视觉导航智能车辆的路径跟踪预瞄控制
- 格式:pdf
- 大小:478.65 KB
- 文档页数:7
10.16638/ki.1671-7988.2019.24.010基于曲率前馈的智能车辆路径跟踪算法刘文涛(长安大学汽车学院,陕西西安710064)摘要:针对智能车辆直角转弯行驶工况,采用简化的车辆运动学模型,在纯跟踪控制算法的基础上进行改进,提出了一种基于道路曲率前馈的改进纯跟踪控制算法。
采用基于道路曲率的纵向速度控制器,实时的根据车速计算出合理预瞄距离,依据预瞄点处的位置偏差得到合适的前轮转角,从而实现对路径跟踪的准确性。
最后采用Simulink/Carsim联合仿真进行验证,结果显示该控制算法能够满足智能车辆在一定车速下对直角转弯行驶路径进行准确跟踪,具有良好的稳定性。
关键词:智能车辆;曲率控制;路径跟踪;纯跟踪算法中图分类号:V323 文献标识码:B 文章编号:1671-7988(2019)24-31-03Path Tracking Algorithm of Intelligent Vehicle Based on Curvature FeedforwardLiu Wentao( School of Automobile, Chang'an University, Shaanxi Xi'an 710064 )Abstract: Aiming at the right-angle turning condition of intelligent vehicles, using a simplified vehicle kinematics model to improve the pure tracking control algorithm. An improved pure tracking control algorithm based on road curvature feedforward is proposed. A longitudinal speed controller based on road curvature is used to calculate a reasonable preview distance according to the vehicle speed in real time, and a suitable front wheel angle is obtained according to the position deviation at the preview point, thereby realizing the accuracy of the path tracking. Finally, Simulink/Carsim joint simulation is used to verify the results. The results show that the control algorithm can meet the intelligent vehicle's accurate tracking of the right-angle turning path at a certain speed, and has good stability.Keywords: Intelligent vehicle; Curvature control; Path tracking; Pure pursuit algorithmCLC NO.: V323 Document Code: B Article ID: 1671-7988(2019)24-31-03前言智能车辆是当下国内外汽车行业新技术研发的重要阵地,包括谷歌在内的全球各大互联网和科研机构以及高校院所争相研究的领域。
J Automotive Safety and Energy, Vol. 11 No. 4, 2020462—469基于最优预瞄和模型预测的智能商用车路径跟踪控制李耀华,刘 洋,冯乾隆,南友飞,何 杰,范吉康(长安大学汽车学院,西安710064,中国)摘要:为解决智能商用车路径跟踪问题,采用一种最优预瞄控制策略。
根据商用车航向角与路径曲率的关系,引入航向角偏差反馈控制;根据车速与预瞄距离的关系,提出了变权重因数的多点预瞄距离确定方法。
为了保证商用车路径跟踪的稳定性,采用模型预测控制策略,对车轮侧偏角进行约束。
通过TruckSim与Simulink联合仿真,对比分析了侧向偏差、横摆角速度和前轮侧偏角变化情况。
