c语言编写的栈的实现
- 格式:doc
- 大小:28.00 KB
- 文档页数:8
第1篇一、实验目的1. 理解栈的基本概念和操作;2. 掌握栈的顺序存储和链式存储实现方法;3. 熟悉栈在程序设计中的应用。
二、实验内容1. 栈的顺序存储结构实现;2. 栈的链式存储结构实现;3. 栈的基本操作(入栈、出栈、判空、求栈顶元素);4. 栈在程序设计中的应用。
三、实验方法1. 采用C语言进行编程实现;2. 对实验内容进行逐步分析,编写相应的函数和程序代码;3. 通过运行程序验证实验结果。
四、实验步骤1. 实现栈的顺序存储结构;(1)定义栈的结构体;(2)编写初始化栈的函数;(3)编写入栈、出栈、判空、求栈顶元素的函数;(4)编写测试程序,验证顺序存储结构的栈操作。
2. 实现栈的链式存储结构;(1)定义栈的节点结构体;(2)编写初始化栈的函数;(3)编写入栈、出栈、判空、求栈顶元素的函数;(4)编写测试程序,验证链式存储结构的栈操作。
3. 栈在程序设计中的应用;(1)实现一个简单的四则运算器,使用栈进行运算符和操作数的存储;(2)实现一个逆序输出字符串的程序,使用栈进行字符的存储和输出;(3)编写测试程序,验证栈在程序设计中的应用。
五、实验结果与分析1. 顺序存储结构的栈操作实验结果:(1)入栈操作:在栈未满的情况下,入栈操作成功,栈顶元素增加;(2)出栈操作:在栈非空的情况下,出栈操作成功,栈顶元素减少;(3)判空操作:栈为空时,判空操作返回真,栈非空时返回假;(4)求栈顶元素操作:在栈非空的情况下,成功获取栈顶元素。
2. 链式存储结构的栈操作实验结果:(1)入栈操作:在栈未满的情况下,入栈操作成功,链表头指针指向新节点;(2)出栈操作:在栈非空的情况下,出栈操作成功,链表头指针指向下一个节点;(3)判空操作:栈为空时,判空操作返回真,栈非空时返回假;(4)求栈顶元素操作:在栈非空的情况下,成功获取栈顶元素。
3. 栈在程序设计中的应用实验结果:(1)四则运算器:成功实现加、减、乘、除运算,并输出结果;(2)逆序输出字符串:成功将字符串逆序输出;(3)测试程序:验证了栈在程序设计中的应用。
c语言栈的定义栈(Stack)是一种常见的数据结构,它基于后进先出(Last In First Out,LIFO)的原则进行操作。
在C语言中,栈可以通过数组或链表实现。
1.数组实现栈数组实现栈是最简单和常见的方式之一。
我们可以定义一个固定大小的数组,并使用一个指针来表示栈顶位置。
栈内的元素可以通过增加或减少指针来进行入栈和出栈操作。
定义一个栈的结构体:```c#define MAX_SIZE 100typedef struct {int data[MAX_SIZE];int top;} Stack;```- `data`是一个整型数组,用于存储栈内的元素。
- `top`是一个整数变量,用于表示栈顶元素的位置。
初始化栈:```cvoid initStack(Stack* stack) {stack->top = -1;}```入栈操作:```cvoid push(Stack* stack, int value) {if (stack->top == MAX_SIZE - 1) {printf("栈已满,无法入栈!"); return;}stack->data[++stack->top] = value; }```出栈操作:```cint pop(Stack* stack) {if (stack->top == -1) {printf("栈已空,无法出栈!"); return -1;}return stack->data[stack->top--];}```获取栈顶元素:```cint peek(Stack* stack) {if (stack->top == -1) {printf("栈已空,无法获取栈顶元素!"); return -1;}return stack->data[stack->top];}```判断栈是否为空:```cint isEmpty(Stack* stack) {return stack->top == -1;}```判断栈是否已满:```cint isFull(Stack* stack) {return stack->top == MAX_SIZE - 1;}```2.链表实现栈链表实现栈是另一种常见的方式。
C语言中栈的基本操作栈(Stack)是一种遵循“后进先出”(LIFO)原则的数据结构,具有以下几个基本操作:入栈(Push)、出栈(Pop)、判断栈是否为空(Empty)以及获取栈顶元素(Top)。
下面将详细介绍这些基本操作。
1. 入栈(Push):将一个元素添加到栈的顶部。
入栈操作分为两个步骤:(1)判断栈是否已满,如果已满则无法再添加元素;(2)若栈不满,则将元素添加到栈的顶部,并更新栈顶指针。
