链式栈基本操作C语言实现学习代码
- 格式:docx
- 大小:38.64 KB
- 文档页数:5
第1篇一、实验目的1. 理解栈的基本概念和操作;2. 掌握栈的顺序存储和链式存储实现方法;3. 熟悉栈在程序设计中的应用。
二、实验内容1. 栈的顺序存储结构实现;2. 栈的链式存储结构实现;3. 栈的基本操作(入栈、出栈、判空、求栈顶元素);4. 栈在程序设计中的应用。
三、实验方法1. 采用C语言进行编程实现;2. 对实验内容进行逐步分析,编写相应的函数和程序代码;3. 通过运行程序验证实验结果。
四、实验步骤1. 实现栈的顺序存储结构;(1)定义栈的结构体;(2)编写初始化栈的函数;(3)编写入栈、出栈、判空、求栈顶元素的函数;(4)编写测试程序,验证顺序存储结构的栈操作。
2. 实现栈的链式存储结构;(1)定义栈的节点结构体;(2)编写初始化栈的函数;(3)编写入栈、出栈、判空、求栈顶元素的函数;(4)编写测试程序,验证链式存储结构的栈操作。
3. 栈在程序设计中的应用;(1)实现一个简单的四则运算器,使用栈进行运算符和操作数的存储;(2)实现一个逆序输出字符串的程序,使用栈进行字符的存储和输出;(3)编写测试程序,验证栈在程序设计中的应用。
五、实验结果与分析1. 顺序存储结构的栈操作实验结果:(1)入栈操作:在栈未满的情况下,入栈操作成功,栈顶元素增加;(2)出栈操作:在栈非空的情况下,出栈操作成功,栈顶元素减少;(3)判空操作:栈为空时,判空操作返回真,栈非空时返回假;(4)求栈顶元素操作:在栈非空的情况下,成功获取栈顶元素。
2. 链式存储结构的栈操作实验结果:(1)入栈操作:在栈未满的情况下,入栈操作成功,链表头指针指向新节点;(2)出栈操作:在栈非空的情况下,出栈操作成功,链表头指针指向下一个节点;(3)判空操作:栈为空时,判空操作返回真,栈非空时返回假;(4)求栈顶元素操作:在栈非空的情况下,成功获取栈顶元素。
3. 栈在程序设计中的应用实验结果:(1)四则运算器:成功实现加、减、乘、除运算,并输出结果;(2)逆序输出字符串:成功将字符串逆序输出;(3)测试程序:验证了栈在程序设计中的应用。
数据结构实验实验内容和目的:掌握几种基本的数据结构:集合、线性结构、树形结构等在求解实际问题中的应用,以及培养书写规范文档的技巧。
学习基本的查找和排序技术。
让我们在实际上机中具有编制相当规模的程序的能力。
养成一种良好的程序设计风格。
实验教材:数据结构题集(C语言版)清华大学出版社2007年实验项目:实验一、栈和循环队列㈠、实验内容:①栈掌握栈的特点(先进后出FILO)及基本操作,如入栈、出栈等,栈的顺序存储结构和链式存储结构,以便在实际问题背景下灵活应用。
本程序采用的是链栈结构,具有初始化一个栈、PUSH、POP、显示所有栈里的元素四个功能。
②循环队列掌握队列的特点(先进先出FIFO)及基本操作,如入队、出队等,学会循环队列的实现,以便在实际问题背景下灵活运用。
本程序具有初始化一个队列、入队、出队、显示队列的所有元素、队列长度五个功能。
㈡、实验代码①栈程序代码:#include <stdio.h>#include <malloc.h>#define Stack_Size 6#define ERROR 0#define OK 1typedef int SElemType;typedef struct SNode{SElemType data;struct SNode *next;}SNode,*LinkStack;int CreatTwo(LinkStack &head,int n){int i;SNode *p;head=(LinkStack)malloc(sizeof(SNode));head->next=NULL;printf("请输入数据(数字):\n");for(i=n;i>0;--i){p=(SNode *)malloc(sizeof(SNode));scanf("%d",&p->data);p->next=head->next;head->next=p;}return 1;}int menu_select(){int sn;for(;;){scanf("%d",&sn);if(sn<1||sn>6)printf("\n\t输入错误,请重新输入\n");elsebreak;}return sn;}int Push(LinkStack &top,SElemType e){SNode *q;q=(LinkStack)malloc(sizeof(SNode));if(!q){printf("溢出!\n");return(ERROR);}q->data=e;q->next=top->next;top->next=q;return(OK);}int Pop(LinkStack &top,SElemType &e){SNode *q;if(!top->next){printf("error!\n");return(ERROR);}e=top->next->data;q=top->next;top->next=q->next;free(q);return(OK);}void main(){ int e;LinkStack top;printf("1.初始化一个栈;\n2.PUSH;\n3.POP;\n4.显示所有栈里的元素;\n5.结束;\n");while(1){switch(menu_select()){case 1:if(CreatTwo(top,Stack_Size))printf("Success!