结果表明:最优预瞄控制策略对车速变化具有较好的适应性,但当路面附着因数较低时,车辆会失去稳定性;模型预测控制策略对车速和路面附着因数变化都具有较好的适应性,行驶稳定性更好,且比最优预瞄控制策略具有更精确的路径跟踪效果。
关键词:智能商用车;路径跟踪;路面附着因数;最优预瞄控制;模型预测控制中图分类号: U 471.15 文献标识码: A DOI: 10.3969/j.issn.1674-8484.2020.04.005Path tracking control for an intelligent commercial vehicle based on optimal preview and model predictiveLI Yaohua, LIU Yang, FENG Qianlong, NAN Youfei, HE Jie, FAN Jikang(School of Automobile, Chang’an University, Xi’an 710064, China)Abstract: An optimal preview control strategy was adopted to solved path tracking problem of intelligent commercial vehicles. According to the relationship between the heading angle and the curvature of the path,the heading angle deviation feedback control was introduced. According to the relationship between the speedand the preview distance, a multi-point preview distance determination method with variable weight coefficientwas proposed. In order to ensure the stability of path tracking, the model predictive control was used to restrictthe wheel sideslip angle. Through co-simulation of TruckSim and Simulink, the lateral deviations, the yaw ratesand the front wheel slip angles were compared. The results show that the optimal preview control has good adaptability to the speed, but when the road adhesion factor is low, the vehicle will lose stability; The model predictive control has better adaptability to speeds and road adhesion factors, and has better driving stability,and has more accurate path tracking effect than the optimal preview control.Key words:i ntelligent commercial vehicles; path tracking; road adhesion factors; optimal preview control;model predictive control收稿日期 / Received :2020-07-18。
无人驾驶系统的车辆路径跟踪和优化随着科技的不断进步,无人驾驶技术已经成为当今社会的热门话题。
无人驾驶车辆的出现,不仅给人们的生活带来了便利,也为交通运输行业带来了革命性的变化。
然而,要实现真正意义上的无人驾驶,车辆路径跟踪和优化是至关重要的环节。
一方面,车辆路径跟踪是无人驾驶系统中的关键技术之一。
它指的是车辆根据预设的目标位置,通过传感器获取环境信息,并根据算法进行决策和控制,以实现准确、安全、高效的行驶路径。
路径跟踪技术的优秀性能直接决定了无人驾驶车辆的行驶质量和安全性。