具体实现代码如下:```void push(Stack *s, int item)if (is_full(s))printf("Stack is full, cannot push more elements.\n");return;}s->top++;s->data[s->top] = item;}```2. 出栈(Pop):将栈顶元素移除,并返回该元素的值。
出栈操作也有两个步骤:(1)判断栈是否为空,如果为空则无法进行出栈操作;(2)若栈不为空,则将栈顶元素移除,并更新栈顶指针。
具体实现代码如下:```int pop(Stack *s)int item;if (is_empty(s))printf("Stack is empty, cannot pop any elements.\n");return -1; // 指定一个特定的返回值来表示错误}item = s->data[s->top];s->top--;return item;}```3. 判断栈是否为空(Empty):判断栈是否为空分为两种情况,一种是根据栈顶指针进行判断,另一种是根据数据数量进行判断。
(1)判断栈顶指针是否为-1,若为-1则说明栈为空;(2)若栈内数据数量为0,则栈为空。
具体实现代码如下:```int is_empty(Stack *s)return s->top == -1; // 栈顶指针为-1表示栈为空}```4. 获取栈顶元素(Top):返回栈顶元素的值,但不对栈做任何修改。
C语⾔实现堆栈(⾃⼰的)stack.h#ifndef __STACK_H__#define __STACK_H__#include <stdio.h>#include <stdlib.h>#include <stdbool.h>typedef int ElementType;struct SNode {ElementType *Data; /* 存储元素的数组 */int Top; /* 栈顶指针 */int MaxSize; /* 堆栈最⼤容量 */};typedef struct SNode *Stack;Stack CreateStack( int MaxSize ); //建⽴结构体堆栈bool IsFull( Stack S ); //判断堆栈是是否溢出bool Push( Stack S, ElementType X ); //压栈bool IsEmpty( Stack S ); //判断堆栈是是否为空ElementType Pop( Stack S ); //出栈#endifstack.c#include "stack.h"#include "sys.h"u8 Choose_Stack_Flag=0; //未检测到加减符号时候,0:⼀个结构体,检测到1:另⼀个结构体Stack CreateStack( int MaxSize ){Stack S = (Stack)malloc(sizeof(struct SNode));S->Data = (ElementType *)malloc(MaxSize * sizeof(ElementType));S->Top = -1;S->MaxSize = MaxSize;return S;}bool IsFull( Stack S ){return (S->Top == S->MaxSize-1);}bool Push( Stack S, ElementType X ){if ( IsFull(S) ) {printf("堆栈满");return false;}else {S->Data[++(S->Top)] = X;return true;}}bool IsEmpty( Stack S ){return (S->Top == -1);}ElementType Pop( Stack S ){if ( IsEmpty(S) ) {printf("堆栈空");return ERROR; /* ERROR是ElementType的特殊值,标志错误 ERROR 0 */}elsereturn ( S->Data[(S->Top)--] );}。
括号匹配问题栈c语言括号匹配问题是计算机科学领域中十分重要的一个主题,它可以在处理括号匹配问题中发挥作用。
括号匹配问题被广泛应用在计算机科学领域中,比如编译器,语法分析等领域。
要解决括号匹配问题,常用的方法之一就是使用栈数据结构来解决。
栈是一种非常简单而又十分有效的数据结构,它的特点是“后进先出”(LIFO),即一个元素最先被放入栈中,在任何情况下都会最后被取出。
因此,使用栈来解决括号匹配问题,是一种非常有效的方法。
那么,栈的c语言实现是怎样的呢?在c语言中,可以使用结构体来实现栈。
栈的结构体由以下三部分组成:Top指针,MaxSize和Data,其中Top指针表示栈顶元素的位置;MaxSize表示栈的最大存储容量;Data是存储栈内元素的数组。
