提高发动机性能,同时也能降低成本和优化设计。
另外,涡轮增压汽油机在匹配计算和性能预测过程中,还需要考虑一些限制因素,如冷却、机油供应、噪声和振动等。
图1涡轮增压器的布置简图R表示涡轮轴承中心到压气机出气口(或者是涡轮进气口)横截面中心点的距离。
对压气机来说,压气机的A/R 值对压气机性能的影响很小,增压器硬件匹配时基本是固定下来的。
A/R值越大表示具有高流量的倾向。
对涡轮壳来说,一般大A/R比值的涡壳可以扩大流量范围而应用于优化低增压的性能。
小A/R比值的涡壳则应用于高增压。
A/R比值越小,则废气进入涡轮的流速越快,增加了发动机低速时的涡轮功,导致增压压力上升较快,减小涡轮增压的迟滞效应。
但是小A/R比使得废气流入涡轮时,切向角度更大,涡轮叶轮的最终流量将下降,增大背压,导致发动机高速时吸气能力下降,影响了发动机最大功率。
若注重发动机低速扭矩特性和瞬态响应,则应选择小A/R比的涡壳;若更注重发动机高速段的动力输出,则应选择大A/R比的涡壳。
因而需要根据发动机的设计目标来进行选择合理的A/R比。
图2压气机/涡轮的Trim示意图1.2.2压气机/涡轮的Trim对于涡轮来说,Trim是表示压气机/涡轮叶轮的流通能力的关键参数(见图2),其定义如式2所示。
其中inducer为压气机/涡壳叶轮进口外径,压缩机/涡轮叶轮出口直径。
当其他参数相同时,的压气机Trim在50~60之间,Trim在70~80之间。
(3)2涡轮增压器的匹配2.1匹配流程图3所示的是涡轮增压器的匹配流程,从开始到机械强度校核共分为4各阶段5个步骤进行。
搜集好发动机设图3涡轮增压器的匹配流程图要包括中冷温降、压前压力、压前温度、空气流量、压前密度、体积流量、进气歧管压力、压后压力、压后温度、空气流量、压后密度、进气歧管密度、压气机出口温度、压气机作功功率等,如表2所示。
最终根据匹配要求算出压气机对应外特性线上的发动机转速的增压器体积流量、质量流量、压比、压气机效率与压气机的转速等,并在压气机的Map图上画出该发动机外特性工况的效率曲线。
图4是根据某款1.5L涡轮增压发动机的参数特性输入进行匹配得出的压气机MAP图。
1.发动机涡轮增压系统匹配及动态特性的仿真分析涡轮增压是提高发动机动力性和改善经济性的最有效措施。
高空环境条件对航空发动机提出了功率恢复的特殊要求,而增压技术是实现发动机高海拔功率恢复的重要措施。
目前,国外小型航空活塞式发动机涡轮增压技术已经比较成熟,国内正在致力于这方面的研究。
本文以ROTAX914发动机为研究对象,对GT25涡轮增压器与发动机的匹配、JK48可变截面涡轮增压器与发动机的匹配以及涡轮增压控制系统的动态特性进行了研究。
本论文在对发动机涡轮增压器进行选型的基础上,应用MATLAB/Simulink软件建立了GT25增压器与发动机匹配、JK48增压器与发动机匹配以及增压控制系统动态特性的仿真模型;研究了不同海拔下发动机与增压器的匹配规律。
通过研究,确定了GT25增压器与发动机的匹配规律,建立了增压器放气阀开度随发动机转速和海拔高度变化的MAP图,分析了充量系数和过量空气系数对GT25增压器与发动机匹配规律的影响。
对JK48可变截面涡轮增压器与ROTAX914发动机的匹配规律进行了仿真研究。
确定了JK48增压器与发动机的匹配规律,建立了叶片转角随发动机转速和海拔高度变化的MAP图,讨论了涡轮效率、涡轮流量系数以及发动机充量系数等因素对JK48可变截面涡轮增压器与发动机匹配的影响。
对涡轮增压控制系统的动态特性进行了仿真研究;结果表明,在一定的负载转动惯量下,控制系统具有较好的动态响应特性、准确性和稳定性。