\n");break; case 2:printf("Push:\n");scanf("%d",&e);if(Push(top,e))printf("Success!\n");break;case 3:if(Pop(top,e))printf("Success!\n");printf("%d\n",e);break;case 4:LinkStack p;printf("所有栈里的元素:\n");p=top;while(p->next){p=p->next;printf("%7d",p->data);}printf("\n");break;case 5:return;}}}运行结果:②循环队列程序代码:#include<stdlib.h>#include<stdio.h>#define OVERFLOW -1#define OK 1#define ERROR 0#define MAXSIZE 100typedef struct{int *elem;//队列存储空间int front;int rear;}SqQueue;//判断选择是否正确int menu_select(){int sn;for(;;){scanf("%d",&sn);if(sn<1||sn>6)printf("\n\t输入错误,请重新输入\n");elsebreak;}return sn;}//参数(传出)SqQueue &Q,循环队列(空)int InitQueue(SqQueue &Q){Q.elem=(int *)malloc(MAXSIZE*sizeof(int));if(!Q.elem)exit(OVERFLOW);Q.front=Q.rear=-1;for(int i=0;i<MAXSIZE;i++)Q.elem[i]=-1;return OK;}//返回Q的元素个数int QueueLength(SqQueue Q){return (Q.rear-Q.front+MAXSIZE)%MAXSIZE;}//显示队列的元素void Display(SqQueue Q){for(int i=0;i<=QueueLength(Q);i++)if(Q.elem[i]!=-1)printf("%d ",Q.elem[i]);printf("\n");}//入队int EnQueue(SqQueue &Q,int e){Q.rear=(Q.rear+1)%MAXSIZE;if(Q.rear==Q.front)return ERROR;Q.elem[Q.rear]=e;return OK;}//出队int DeQueue(SqQueue &Q,int &e){if(Q.front==Q.rear)return ERROR;e=Q.elem[Q.front+1];Q.elem[Q.front+1]=-1;Q.front=(Q.front+1)%MAXSIZE;return OK;}void main(){SqQueue Q;InitQueue(Q);int elem,e;printf("请输入队列元素(以0结束):\n");scanf("%d",&elem);while(elem!=0){EnQueue(Q,elem);scanf("%d",&elem);}printf("队列为:\n");Display(Q);printf("1.初始化一个队列;\n2.入队;\n3.出队;\n4.显示队列的所有元素;\n5.队列长度:\n6.结束;\n");while(1){switch(menu_select()){case 1:printf("请输入队列元素(以0结束):\n");scanf("%d",&elem);while(elem!=0){EnQueue(Q,elem);scanf("%d",&elem);}printf("队列为:\n");Display(Q);fflush(stdin);break;case 2:scanf("%d",&elem);EnQueue(Q,elem);printf("队列为:\n");Display(Q);fflush(stdin);break;case 3:DeQueue(Q,elem);printf("队列为:\n");Display(Q);break;case 4:printf("\n队列的所有元素:\n");Display(Q);break;case 5:printf("%d\n",QueueLength(Q));break;case 6:return;}}}运行结果:实验二、数组㈠、实验内容:数组一般不做插入或删除操作,也就是说,一旦建立了数组,则结构中的数据元素个数和元素之间的关系就不再发生变动。
c语言初学必背代码C 语言初学必背代码C 语言作为一门基础的编程语言,对于初学者来说,掌握一些关键的代码片段是非常有帮助的。
这些代码不仅能够帮助你理解 C 语言的基本语法和概念,还能为你后续的学习打下坚实的基础。
接下来,让我们一起看看 C 语言初学必背的代码。
一、输出“Hello World”这可能是学习任何编程语言的第一步,它简单却具有象征意义。
```cinclude <stdioh>int main(){printf("Hello World\n");return 0;}```在这个代码中,`include <stdioh>`是预处理指令,用于包含标准输入输出头文件。
`main`函数是 C 语言程序的入口点。
`printf`函数用于输出指定的内容,`\n`是换行符。