栈的实现需要定义一些函数,比如push()和pop()函数,用于入栈和出栈的操作;isEmpty()函数,用于判断栈是否为空;isFull()函数,用于判断栈是否已满,以及压栈和出栈元素到栈顶等等。
接下来就是使用栈来解决括号匹配问题了。
首先,要判断输入的字符串中括号是否匹配,可以使用计数法来判断。
例如,如果字符串中出现“(”,就把计数器加1,若出现“)”,就把计数器减1;最后如果计数器为0,则说明字符串中括号是匹配的。
如果字符串的括号是匹配的,则可以使用栈来检验字符串中括号的匹配情况。
从字符串的第一个字符开始遍历,如果当前字符为“(”,则压进栈;如果当前字符为“)”,则出栈一个“(”,表示当前字符与栈中的“(”匹配;如果栈中没有“(”,则说明当前字符串中括号不匹配。
例如,“(()())”这个字符串,经过上述操作,最后栈空,说明括号是完全匹配的。
而“(())()”这个字符串,之后经过操作,栈中会剩一个“(”,说明括号不匹配。
总结以上就是括号匹配问题栈的c语言实现的内容,括号匹配问题是计算机领域中一个常见的问题,栈的c语言实现就是使用结构体定义栈,然后定义一些函数,来实现栈的入栈和出栈操作,最后通过计数法或者栈结构,来判断字符串中括号是否完全匹配。
用栈实现进制转换#include <stdio.h>#define STACK_SIZE 100 /*假定预分配的栈空间最多为100个元素*/ typedef char DataType;/*假定栈元素的数据类型为字符*/typedef struct{DataType *base;DataType *top;int stacksize;}SeqStack;/* 置栈空*/void Initial(SeqStack *s){/*构造一个空栈*/s->base=(DataType *)malloc(STACK_SIZE * sizeof(DataType));if(!s->base) exit (-1);s->top=s->base;s->stacksize=STACK_SIZE;}/*判栈空*/int IsEmpty(SeqStack *S){return S->top==S->base;}/*判栈满*/int IsFull(SeqStack *S){return S->top-S->base==STACK_SIZE-1;}/*进栈*/void Push(SeqStack *S,DataType x){if (IsFull(S)){printf("栈上溢"); /*上溢,退出运行*/exit(1);}*S->top++ =x;/*栈顶指针加1后将x入栈*/}/*出栈*/DataType Pop(SeqStack *S){if(IsEmpty(S)){printf("栈为空"); /*下溢,退出运行*/exit(1);}return *--S->top;/*栈顶元素返回后将栈顶指针减1*/}/* 取栈顶元素*/DataType Top(SeqStack *S){if(IsEmpty(S)){printf("栈为空"); /*下溢,退出运行*/exit(1);}return *(S->top-1);}void conversion (int N,int B){/*假设N是非负的十进制整数,输出等值的B进制数*/ int i;SeqStack *S=(SeqStack *)malloc(sizeof(SeqStack));Initial(S);while(N){ /*从右向左产生B进制的各位数字,并将其进栈*/ Push(S,N%B); /*将bi进栈0<=i<=j*/N=N/B;}while(!IsEmpty(S)){ /*栈非空时退栈输出*/i=Pop(S);printf("%d",i);}}void main(){int n,d;printf("Input the integer you want to transform:");scanf("%d",&n);printf("Input the integer of the system: ");scanf("%d",&d);printf("result:");conversion(n,d);getch();}用栈实现编辑程序将用户输入的信息存入用户的数据区。
c语言栈的名词解释在计算机科学和编程中,栈(Stack)是一种重要的数据结构。
C语言作为一种广泛应用的编程语言,自然也涉及到栈的概念和使用。
在本文中,将对C语言栈进行详细的名词解释和功能介绍。
1. 栈的定义和特点栈是一种线性的数据结构,它的特点是后进先出(Last In First Out, LIFO)。
也就是说,最后一个进入栈的元素将是第一个被访问、被移除的。
栈采用两个基本操作,即压栈(Push)和弹栈(Pop),用于对数据的插入和删除。
2. 栈的结构和实现方式在C语言中,栈可以用数组或链表来实现。
使用数组实现的栈叫作顺序栈,使用链表实现的栈叫作链式栈。