为了实现车辆路径跟踪的优化,首先需要建立准确的环境感知模型。
这可以通过激光雷达、摄像头、毫米波雷达等传感器获取车辆周围的环境信息。
然后,利用机器学习和计算机视觉等技术对这些数据进行处理和分析,实时生成车辆周围环境的三维模型。
基于这个模型,车辆可以更准确地感知道路、障碍物和其他车辆的位置和状态,从而更好地规划行驶路径。
其次,路径规划是车辆路径跟踪的关键环节之一。
路径规划的目标是根据车辆当前位置和目标位置,通过算法找到一条最优的行驶路径。
最优路径不仅要考虑到行驶距离,还要综合考虑行驶时间、交通流量、道路状况等因素。
为了实现路径规划的优化,可以利用深度学习和强化学习等技术,通过训练模型和优化算法,使车辆能够更好地适应各种复杂的交通环境和路况。
此外,车辆动力学模型也是车辆路径跟踪的重要组成部分。
动力学模型可以描述车辆的运动特性和操控响应。
通过建立准确的动力学模型,可以更好地控制车辆的加速度、制动力和转向角度,使车辆能够更精确地按照预定的路径行驶。
为了实现动力学模型的优化,可以利用模型预测控制等方法,通过对车辆动力学参数的估计和调整,提高车辆的行驶稳定性和操控性能。
除了路径跟踪的优化,车辆路径优化也是无人驾驶系统中的重要问题。
路径优化的目标是通过合理的路径选择和调整,使车辆在行驶过程中能够更高效地利用道路资源,减少拥堵和交通事故的发生。
基于计算机视觉的智能车辆识别与跟踪系统设计智能车辆识别与跟踪系统的设计是基于计算机视觉技术,在车辆识别和跟踪方面发挥着重要的作用。
该系统可以通过图像或视频数据对道路上的车辆进行自动识别和跟踪,为交通管理、安全监控以及智能交通系统等领域提供有力支持。
一、系统设计目标智能车辆识别与跟踪系统旨在实现以下目标:准确识别道路上的车辆;实时跟踪车辆的位置和动态行为;提供可靠的车辆信息用于其他应用;具备较高的鲁棒性和实时性。
二、系统设计原理智能车辆识别与跟踪系统的设计基于计算机视觉技术。
其主要框架包括图像采集、预处理、特征提取、车辆识别与跟踪等步骤。
1. 图像采集系统通过摄像头或其他图像采集设备获取道路上的车辆图像或视频。
采集设备的性能和布置位置对系统效果有重要影响,应根据具体应用场景进行选择和调整。
2. 预处理采集到的图像或视频数据需要进行预处理,以消除干扰和提高后续处理的效果。
预处理包括图像去噪、图像增强、图像分割等操作。
通过这些操作,可以得到清晰、准确的车辆图像,为后续的特征提取提供良好的基础。
3. 特征提取特征提取是智能车辆识别与跟踪系统的关键步骤。
系统需要从车辆图像中提取出能够表征车辆特征的关键信息。
常用的特征包括车辆颜色、形状、纹理等。
可以采用传统的特征提取算法,如Haar特征、SIFT特征等,也可以使用基于深度学习的卷积神经网络(CNN)进行特征提取。
4. 车辆识别与跟踪在获得了车辆的特征信息后,系统需要将其与已知的车辆模型进行比对,以实现车辆的识别。
识别结果可以用于车辆分类、车辆计数、车辆检测等应用。
同时,系统还需要实时跟踪车辆的位置和运动轨迹,以提供准确的车辆信息。
跟踪算法可以采用相关滤波器、卡尔曼滤波器等传统方法,也可以使用基于深度学习的目标跟踪算法。
三、系统设计关键技术与挑战智能车辆识别与跟踪系统的设计涉及到许多关键技术和挑战。
以下是其中一些主要方面:1. 图像处理和分析图像处理和分析是智能车辆识别与跟踪系统的基础。
视觉导航式智能车辆横向与纵向控制研究一、本文概述随着人工智能技术的飞速发展,智能车辆的研究与开发已成为当今科技创新的热点之一。
在众多智能车辆技术中,视觉导航系统因其高效、可靠和成本效益高的特点而受到广泛关注。
本文旨在探讨视觉导航式智能车辆的横向与纵向控制技术,分析其在智能交通系统中的关键作用及其面临的挑战。
本文将介绍视觉导航系统的基本原理,包括图像采集、处理与分析等关键技术。
随后,将详细阐述横向控制策略,即如何利用视觉信息实现车辆的路径规划和避障,确保车辆在行驶过程中的稳定性和安全性。
纵向控制技术,包括速度控制和车距保持,也是本文的重点研究内容。
本文将探讨如何通过视觉信息来预测和调整车辆的速度,以适应不同的交通环境和驾驶情境。
在研究方法上,本文采用了理论分析与仿真实验相结合的方式。
通过构建数学模型和算法,对视觉导航系统的性能进行定量评估。
同时,利用先进的仿真平台,模拟不同的交通场景,验证所提出控制策略的有效性。
本文将讨论视觉导航式智能车辆横向与纵向控制技术的未来发展趋势,以及如何克服当前存在的技术难题。