二、变量的定义和使用```cinclude <stdioh>int main(){int num = 10; //定义一个整型变量并初始化float price = 125; //定义一个浮点型变量并初始化char letter ='A';//定义一个字符型变量并初始化printf("num =%d\n", num);printf("price =%f\n", price);printf("letter =%c\n", letter);return 0;}```在上述代码中,我们定义了整型、浮点型和字符型的变量,并使用`printf`函数输出它们的值。
其中,`%d`用于输出整型,`%f`用于输出浮点型,`%c`用于输出字符型。
三、算术运算```cint main(){int a = 5, b = 3;int sum = a + b;int difference = a b;int product = a b;int quotient = a / b;printf("sum =%d\n", sum);printf("difference =%d\n", difference);printf("product =%d\n", product);printf("quotient =%d\n", quotient);return 0;}```这里展示了 C 语言中的基本算术运算:加法、减法、乘法和除法。
以下是使用C语言实现链式队列的代码,可以实现输入数字入队,输入字符出队的功能:#include <stdio.h>#include <stdlib.h>#include <string.h>// 定义链式队列结构体typedef struct QueueNode {int data; // 存储数字struct QueueNode* next; // 指向下一个节点} QueueNode;// 定义链式队列结构体typedef struct {QueueNode* front; // 指向队头节点QueueNode* rear; // 指向队尾节点} LinkedQueue;// 初始化链式队列void InitQueue(LinkedQueue* queue) {queue->front = NULL;queue->rear = NULL;}// 入队操作void EnQueue(LinkedQueue* queue, int data) {QueueNode* newNode =(QueueNode*)malloc(sizeof(QueueNode)); // 创建新节点newNode->data = data; // 将数字存储到新节点中newNode->next = NULL; // 新节点的下一个节点为空if (queue->rear == NULL) { // 如果队列为空,将新节点设置为队头和队尾queue->front = newNode;queue->rear = newNode;} else { // 如果队列不为空,将新节点添加到队尾,并更新队尾指针queue->rear->next = newNode;queue->rear = newNode;}}// 出队操作,返回出队的字符,如果队列为空,返回-1char DeQueue(LinkedQueue* queue) {if (queue->front == NULL) { // 如果队列为空,返回-1表示失败return -1;} else { // 如果队列不为空,将队头节点从队列中删除,并返回其存储的字符,同时更新队头指针char data = queue->front->data;QueueNode* temp = queue->front;queue->front = queue->front->next;free(temp); // 释放已删除节点的内存空间return data;}}。
一、实验目的1. 掌握栈的定义、特点、逻辑结构,理解栈的抽象数据类型。
2. 熟练掌握顺序栈和链栈两种结构类型的定义、特点以及基本操作的实现方法。
3. 了解栈在解决实际问题中的应用。
二、实验内容1. 编写顺序栈和链栈的基本操作函数,包括入栈(push)、出栈(pop)、判断栈空(isEmpty)、获取栈顶元素(getTop)等。
2. 利用栈实现字符序列是否为回文的判断。
3. 利用栈实现整数序列中最大值的求解。
三、实验步骤1. 创建顺序栈和链栈的结构体,并实现相关的基本操作函数。
2. 编写一个函数,用于判断字符序列是否为回文。
该函数首先将字符序列中的字符依次入栈,然后逐个出栈,比较出栈的字符是否与原序列相同,若相同则表示为回文。
3. 编写一个函数,用于求解整数序列中的最大值。
该函数首先将序列中的元素依次入栈,然后逐个出栈,每次出栈时判断是否为当前栈中的最大值,并记录下来。