顺序栈使用数组来存储数据,通过一个指针(栈顶指针)来指示栈顶元素的位置。
当有新元素要进栈时,栈顶指针先向上移动一位,然后将新元素存入该位置。
当要弹栈时,栈顶指针下移一位,表示将栈顶元素移除。
链式栈通过链表来存储数据,每个节点包含一个数据项和一个指向下一个节点的指针。
链式栈通过头指针指示栈顶节点的位置,新元素插入时构造一个新节点,并将其指针指向原栈顶节点,然后更新头指针。
弹栈时,只需将头指针指向下一个节点即可。
3. 栈的应用场景栈在计算机科学中有广泛的应用。
以下是一些常见的应用场景:a. 函数调用:在函数调用过程中,函数的参数、局部变量和返回地址等信息会以栈的形式压入内存中,而在函数返回时将逆序地从栈中弹出这些信息。
b. 表达式求值:中缀表达式在计算机中不方便直接求值,而将中缀表达式转换为后缀表达式后,利用栈可以方便地完成求值过程。
c. 内存分配:在程序运行时,栈用于管理变量和函数的内存分配。
当变量定义时,栈会为其分配内存空间,并在其作用域结束时将其回收。
d. 括号匹配:在处理一些语法相关的问题时,栈可以很好地用来检测括号的匹配情况,例如括号是否成对出现、嵌套层次是否正确等。
4. 栈的复杂度分析栈的操作主要包括入栈和出栈两种操作,它们的时间复杂度均为O(1)。
c语⾔stack(栈)和heap(堆)的使⽤详解⼀、预备知识—程序的内存分配⼀个由C/C++编译的程序占⽤的内存分为以下⼏个部分1、栈区(stack)—由编译器⾃动分配释放,存放函数的参数值,局部变量的值等。
其操作⽅式类似于数据结构中的栈。
2、堆区(heap)—⼀般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。
注意它与数据结构中的堆是两回事,分配⽅式倒是类似于链表。
3、全局区(静态区)(static)—全局变量和静态变量的存储是放在⼀块的,初始化的全局变量和静态变量在⼀块区域,未初始化的全局变量和未初始化的静态变量在相邻的另⼀块区域。
程序结束后由系统释放。
4、⽂字常量区—常量字符串就是放在这⾥的。
程序结束后由系统释放。
5、程序代码区—存放函数体的⼆进制代码。
⼆、例⼦程序复制代码代码如下://main.cppint a=0; //全局初始化区char *p1; //全局未初始化区main(){intb;栈char s[]="abc"; //栈char *p2; //栈char *p3="123456"; //123456\0在常量区,p3在栈上。
static int c=0; //全局(静态)初始化区p1 = (char*)malloc(10);p2 = (char*)malloc(20); //分配得来得10和20字节的区域就在堆区。
strcpy(p1,"123456"); //123456\0放在常量区,编译器可能会将它与p3所向"123456"优化成⼀个地⽅。
}三、堆和栈的理论知识2.1申请⽅式stack:由系统⾃动分配。
例如,声明在函数中⼀个局部变量int b;系统⾃动在栈中为b开辟空间heap:需要程序员⾃⼰申请,并指明⼤⼩,在c中⽤malloc函数如p1=(char*)malloc(10);在C++中⽤new运算符如p2=(char*)malloc(10);但是注意p1、p2本⾝是在栈中的。
C语言数据结构之栈的基本操作栈是一种特殊的数据结构,它按照后进先出(LIFO)的原则进行操作。
栈可以用数组或链表来实现,下面将介绍栈的基本操作。
1.初始化栈:栈的初始化就是为栈分配内存空间,并将栈顶指针设置为-1(如果是数组实现)或者NULL(如果是链表实现)。
2.判断栈空:栈空表示栈中没有任何元素。
如果栈顶指针等于-1或者NULL,则表示栈空。
3.判断栈满:栈满表示栈中已经存满了元素。
如果栈顶指针等于栈的最大容量减1,则表示栈满。
4. 进栈(push):进栈操作就是将元素放入栈中。
如果栈不满,则将栈顶指针加1,并将元素放入栈顶位置。
5. 出栈(pop):出栈操作就是从栈中取出一个元素。
如果栈不空,则将栈顶指针减1,并返回栈顶元素。
6. 获取栈顶元素(getTop):获取栈顶元素操作不改变栈的状态,只返回栈顶元素的值。
如果栈不空,则返回栈顶元素值;否则,返回空值。
7.清空栈:清空栈操作就是将栈中的所有元素全部出栈,即将栈顶指针设置为-1或者NULL。
8.销毁栈:销毁栈操作是释放栈的内存空间,将栈的指针设置为NULL。
栈的应用:栈在计算机领域有广泛的应用,其中一个常见的应用是函数调用栈。
当一个函数调用另一个函数时,当前函数的状态(包括局部变量、返回地址等)会被压入到栈中。
当被调用函数执行完成后,栈顶的元素会被弹出,然后继续执行调用该函数的代码。
另一个常见的应用是表达式求值。
在表达式求值过程中,需要用到运算符优先级。
我们可以利用栈来处理运算符的优先级。