通过对现有技术的深入分析和未来方向的展望,本文旨在为智能车辆的研究与应用提供有价值的参考和启示。
二、视觉导航技术概述视觉导航技术,作为智能车辆横向与纵向控制研究的重要组成部分,以其独特的优势在自动驾驶领域发挥着日益重要的作用。
该技术主要依赖于车载摄像头捕捉道路环境图像,并通过计算机视觉算法对这些图像进行处理,以识别道路标志、车道线、交通信号以及障碍物等关键信息。
通过这些信息,智能车辆可以精确地确定自身在道路上的位置,从而进行准确的横向和纵向控制。
视觉导航技术的核心在于图像处理与计算机视觉算法。
这些算法能够对摄像头捕捉到的图像进行预处理、特征提取、目标识别和跟踪等操作。
预处理步骤通常包括噪声消除、对比度增强和色彩校正等,以提高图像质量。
特征提取则专注于从图像中识别出有意义的特征点或特征线,如车道线的边缘、交通信号的颜色等。
0引言随着人们生活水平的稳步提升,汽车作为日常代步工具早已进入千家万户。
汽车在给予生活便利的同时也引发了诸多社会问题,例如交通拥堵、环境污染等。
对智能车的研究可以有效的改善尾气排放、交通堵塞等问题。
而路径跟踪作为智能车辆的一项关键技术,是世界上许多汽车主机厂一直以来研究的重点。
路径跟踪主要是运用各种算法设计控制器,使得车辆在精确跟踪期望路径的同时保证车辆的横向稳定性。
目前路径跟踪运用较为广泛的算法有PID控制、模糊控制、鲁棒控制、滑模控制、模型预测控制等。
邵俊凯等[1]设计了基于强化学习的自适应PID路径跟踪控制器,用于无人驾驶铰链式车辆的路径跟踪。
王家恩等[2]人以横向偏差及其变化率作为模糊控制器的输入,得到了车辆前轮转角,从而控制车辆沿着期望路径运动。
武星等[3]提出了一种基于双视野窗口的鲁棒特征识别与路径跟踪方法,该方法改善了检测系统的实时性。
李兵等[4]将滑模算法和RBF神经网络算法相结合,设计了路径跟踪控制器。
日本的Yakub Fitri等[5]采用模型预测(MPC)控制,解决了四轮转向汽车在高速行驶工况下的路径跟踪问题。
文章首先对路径跟踪相关模型做出介绍,随后通过对基于LQR的路径跟踪控制器的设计过程和各种期望路径信息的呈现,表明该控制方法的优缺点。
1路径跟踪模型1.1二自由度车辆动力学模型二自由度车辆动力学模型是车辆动力学研究常用的模型,文献[6]中建立了如图1所示车辆模型。
车辆的横摆运动为:(1)侧向运动为:(2)前后轴侧向力为:(3)(4)式中,F yf、F yr分别为汽车前后轴所受的侧向力;a、b分别为质心至前后轴的距离;I z为绕Z轴的转动惯量;r为车辆横摆角速度;C f和C r分别为前后轮胎的侧偏刚度;αf、αr 分别表示前后轮侧偏角;δf为车辆前轮转角;v x为车辆纵向速度;β为质心侧偏角;M z表示附加横摆力矩。
将(3)、(4)式代入(1)和(2)式中可得:(5)其中为状态向量,输入文献[7]通过式(6)引入后轮转角,以车辆前后轮转角作为系统输入即进行路径跟踪控制。
基于多点预瞄最优控制的智能车辆路径跟踪摘要:为在嵌入式控制器开发环境下提高智能车辆的路径跟踪精度,采用车辆动力学模型和多点道路预瞄模型,以预瞄窗口内的跟踪偏差为目标函数,结合 LQR 最优控制原理,提出了一种基于多点预瞄最优控制路径跟踪控制方法。
针对实车应用,通过离线计算最优增益的方法,提高算法实时性。
在仿真及红旗H7 实车环境下进行试验,结果显示,该方法在保证跟踪精度的同时具有良好的算法实时性。
关键词:LQR道路预瞄模型路径跟踪智能车辆1.前言路径跟踪作为自动驾驶系统中的关键执行层控制技术,是影响智能车辆安全性与舒适性的关键技术[1-3]。
常见的路径跟踪方法按照使用模型不同可分为基于几何/运动学模型的方法和基于动力学模型的方法,其中基于几何/运动学模型的方法,通常将车辆简化为四轮机器人刚性结构,由于相对简单计算量小,已有较多实车应用,如名古屋大学的自动驾驶开源项目Autoware 中使用的纯跟踪方法[4]。
基于动力学模型的方法,考虑车辆轮胎侧偏等动力学特性,通常结合最优控制理论,如线性二次型调节器(LQR)[5]、模型预测控制(MPC)[6]等。
百度的自动驾驶开源项目Apollo 中横向控制器即提供了LQR 和MPC 两种方法[7]。
LQR 方法未考虑预瞄前方目标路径,易出现跟踪偏差较大问题;MPC 方法需要消耗大量计算资源,在车辆嵌入式控制器的计算环境中难以实现。
而基于预瞄的LQR 控制方法[8],既能够综合考虑前方路径特征,又不需要在线优化求解占用大量计算资源,具有较强的嵌入式环境实车应用价值。