四、实验结果与分析1. 顺序栈和链栈的基本操作函数实现如下:```c// 顺序栈的基本操作void pushSeqStack(SeqStack s, ElemType x) {if (s->top < MAXSIZE - 1) {s->top++;s->data[s->top] = x;}}void popSeqStack(SeqStack s, ElemType x) {if (s->top >= 0) {x = s->data[s->top];s->top--;}}bool isEmptySeqStack(SeqStack s) {return s->top == -1;}ElemType getTopSeqStack(SeqStack s) {if (s->top >= 0) {return s->data[s->top];}return 0;}// 链栈的基本操作void pushLinkStack(LinkStack s, ElemType x) {LinkStack p = (LinkStack )malloc(sizeof(LinkStack)); if (p == NULL) {exit(1);}p->data = x;p->next = s->top;s->top = p;}void popLinkStack(LinkStack s, ElemType x) { if (s->top != NULL) {LinkStack p = s->top;x = p->data;s->top = p->next;free(p);}}bool isEmptyLinkStack(LinkStack s) {return s->top == NULL;}ElemType getTopLinkStack(LinkStack s) {if (s->top != NULL) {return s->top->data;}return 0;}```2. 判断字符序列是否为回文的函数实现如下:```cbool isPalindrome(char str) {SeqStack s;initStack(&s);int len = strlen(str);for (int i = 0; i < len; i++) {pushSeqStack(&s, str[i]);}for (int i = 0; i < len; i++) {char c = getTopSeqStack(&s);popSeqStack(&s, &c);if (c != str[i]) {return false;}}return true;}```3. 求解整数序列中最大值的函数实现如下:```cint getMax(int arr, int len) {LinkStack s;initStack(&s);int max = arr[0];for (int i = 0; i < len; i++) {pushLinkStack(&s, arr[i]);if (arr[i] > max) {max = arr[i];}}while (!isEmptyLinkStack(&s)) {popLinkStack(&s, &max);}return max;}```五、实验心得通过本次实验,我对栈的基本操作有了更深入的理解。
数据结构c语言版创建单链表的代码单链表作为常用的线性结构之一,常常用于解决以链式方式存储数据的问题。
创建单链表需要掌握一些基础的数据结构知识以及对C语言的熟练运用。
接下来,本文将分步骤地阐述数据结构C语言版创建单链表的代码。
第一步,定义单链表结构体并定义节点类型。
在C语言中,我们可以通过结构体的方式定义单链表,其中结构体中包含两个成员变量,分别为存储数据的data和指向下一个节点的指针next。
对于节点类型,我们可以使用typedef对节点类型进行定义,例如:```struct ListNode {int data;struct ListNode *next;};typedef struct ListNode ListNode;```在以上代码中,我们首先定义了一个结构体ListNode作为单链表的元素类型,其中包含存储数据的data和指向下一个元素的指针next。
接着我们使用typedef将结构体ListNode定义为仿函数ListNode,从而使其更加方便使用。
第二步,初始化单链表。
在创建单链表之前,我们需要先将单链表的头指针初始化为NULL,表示当前链表为空。
具体代码如下:```ListNode *createLinkedList() {ListNode *head = NULL;return head;}```以上代码中,函数createLinkedList用于创建并初始化单链表,其中head表示单链表头指针,我们将其初始化为NULL。
第三步,向单链表中添加元素。
在单链表中添加元素需要借助于指针的指向关系。
具体来说,我们需要先创建新的节点,将其数据添加到节点中,然后将新节点的next指针指向之前的头节点,最后将头指针指向新节点。
具体过程如下:```ListNode *addListNode(ListNode **head, int val) {ListNode *newNode = (ListNode *)malloc(sizeof(ListNode)); newNode->data = val;newNode->next = *head;*head = newNode;return *head;}```在以上代码中,函数addListNode接收一个指向头指针的指针head,以及需要添加的元素值val。
栈的基本操作代码引言栈(Stack)是一种常见的数据结构,具有后进先出(Last In First Out,LIFO)的特性。
栈的基本操作包括入栈(Push)、出栈(Pop)、获取栈顶元素(Top)和判断栈是否为空(IsEmpty)。
本文将详细介绍栈的基本操作代码及其实现。
一、栈的定义栈是一种线性数据结构,仅允许在一端进行插入和删除操作。
这一端被称为栈顶,另一端称为栈底。
栈的插入操作叫做入栈,删除操作叫做出栈。
栈的特性决定了最后插入的元素最先删除。
二、栈的基本操作2.1 入栈(Push)入栈操作将一个元素添加到栈的栈顶。