将运算符入栈时,可以先与栈顶运算符比较优先级,如果栈顶运算符的优先级高于当前运算符,则将栈顶运算符出栈,并继续比较。
这样可以确保栈中的运算符按照优先级从高到低的顺序排列。
此外,栈还可以用于处理括号匹配问题。
当遇到左括号时,将其入栈;当遇到右括号时,判断栈顶元素是否为对应的左括号,如果是,则将栈顶元素弹出,否则表示括号不匹配。
如果最后栈为空,则表示所有括号都匹配。
c语言栈的定义在计算机科学中,栈(Stack)是一种常见的数据结构,它遵循先进后出(Last In First Out,LIFO)的原则。
C语言提供了一种实现栈的方式,即使用数组来模拟栈。
在C语言中,栈可以被定义为一个数组和一个指向栈顶的指针。
栈顶指针指向栈中最新添加的元素,也是栈中下一个将被访问的元素。
栈的大小可以根据实际需求进行调整。
以下是一个简单的C语言栈的定义示例:```c#define MAX_SIZE 100typedef struct {int data[MAX_SIZE];int top;} Stack;```在上述定义中,我们使用了`#define`预处理指令来定义了一个常量`MAX_SIZE`,用于表示栈的最大大小。
我们还定义了一个结构体`Stack`,其中包含一个整型数组`data`和一个整型变量`top`。
`Stack`结构体中的`data`数组用于存储栈中的元素,而`top`变量则用于指示栈顶的位置。
初始情况下,栈是空的,所以我们可以将`top`的值设置为-1。
接下来,我们可以定义一些栈的基本操作函数,比如入栈(push)、出栈(pop)等。
下面是一个入栈函数的示例:```cvoid push(Stack *stack, int element) {if (stack->top < MAX_SIZE - 1) {stack->top++;stack->data[stack->top] = element;} else {printf("Error: Stack overflow.\n");}}```在上述代码中,`push`函数接受一个指向`Stack`结构体的指针和一个整型变量`element`作为参数。
首先,函数检查栈是否已满(即`top`是否达到了`MAX_SIZE-1`),如果没有满,则将`top`的值加1,并将`element`赋值给`data`数组中的相应位置。
c语言栈的定义摘要:1.栈的概述2.C 语言栈的定义与实现3.栈的基本操作4.栈的应用实例正文:【栈的概述】栈是一种线性数据结构,它按照后进先出(Last In First Out, LIFO)的原则组织数据。
栈可以用来存储程序运行过程中产生的中间结果,或者用于函数调用、表达式求值等场景。
栈在计算机科学中具有广泛的应用,如编译原理、操作系统等。
【C 语言栈的定义与实现】C 语言中,栈可以通过数组或链表来实现。
栈的定义通常包括两个部分:栈顶指针(top)和栈的大小(size)。
栈顶指针用于指向栈顶元素,而栈的大小表示栈可以容纳的元素个数。
【栈的基本操作】栈的基本操作包括:入栈(push)、出栈(pop)、查看栈顶元素(top)和判断栈是否为空(is_empty)。
1.入栈:将一个元素放入栈顶。
2.出栈:弹出栈顶元素。
3.查看栈顶元素:获取栈顶元素的值,但不将其弹出。
4.判断栈是否为空:检查栈中是否还有元素。
【栈的应用实例】栈在程序设计中有很多应用,下面以计算表达式值为例,展示栈如何用于表达式求值。
假设有一个表达式:a + b * c,我们需要计算该表达式的值。
首先,我们需要将表达式中的每个操作数和运算符入栈。
然后,按照栈的出栈顺序,进行运算。
具体过程如下:1.将"a" 入栈。
2.将"+" 入栈。
3.将"b" 入栈。
4.将"*" 入栈。
5.将"c" 入栈。
6.弹出栈顶元素"+",进行加法运算,结果入栈。
7.弹出栈顶元素"b",进行乘法运算,结果入栈。
8.弹出栈顶元素"c",进行乘法运算,结果入栈。
9.弹出栈顶元素,得到表达式的值:a + b * c。
【结语】栈作为一种重要的数据结构,在C 语言编程中具有广泛的应用。
c语言实现栈详细代码栈(Stack),又称堆栈,是一种后进先出(LIFO,Last In First Out)的数据结构,它只允许在一段端点进行插入和删除操作,这个端点被称为栈顶。
C语言实现栈的基本思路是建立一个结构体,结构体中包含一个数组和栈顶指针top。
数组用来存放栈中元素,top指针指向栈顶元素的下标。
实现栈的操作包括压栈(push)、出栈(pop)和获取栈顶元素(get_top)。