研究了控制算法对增压控制系统动态特性的影响,比较了普通PID和积分分离PID算法下控制系统的动态特性。
通过研究,确定了负载转动惯量对增压控制系统性能的影响规律。
研究结果可以为我国四冲程活塞式航空发动机研发过程中涡轮增压器的选型、增压器与发动机的匹配以及涡轮增压控制系统的设计等提供一定的分析依据。
2. 车用发动机与涡轮增压器匹配研究涡轮增压技术作为提高柴油机功率、改善其燃油经济性、降低排放的最有效措施之一,已经得到了广泛的应用。
1.发动机涡轮增压系统匹配及动态特性的仿真分析涡轮增压是提高发动机动力性和改善经济性的最有效措施。
高空环境条件对航空发动机提出了功率恢复的特殊要求,而增压技术是实现发动机高海拔功率恢复的重要措施。
目前,国外小型航空活塞式发动机涡轮增压技术已经比较成熟,国内正在致力于这方面的研究。
本文以ROTAX914发动机为研究对象,对GT25涡轮增压器与发动机的匹配、JK48可变截面涡轮增压器与发动机的匹配以及涡轮增压控制系统的动态特性进行了研究。
本论文在对发动机涡轮增压器进行选型的基础上,应用MATLAB/Simulink软件建立了GT25增压器与发动机匹配、JK48增压器与发动机匹配以及增压控制系统动态特性的仿真模型;研究了不同海拔下发动机与增压器的匹配规律。
通过研究,确定了GT25增压器与发动机的匹配规律,建立了增压器放气阀开度随发动机转速和海拔高度变化的MAP图,分析了充量系数和过量空气系数对GT25增压器与发动机匹配规律的影响。
对JK48可变截面涡轮增压器与ROTAX914发动机的匹配规律进行了仿真研究。
确定了JK48增压器与发动机的匹配规律,建立了叶片转角随发动机转速和海拔高度变化的MAP图,讨论了涡轮效率、涡轮流量系数以及发动机充量系数等因素对JK48可变截面涡轮增压器与发动机匹配的影响。
对涡轮增压控制系统的动态特性进行了仿真研究;结果表明,在一定的负载转动惯量下,控制系统具有较好的动态响应特性、准确性和稳定性。
研究了控制算法对增压控制系统动态特性的影响,比较了普通PID和积分分离PID算法下控制系统的动态特性。
通过研究,确定了负载转动惯量对增压控制系统性能的影响规律。
研究结果可以为我国四冲程活塞式航空发动机研发过程中涡轮增压器的选型、增压器与发动机的匹配以及涡轮增压控制系统的设计等提供一定的分析依据。
2. 车用发动机与涡轮增压器匹配研究涡轮增压技术作为提高柴油机功率、改善其燃油经济性、降低排放的最有效措施之一,已经得到了广泛的应用。
涡轮增压技术是利用发动机废气推动涡轮旋转,带动同轴的叶轮旋转,从而实现对从空滤器来的新鲜空气进行增压的目的。
通过将涡轮增压的高压空气压入气缸来提高气缸中的空气密度,达到增加发动机缸内空燃比的目的,使得柴油机的功率增加。
涡轮增压技术是提高发动机动力性和燃油经济性的主要手段之一,采用涡轮增压技术的柴油机可比自然吸气的发动机提高40%~60%的功率,甚至更多;发动机的平均有效压力最高可达到3MPa,发动机的燃油经济性有了很大提高,目前已经在车用发动机上进行了非常广泛的应用。
本文通过对2款涡轮增压发动机的匹配研究,可以提前评估各种涡轮增压器方案的先进性,然后进行有针对性的匹配试验,从而大大减少开发过程中的试验量,使开发工作更具针对性,提高开发效率,节省成本。
本文对车用发动机与涡轮增压器的匹配性能进行了台架试验研究,其主要工作和创新之处为:⑴对涡轮增压发动机气缸内活塞的运动和燃油燃烧以及放热情况,介绍了涡轮增压发动机气缸内的缸内模型、燃烧模型、放热模型、扫气模型和管道模型。
⑵对两款不同涡轮增压发动机功率的进行了试验对比研究,得出了两款涡轮增压发动机在不同转速下的功率情况。
⑶对两款不同涡轮增压发动机在部分关键转速下的转矩进行了模拟与试验,分析对比了两款涡轮增压发动机在不同的转速下的转矩优劣情况。