具体实现如下:class Stack:def __init__(self):self.stack = []def push(self, item):self.stack.append(item)2.2 出栈(Pop)出栈操作将栈顶元素删除并返回。
具体实现如下:class Stack:def __init__(self):self.stack = []def push(self, item):self.stack.append(item)def pop(self):if not self.is_empty():return self.stack.pop()else:return None2.3 获取栈顶元素(Top)获取栈顶元素操作不改变栈的结构,仅返回栈顶元素的值。
具体实现如下:class Stack:def __init__(self):self.stack = []def push(self, item):self.stack.append(item)def pop(self):if not self.is_empty():return self.stack.pop()else:return Nonedef top(self):if not self.is_empty():return self.stack[-1]else:return None2.4 判断栈是否为空(IsEmpty)判断栈是否为空操作用于检测栈内是否还有元素。
链栈的基本操作链栈是一种特殊的栈结构,它的存储方式是链式存储,而不是顺序存储。
链栈的基本操作包括初始化、入栈、出栈、获取栈顶元素和判断栈是否为空。
下面将详细介绍这些操作的实现方法和应用场景。
一、初始化链栈初始化链栈就是创建一个空栈,通常需要定义一个头结点,并将链表的头指针指向头结点。
头结点不存储数据,只作为链表的起始点。
二、入栈操作入栈操作是将一个元素添加到链栈的栈顶。
具体步骤如下:1. 创建一个新的结点,将要入栈的元素存储在结点的数据域中。
2. 将新结点的指针域指向链表的头指针所指向的结点。
3. 更新链表的头指针,使其指向新结点。
入栈操作的时间复杂度为O(1),即常数时间。
三、出栈操作出栈操作是将链栈的栈顶元素删除,并返回其值。
具体步骤如下:1. 判断链栈是否为空,如果为空则无法进行出栈操作。
2. 将链表的头指针指向的结点删除,并保存其数据域的值。
3. 更新链表的头指针,使其指向被删除结点的下一个结点。
4. 返回被删除结点的数据域的值。
出栈操作的时间复杂度为O(1),即常数时间。
四、获取栈顶元素获取栈顶元素操作是返回链栈的栈顶元素的值,但不删除该元素。
具体步骤如下:1. 判断链栈是否为空,如果为空则无法获取栈顶元素。
2. 返回链表的头指针所指向的结点的数据域的值。
获取栈顶元素操作的时间复杂度为O(1),即常数时间。
五、判断栈是否为空判断栈是否为空操作是检查链栈是否为空栈,即链表中是否只有头结点。
具体步骤如下:1. 判断链表的头指针是否为空,如果为空则链栈为空栈。
2. 如果链表的头指针不为空,则链栈不为空栈。
判断栈是否为空操作的时间复杂度为O(1),即常数时间。
链栈的基本操作可以应用于很多场景,例如:1. 表达式求值:将中缀表达式转换为后缀表达式,然后利用链栈进行后缀表达式的求值。
2. 浏览器的前进和后退功能:使用两个链栈分别保存浏览器的前进和后退历史记录。
3. 括号匹配:利用链栈对输入的括号进行匹配判断,判断括号是否闭合正确。
在使用C语言实现链栈(链式栈)时,判断栈是否满的问题一般不涉及,因为链栈的长度理论上可以是无限的,不存在溢出的问题。
链栈通过动态内存分配来存储元素,只要内存充足,就可以一直入栈。
链栈通常包含一个头结点和指向栈顶的指针,入栈时在链表头插入新元素,出栈时删除头结点。
由于链栈不受固定空间限制,栈满的情况几乎不会发生。
以下是一个简单的C语言链栈的实现示例,用于说明链栈的基本结构:#include <stdio.h>#include <stdlib.h>// 定义链栈节点结构struct Node {int data;struct Node* next;};// 定义链栈结构struct Stack {struct Node* top; // 栈顶指针};// 初始化链栈void initStack(struct Stack* stack) {stack->top = NULL;}// 判断链栈是否为空int isEmpty(struct Stack* stack) {return stack->top == NULL;}// 入栈操作void push(struct Stack* stack, int value) {struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));newNode->data = value;newNode->next = stack->top;stack->top = newNode;}// 出栈操作int pop(struct Stack* stack) {if (isEmpty(stack)) {printf("Stack is empty.