因此,本文在文献[8]LQR 预瞄控制方法的基础上,提出了一种新型基于多点预瞄的最优路径跟踪控制方法,改进了道路模型中的预瞄偏差计算方式,以及采用离线计算最优增益的方法,提高了算法的适应性及实时性,更加适合实车路径跟踪控制应用。
2.车辆及道路预瞄模型2.1 车辆动力学模型本文采用的车辆动力学模型如图1 所示,假设车辆是一个在平面内沿一定速度向前行驶的刚体,可通过前轮转角进行横摆旋转和侧向平移运动。
智能交通中的车辆轨迹预测与路径规划研究随着城市交通的日益拥堵和车辆数量的急剧增加,智能交通系统成为解决交通问题的重要手段。
其中,车辆轨迹预测和路径规划技术是智能交通系统中的关键技术,能够优化交通流量,提高道路利用率,减少交通事故的发生,并提供可靠高效的交通服务。
一、车辆轨迹预测车辆轨迹预测是指根据历史行驶数据和当前交通环境,预测车辆未来的行驶轨迹。
这项技术对于智能交通系统具有重要意义,可以提前警示道路拥堵、事故风险等情况,有助于提高道路通行效率和交通安全。
在车辆轨迹预测中,需要考虑的因素包括车辆的历史轨迹、交通流量、道路状态、交通规则等。
传统方法主要基于统计学模型、机器学习模型以及深度学习模型。
统计学模型主要依赖历史数据,通过统计分析方法进行预测,但受数据样本的限制,预测结果可能不够准确。
机器学习模型则主要通过训练模型的方法,将历史数据与预测目标进行映射,从而得出预测结果。
深度学习模型利用了更加复杂的神经网络结构,能够更好地学习数据的特征,并在车辆轨迹预测中取得了较好的效果。
此外,车辆轨迹预测还需要考虑数据的实时性和连续性。
智能交通系统中的数据源主要包括GPS定位数据、交通诱导数据、视频监控数据等。
这些数据在预测过程中需要进行融合和处理,以获取准确的车辆轨迹预测结果。
同时,还需要考虑交通动态的变化,及时更新预测模型和参数,以适应不同的交通情况。
二、路径规划路径规划是指根据起点、终点和交通网络等信息,确定车辆行驶的最佳路径。
在智能交通系统中,路径规划可以帮助驾驶员选择最短路径、避开拥堵路段和实现自动驾驶等功能。
路径规划需要考虑的因素包括道路网络、道路条件、交通状况以及用户偏好等。
目前,常见的路径规划方法包括基于图论的搜索算法、最短路径算法、遗传算法等。
这些方法可以根据不同的需求和约束条件,找到最佳路径,并帮助车辆避免拥堵路段和减少行驶时间。
在路径规划中,还需要考虑交通管理部门的指令和限制条件。
例如,某些道路可能会有交通管制或者对特定车辆进行限行,这些因素都需要在路径规划时进行考虑,以避免违规行驶和交通事故的发生。
基于预瞄的车辆路径跟踪控制研究1. 本文概述随着现代交通系统的迅速发展,车辆路径跟踪控制作为智能交通系统的重要组成部分,其研究对于提高车辆行驶安全性和效率具有重要意义。
本文旨在探讨基于预瞄理论的车辆路径跟踪控制方法。
预瞄控制策略通过预测车辆未来状态,提前做出控制决策,从而实现更平滑、更稳定的车辆行驶路径。
本文首先对车辆路径跟踪控制的相关理论和研究现状进行综述,分析现有方法的优缺点。
接着,详细介绍预瞄控制策略的基本原理和关键技术,包括预瞄距离的选取、车辆动力学模型的建立以及控制算法的设计。
通过仿真实验验证所提出控制策略的有效性和优越性。
本文总结研究成果,并对未来研究方向进行展望,以期为进一步提高车辆路径跟踪控制的性能和实用性提供参考。
2. 预瞄理论基础预瞄理论是车辆路径跟踪控制研究中的一个重要概念,它源于人类驾驶员在驾驶过程中的视觉行为。
在车辆行驶过程中,驾驶员通常会将目光提前投向道路前方,预测车辆未来的行驶轨迹,并根据这些信息调整方向盘,以确保车辆能够稳定地沿着期望路径行驶。
预瞄理论正是模拟了这一过程,并将其应用于车辆路径跟踪控制中。
预瞄理论的核心思想是,通过引入一个预瞄距离,来预测车辆在未来的某个时刻的位置和状态,从而提前进行控制决策。
预瞄距离的选取是预瞄理论中的关键问题,它直接影响到控制系统的性能。
预瞄距离过短,会导致车辆对路径变化的响应过于敏感,容易产生振荡预瞄距离过长,则会使车辆对路径变化的响应过于迟缓,降低跟踪精度。
预瞄理论在车辆路径跟踪控制中的应用,主要是通过设计一个预瞄控制器来实现。
预瞄控制器通常包括两部分:预瞄模块和控制模块。
预瞄模块负责根据预瞄距离预测车辆的未来状态,而控制模块则根据这些预测信息,生成控制信号,对车辆进行控制。
预览控制器的设计需要考虑车辆的动力学特性、路径特性以及控制目标等因素。
预瞄理论在车辆路径跟踪控制中的应用,可以有效地提高车辆的跟踪精度和稳定性,提高驾驶员的驾驶舒适性和安全性。