⑷对两款涡轮增压发动机在部分转速下的比油耗进行了模拟与计算,得出两款涡轮增压发动机的额定点比油耗、最低比油耗、低速端比油耗。
⑸研究了两款涡轮增压器匹配后排温对比情况。
3.发动机与涡轮增压匹配控制软件的设计与开发随着内燃机技术的发展,传统的增压技术已不能满足高压比、加速性能改善、低速扭矩提高、排放法规日益严格等要求,发展先进的增压匹配技术势在必行。
二级增压系统、可调涡轮增压系统、EGR 系统等技术的发展将有效改善柴油机的动力性、经济性和排放性能。
而部分发动机仿真软件已经不能满足现代内燃机增压匹配的计算功能,针对这种现状,本文基于PowerBuilder软件和Oracle数据库开发了一套辅助现代内燃机增压匹配的软件。
通过该软件能够实现现代内燃机增压匹配各阶段的有效计算,使现代内燃机增压匹配更加准确、高效。
本文以现代内燃机与涡轮增压器为研究对象,提出了利用计算机辅助的方法实现现代内燃机增压匹配的方案。
针对不同类型及用途,带有先进增压系统如可调增压、二级增压,带有先进排放控制系统如排气后处理系统、EGR系统等的现代内燃机增压匹配技术进行研究,开发了一套辅助现代内燃机匹配增压器的软件。
该软件能够在现代内燃机仿真模型构建、增压器参数确定、性能全面模拟、性能试验等各个阶段为增压匹配提供专业的技术支持,使得主机厂能够主导增压匹配的全过程,并且全面提升增压器的匹配水平,减少性能模拟计算和试验工作量,使现代内燃机的增压匹配趋于更加快捷、高效、准确。
本文对某型号柴油机进行了实例匹配计算,计算结果与试验数据相吻合,证明该软件能有效为现代内燃机匹配增压器。
4.可变喷嘴涡轮增压器(VNT)与柴油机的匹配及其控制的研究由于在动力、节能和排放等方面的优势,柴油机已成为节能环保汽车的实现技术选择,随着全球车用动力“柴油化”趋势的形成,增压技术在柴油机上的应用愈加广泛。
本文结合国家科技部“863”项目“长丰新一代桥车用高效环保柴油机研发”,对可变喷嘴增压器(VNT)与柴油机的匹配及其控制展开研究,以解决常规涡轮增压柴油机存在低速转矩不足、部分负荷经济性差以及瞬态响应迟缓等问题。
本文建立了涡轮增压柴油机各物理子系统工作过程的数学模型,在此基础上,利用GT-Power一维仿真软件,建立D01柴油机仿真计算模型,并与试验数据进行对比,验证该模型的准确性。
利用仿真计算模型,开展了VNT与D01柴油机的匹配仿真研究,确定了全工况下,可变喷嘴环的最佳开度以及相应的最佳增压压力。
根据仿真计算结果,分析了喷嘴环开度对发动机动力性与经济性的影响,并确定了最佳喷嘴环开度随发动机转速及负荷的变化规律。
在对VNT与发动机的匹配结果进行深入分析的基础上,确定了VNT在各工况下的控制策略:稳态采用增压压力反馈PID控制;瞬态典型工况采用叶片位置式控制;怠速工况通过水温判断来确定喷嘴开度的大小。
在此基础上对控制算法进行了研究,并利用Simulink建立了VNT控制系统模型。
在此基础上,进行了控制系统执行部件选型研究。
利用dSPACE平台,搭建了硬件在环系统,将执行机构与控制模型连接,对VNT进行了位置式反馈控制,实现软硬件联合调试。
结果表明,系统误差较小,响应迅速,达到了控制要求。
5.4G15T汽油机增压器匹配仿真研究与实验随着我国经济的发展和进步,家用轿车的数量急剧增加,随之而来的是石油消耗量的快速增长和城市空气污染的恶化,汽车发动机节能减排的研究势在必行。
涡轮增压器利用发动机废气能量,可以提高发动机动力性能、降低燃油消耗、改善发动机尾气排放,因此涡轮增压技术在汽车发动机中得到广泛应用。