\n");return -1; // 表示栈空}struct Node* temp = stack->top;int value = temp->data;stack->top = temp->next;free(temp);return value;}// 打印栈中元素void printStack(struct Stack* stack) { struct Node* current = stack->top;while (current != NULL) {printf("%d ", current->data);current = current->next;}printf("\n");}int main() {struct Stack stack;initStack(&stack);push(&stack, 10);push(&stack, 20);push(&stack, 30);printf("Stack elements: ");printStack(&stack);int poppedValue = pop(&stack);printf("Popped value: %d\n", poppedValue);printf("Stack elements after popping: ");printStack(&stack);return 0;}在链栈中,一般不会显式判断栈是否满,因此无需专门的栈满判断函数。
栈是一种常见的数据结构,用于解决许多算法和数据处理问题。
在编程中,栈通常用于处理表达式求值问题。
本篇文章将介绍如何使用栈解决表达式求值问题,并给出对应的C语言代码。
1. 表达式求值问题介绍表达式求值是指计算一个数学表达式的值,通常涉及到四则运算、括号和优先级等概念。
给定一个表达式“3 + 4 * 2”,我们需要得到其计算结果为11。
在编程中,需要将该表达式转换为计算机可识别的形式,并使用算法进行求值。
2. 中缀表达式、前缀表达式和后缀表达式在计算机中常见的表达式有三种形式:中缀表达式、前缀表达式和后缀表达式。
其中,中缀表达式是通常人们在日常生活中使用的表达式形式,如“3 + 4 * 2”。
前缀表达式是运算符位于操作数之前的形式,例如“+ 3 * 4 2”。
后缀表达式则是运算符位于操作数之后的形式,例如“3 4 2 * +”。
3. 使用栈解决表达式求值问题在解决表达式求值问题时,我们可以利用栈的特性来简化计算过程。
具体步骤如下:3.1 将中缀表达式转换为后缀表达式我们需要将中缀表达式转换为后缀表达式,这样可以简化表达式的计算顺序。
具体转换规则如下:- 从左至右扫描中缀表达式的每个数字或符号。
- 如果是操作数,则直接输出。
- 如果是运算符,则弹出栈中所有优先级大于或等于该运算符的运算符,并将其压入栈中,然后压入该运算符。
- 如果是括号,则根据括号的不同情况进行处理。
通过以上规则,我们可以将中缀表达式转换为后缀表达式。
3.2 计算后缀表达式的值得到后缀表达式后,我们可以利用栈来计算其值。
具体步骤如下:- 从左至右扫描后缀表达式的每个数字或符号。
- 如果是操作数,则压入栈中。
- 如果是运算符,则弹出栈中的两个操作数进行相应的运算,并将结果压入栈中。
- 继续扫描直到表达式结束,栈中的值即为所求结果。
通过以上步骤,我们可以使用栈来解决表达式求值问题。
4. C语言代码实现以下是使用C语言实现栈来解决表达式求值问题的代码示例:```c#include <stdio.h>#include <stdlib.h>#include <string.h>typedef struct {int top;int capacity;int* array;} Stack;Stack* createStack(int capacity) {Stack* stack = (Stack*)malloc(sizeof(Stack));stack->capacity = capacity;stack->top = -1;stack->array = (int*)malloc(stack->capacity * sizeof(int)); return stack;}int isFull(Stack* stack) {return stack->top == stack->capacity - 1; }int isEmpty(Stack* stack) {return stack->top == -1;}void push(Stack* stack, int item) {if (isFull(stack)) return;stack->array[++stack->top] = item;}int pop(Stack* stack) {if (isEmpty(stack)) return -1;return stack->array[stack->top--];}int evaluatePostfix(char* exp) {Stack* stack = createStack(strlen(exp)); for (int i = 0; exp[i]; i++) {if (isdigit(exp[i])) {push(stack, exp[i] - '0');} else {int val1 = pop(stack);int val2 = pop(stack);switch (exp[i]) {case '+':push(stack, val2 + val1); break;case '-':push(stack, val2 - val1); break;case '*':push(stack, val2 * val1); break;case '/':push(stack, val2 / val1); break;}}}return pop(stack);}int m本人n() {char exp[] = "34*2+";printf("The value of s is d\n", exp, evaluatePostfix(exp));return 0;}```以上代码实现了栈的基本功能,并利用栈来计算后缀表达式的值。