下面是详细代码:```#include <stdio.h>#include <stdlib.h>#define MAX_SIZE 100 //栈的最大长度typedef struct stack {int data[MAX_SIZE]; //栈中元素int top; //栈顶指针} Stack;//初始化栈void init(Stack *s) {s->top = -1; //栈顶指针初始化为-1,表示栈为空}//判断栈是否为空int is_empty(Stack *s) {return s->top == -1;}//判断栈是否已满int is_full(Stack *s) {return s->top == MAX_SIZE-1;}//压栈void push(Stack *s, int value) {if (is_full(s)) {printf("Stack is full, cannot push!\n");return;}s->data[++(s->top)] = value; //栈顶指针先加1,再将元素入栈}//出栈void pop(Stack *s) {if (is_empty(s)) {printf("Stack is empty, cannot pop!\n");}s->top--; //栈顶指针减1,表示栈顶元素已删除}//获取栈顶元素int get_top(Stack *s) {if (is_empty(s)) {printf("Stack is empty, cannot get top element!\n"); return -1;}return s->data[s->top]; //返回栈顶元素}int main() {Stack s;init(&s); //初始化栈for (i = 0; i < 5; i++) {push(&s, i); //压入5个元素}printf("Top element: %d\n", get_top(&s)); //获取栈顶元素while (!is_empty(&s)) {printf("%d ", get_top(&s)); //依次输出栈中元素pop(&s); //弹出栈顶元素}return 0;}```代码中定义了一个结构体,包含一个整型数组data和一个整型变量top,数组用来存放栈中元素,top表示栈顶指针。
c语言顺序栈实现表达式求值下面是C语言顺序栈实现表达式求值的代码示例:```c#include <stdio.h>#include <stdlib.h>#define MAX_EXPR_LEN 100typedef struct {double* data; // 存储数据的数组指针int top; // 栈顶指针int maxSize; // 栈的最大容量} Stack;// 初始化栈void init(Stack* stack, int maxSize) {stack->data = (double*)malloc(maxSize * sizeof(double));stack->top = -1;stack->maxSize = maxSize;}// 判断栈是否为空int isEmpty(Stack* stack) {return stack->top == -1;}// 判断栈是否已满int isFull(Stack* stack) {return stack->top == stack->maxSize - 1;}// 入栈void push(Stack* stack, double value) {if (isFull(stack)) {printf("Stack is full.\n");return;}stack->data[++stack->top] = value;}// 出栈double pop(Stack* stack) {if (isEmpty(stack)) {printf("Stack is empty.\n");return -1;}return stack->data[stack->top--];}// 获取栈顶元素double top(Stack* stack) {if (isEmpty(stack)) {printf("Stack is empty.\n");return -1;}return stack->data[stack->top];}// 运算符优先级比较int priority(char op) {switch(op) {case '+':case '-':return 1;case '*':case '/':return 2;case '(':case ')':return 0;default:return -1;}}// 执行操作double operate(double operand1, double operand2, char op) { switch(op) {case '+':return operand1 + operand2;case '-':return operand1 - operand2;case '*':return operand1 * operand2;case '/':return operand1 / operand2;default:return 0;}}// 表达式求值double evaluateExpression(char* expression) {Stack operandStack; // 操作数栈Stack operatorStack; // 运算符栈init(&operandStack, MAX_EXPR_LEN);init(&operatorStack, MAX_EXPR_LEN);int i = 0;while (expression[i] != '\0') {if (expression[i] >= '0' && expression[i] <= '9') {// 处理数字double num = 0;while (expression[i] >= '0' && expression[i] <= '9') {num = num * 10 + (expression[i] - '0');i++;}push(&operandStack, num);} else if (expression[i] == '+' || expression[i] == '-' || expression[i] == '*' || expression[i] == '/') {// 处理运算符while (!isEmpty(&operatorStack) && priority(expression[i]) <= priority(top(&operatorStack))) {char op = pop(&operatorStack);double operand2 = pop(&operandStack);double operand1 = pop(&operandStack);double result = operate(operand1, operand2, op);push(&operandStack, result);}push(&operatorStack, expression[i]);i++;} else if (expression[i] == '(') {// 处理左括号push(&operatorStack, expression[i]);i++;} else if (expression[i] == ')') {// 处理右括号while (top(&operatorStack) != '(') {char op = pop(&operatorStack);double operand2 = pop(&operandStack);double operand1 = pop(&operandStack);double result = operate(operand1, operand2, op);push(&operandStack, result);}// 弹出左括号pop(&operatorStack);i++;} else {i++;}}// 处理剩余的运算符while (!isEmpty(&operatorStack)) {char op = pop(&operatorStack);double operand2 = pop(&operandStack);double operand1 = pop(&operandStack);double result = operate(operand1, operand2, op);push(&operandStack, result);}double result = pop(&operandStack);return result;}int main() {char expression[MAX_EXPR_LEN];printf("请输入表达式:");fgets(expression, sizeof(expression), stdin);double result = evaluateExpression(expression);printf("表达式的结果为:%lf\n", result);return 0;}```使用该代码,可以实现对不带括号的四则运算表达式进行求值。
stack.h
#ifndef _STACK_H_
#define _STACK_H_
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define OVERFLOW -2
#define STACK_INIT_SIZE 100 // 栈储存空间的初始分配量
#define STACKINCREMENT 10 // 储存空间分配增量
typedef int Status
typedef char SElemType
typedef struct {
SElemType *base;// 储存数据元素的数组
SElemType *top; // 栈顶指针