本文对4G15T增压汽油发动机进行涡轮增压器选型和匹配研究,具体工作包括以下几个方面:1)对汽油机与涡轮增压器匹配的原理和流程进行研究。
根据4G15T汽油发动机的结构参数和开发目标,利用经验公式,对涡轮增压器方案进行初选。
2)建立4G15T增压汽油发动机仿真模型,对初选的涡轮增压器进行匹配仿真计算,并进行了动力性、经济性等方面的分析。
3)对完成匹配的4G15T增压汽油机进行了台架实验,对比分析仿真计算结果和台架实验结果,结果表明仿真计算结果与实验数据误差很小。
4)对采用不同叶轮面径比大小的涡轮增压器对4G15T汽油机发动机的影响进行仿真匹配计算,结果表明,匹配叶轮面径比小的涡轮增压器,发动机低速转矩得到有效提升,发动机低速比油耗下降,但是在高速工况,由于涡前压力高,发动机排气阻力加大,动力性和经济性都有损失,不能完全满足发动机性能要求。
6. 涡轮增压汽油机数值模拟与性能优化研究本文进行了1.5L 汽油机涡轮增压匹配的研究,并对气道喷射增压汽油机进行了参数优化,对直喷增压汽油机部分负荷工况进行了分析研究。
文中对1.5L气道喷射自然吸气发动机的工作过程进行了模拟,并在此基础上建立直喷模型,并对直喷汽油机和增加可变气门正时机构后的发动机进行了模拟计算与分析,结果表明改进后的直喷方案能提高发动机动力性,但对经济性改善作用不明显。
以气道喷射发动机为原型,对其选配涡轮增压器,进行了匹配计算与试验分析;并对发动机的进排气正时,进气管尺寸进行了优化,最终确定了相关参数。
结果表明增压后汽油机的动力性有大幅度提升,经济性有所改善,但排气温度有所升高。
以直喷发动机为原型,对其选配了涡轮增压器,进行了匹配计算与分析;并计算了不同节气门开度下,不同的进排气正时时发动机的BMEP(平均有效压力),BSFC(比油耗)等,优化了不同节气门开度和转速下的进排气正时。
结果表明涡轮增压中冷直喷汽油机排气温度高,在部分负荷时,发动机运行线靠近喘振线,应重新选择匹配策略。
本文对1.5L 汽油机的模拟计算都是与相关试验结合的,计算结果与试验结果有较好的一致性,对汽油机的增压匹配与性能计算具有重要的指导意义。
1、涡轮增压器与发动机的匹配概述总的来说,发动机与增压器的匹配有三个方面,即发动机与压气机匹配、发动机与涡轮的匹配和压气机与涡轮的匹配。
细分的话,应该包括:增压器的压气机、增压器的废气涡轮、发动机的排气管系统、发动机的进气系统、中冷器、空气滤清器、消音器、进排气配气相位、运转工况参数、环境参数等。
2、发动机对压气机的要求a、发动机对压气机的要求:1)、压气机不但要求达到预定的压比,而且要具有高的效率。
即压气机效率越高,在同一增压压力时,空气温度越低,从而得到的增压空气的密度就越高,增压效果就越好。
2)、不同用途的发动机对压气机特性的要求也不同。
对于发电用的固定式发动机及按螺旋桨特性工作的船用发动机一般的压气机特性均能满足要求,而车用发动机由于转速范围宽广,故就要求相应的压气机特性具有宽广的流量范围,而且要有较宽的高效区。
b、怎样评价发动机与压气机的匹配:1)、需要经试验得出的压气机特性曲线,同时要有发动机各转速下耗气特性曲线,将发动机的耗气特性曲线与压气机的特性曲线相叠合就可以看出匹配情况。
2)、发动机的特性曲线应穿过压气机的高效区,而且最好使发动机的运行线与压气机的高效率的等效率圈相平行。
对于车用发动机,则要求最大扭矩点正好位于压气机最高效率区附近。
如果发动机运行线整个位于压气机特性右侧,则表明所选的压气机流量偏小,使联合工作时压气机处于低效区工作,在这种情况下就要重选较大型号的增压器,或加大压气机通流部分尺寸,使压气机特性向右移动。
如果向反,发动机运行线整个偏于压气机特性左侧,则一方面发动机低转速时压气机效率降低,同时有可能出现喘振。