C语言数据结构之栈的基本操作栈是一种特殊的数据结构,它按照后进先出(LIFO)的原则进行操作。
栈可以用数组或链表来实现,下面将介绍栈的基本操作。
1.初始化栈:栈的初始化就是为栈分配内存空间,并将栈顶指针设置为-1(如果是数组实现)或者NULL(如果是链表实现)。
2.判断栈空:栈空表示栈中没有任何元素。
如果栈顶指针等于-1或者NULL,则表示栈空。
3.判断栈满:栈满表示栈中已经存满了元素。
如果栈顶指针等于栈的最大容量减1,则表示栈满。
4. 进栈(push):进栈操作就是将元素放入栈中。
如果栈不满,则将栈顶指针加1,并将元素放入栈顶位置。
5. 出栈(pop):出栈操作就是从栈中取出一个元素。
如果栈不空,则将栈顶指针减1,并返回栈顶元素。
6. 获取栈顶元素(getTop):获取栈顶元素操作不改变栈的状态,只返回栈顶元素的值。
如果栈不空,则返回栈顶元素值;否则,返回空值。
7.清空栈:清空栈操作就是将栈中的所有元素全部出栈,即将栈顶指针设置为-1或者NULL。
8.销毁栈:销毁栈操作是释放栈的内存空间,将栈的指针设置为NULL。
栈的应用:栈在计算机领域有广泛的应用,其中一个常见的应用是函数调用栈。
当一个函数调用另一个函数时,当前函数的状态(包括局部变量、返回地址等)会被压入到栈中。
当被调用函数执行完成后,栈顶的元素会被弹出,然后继续执行调用该函数的代码。
另一个常见的应用是表达式求值。
在表达式求值过程中,需要用到运算符优先级。
我们可以利用栈来处理运算符的优先级。
将运算符入栈时,可以先与栈顶运算符比较优先级,如果栈顶运算符的优先级高于当前运算符,则将栈顶运算符出栈,并继续比较。
这样可以确保栈中的运算符按照优先级从高到低的顺序排列。
此外,栈还可以用于处理括号匹配问题。
当遇到左括号时,将其入栈;当遇到右括号时,判断栈顶元素是否为对应的左括号,如果是,则将栈顶元素弹出,否则表示括号不匹配。
如果最后栈为空,则表示所有括号都匹配。
C数据结构实例代码C语言是一种通用的高级程序设计语言,也是实现数据结构的一种常用语言。
下面是一些常见的数据结构的示例代码,供参考。
1. 数组(Array)```c#include <stdio.h>int maiint arr[5] = {1, 2, 3, 4, 5}; // 创建一个有5个元素的整数数组for(int i=0; i<5; i++)printf("%d ", arr[i]); // 遍历并输出数组的所有元素}return 0;```2. 链表(Linked List)```c#include <stdio.h>#include <stdlib.h>struct Nodeint data;struct Node* next;};void printList(struct Node* head)struct Node* curr = head;while(curr != NULL)printf("%d ", curr->data);curr = curr->next;}void insert(struct Node** head, int data)struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));newNode->data = data;newNode->next = (*head);(*head) = newNode;int maistruct Node* head = NULL;insert(&head, 5);insert(&head, 4);insert(&head, 3);insert(&head, 2);insert(&head, 1);printList(head); // 输出链表的所有元素return 0;```3. 栈(Stack)```c#include <stdio.h>#define SIZE 5int stack[SIZE];int top = -1;int isEmptreturn top == -1;int isFulreturn top == SIZE - 1;void push(int item)if(isFull()printf("Stack is full.\n");} elsestack[++top] = item;printf("Pushed %d\n", item);}void poif(isEmpty()printf("Stack is empty.\n");} elseprintf("Popped %d\n", stack[top--]); }int maipush(1);push(2);push(3);pop(;push(4);push(5);push(6);pop(;return 0;```4. 队列(Queue)```c#include <stdio.h>#define SIZE 5int queue[SIZE];int front = -1; // 队头指针int rear = -1; // 队尾指针int isEmptreturn front == -1 && rear == -1; int isFulreturn rear == SIZE - 1;void enqueue(int item)if(isFull()printf("Queue is full.