int stacksize; // 当前分配的栈空间大小,以sizeof(SElemType)为单位
}SqStack;
//** 构造一个空栈
Status InitStack(SqStack *S);
//** 销毁栈
Status DestroyStack(SqStack *S);
//** 栈是否为空
Status StackEmpty(SqStack *S);
//** 入栈
Status Push(SqStack *S,SElemType e);
//**取栈顶
SElemType GetTop(SqStack *S);
//** 出栈
SElemType Pop(SqStack *S);
//** 栈长度
int StackLength(SqStack *S);
//** 遍历
Status StackTraverse(SqStack *S,Status( *visit)(SElemType)); Status visit(SElemType e);
#endif
stack.c
#include<stdio.h>
#include<malloc.h>
#include<stdlib.h>
#include"stack.h"
/*********************************************** ************************************************/
int main(int argc,char* argv[])
{
SqStack S; //=(SqStack *)malloc(sizeof(SqStack));
printf("(1)初始化顺序栈。
\n");
InitStack(&S);
return 0;
}
//构造一个空栈S
Status InitStack(SqStack *S)
{
S->base=(SElemType *)malloc(STACK_INIT_SIZE * sizeof(SElemType));
if(!s->base)
{
printf("init error!\n");
exit(OVERFLOW);
}
S->top = S->base;
S->stacksize = STACK_INIT_SIZE;
printf("init OK\n");
return OK;
}
//销毁栈S
Status DestroyStack (SqStack *S) {
free(S->base);
//free(S->top);
S->base=NULL;
S->top=NULL;
S->stacksize=0;
return OK;
}
//判断栈S是否为空
Status StackEmpty (SqStack *S) {
if(S->base==S->top)
return TRUE;
else
return FALSE;
}
//入栈
Status Push (SqStack *S, SElemType e)
{
if(S->top - S->base >= S->stacksize)
{
//栈满,追加储存空间
S->base = (SElemType *)realloc(S->base,(S->stacksize +\
STACKINCREMENT) * sizeof(SElemType));
if (!S->base)
{
printf("malloc error when push\n");
exit(OVERFLOW);
}
S->top=S->base + S->stacksize;
S->stacksize += STACKINCREMENT;
}
*S->top++=e;
return OK;
}
//** 取栈顶元素,不删除
SElemType GetTop (SqStack *S)
if(S->top==S->base) return ERROR;
//e = S->top-1;
return *(S->top-1);
}
//**栈长度
int StackLength (SqStack *S)
{
//返回S的元素个数,即栈的长度
return (S->top - S->base);
}
//** 出栈(弹出一个)
SElemType Pop (SqStack *S)
{
//若栈不空,则删除S的栈顶元素
if (S->top==S->base) return ERROR;
return (*--S->top);
//** 遍历栈
Status StackTraverse (SqStack s,Status( *visit)(SElemType)) {
while (S.top!=S.base)
visit(*--S.top); //加了个*号
return OK;
}
Status visit(SElemType e)
{
printf("%c\n",e);
return OK;
}。