\n");} elseif(isEmpty()front = rear = 0;} elserear++;}queue[rear] = item;printf("Enqueued %d\n", item);}void dequeuif(isEmpty()printf("Queue is empty.\n");} elseprintf("Dequeued %d\n", queue[front]); if(front == rear)front = rear = -1;} elsefront++;}}int maienqueue(1);enqueue(2);enqueue(3);dequeue(;enqueue(4);enqueue(5);enqueue(6);dequeue(;return 0;```5. 树(Tree)```c#include <stdio.h>#include <stdlib.h>struct Nodeint data;struct Node* left;struct Node* right;};struct Node* create(int data)struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));newNode->data = data;newNode->left = NULL;newNode->right = NULL;return newNode;void inorder(struct Node* root)if(root != NULL)inorder(root->left);printf("%d ", root->data);inorder(root->right);}int maistruct Node* root = create(1);root->left = create(2);root->right = create(3);root->left->left = create(4);root->left->right = create(5);root->right->left = create(6);root->right->right = create(7);printf("Inorder traversal of the tree: "); inorder(root); // 中序遍历树return 0;```。
c语言实现栈详细代码栈(Stack),又称堆栈,是一种后进先出(LIFO,Last In First Out)的数据结构,它只允许在一段端点进行插入和删除操作,这个端点被称为栈顶。
C语言实现栈的基本思路是建立一个结构体,结构体中包含一个数组和栈顶指针top。
数组用来存放栈中元素,top指针指向栈顶元素的下标。
实现栈的操作包括压栈(push)、出栈(pop)和获取栈顶元素(get_top)。
下面是详细代码:```#include <stdio.h>#include <stdlib.h>#define MAX_SIZE 100 //栈的最大长度typedef struct stack {int data[MAX_SIZE]; //栈中元素int top; //栈顶指针} Stack;//初始化栈void init(Stack *s) {s->top = -1; //栈顶指针初始化为-1,表示栈为空}//判断栈是否为空int is_empty(Stack *s) {return s->top == -1;}//判断栈是否已满int is_full(Stack *s) {return s->top == MAX_SIZE-1;}//压栈void push(Stack *s, int value) {if (is_full(s)) {printf("Stack is full, cannot push!\n");return;}s->data[++(s->top)] = value; //栈顶指针先加1,再将元素入栈}//出栈void pop(Stack *s) {if (is_empty(s)) {printf("Stack is empty, cannot pop!\n");}s->top--; //栈顶指针减1,表示栈顶元素已删除}//获取栈顶元素int get_top(Stack *s) {if (is_empty(s)) {printf("Stack is empty, cannot get top element!\n"); return -1;}return s->data[s->top]; //返回栈顶元素}int main() {Stack s;init(&s); //初始化栈for (i = 0; i < 5; i++) {push(&s, i); //压入5个元素}printf("Top element: %d\n", get_top(&s)); //获取栈顶元素while (!is_empty(&s)) {printf("%d ", get_top(&s)); //依次输出栈中元素pop(&s); //弹出栈顶元素}return 0;}```代码中定义了一个结构体,包含一个整型数组data和一个整型变量top,数组用来存放栈中元素,top表示栈顶指针。
实现链栈的各种基本运算的算法实验总结示例文章篇一:哎呀,我一个小学生,哪懂什么“实现链栈的各种基本运算的算法实验总结”呀!这听起来可太难啦!不过,老师让做,那我就努力试试吧。
我们先来说说什么是链栈。
这就好像是一堆玩具,一个接一个地排好队。
前面的玩具可以被先拿走,后面的再跟上,是不是有点像排队买冰淇淋呀?在做这个实验的时候,我可费了不少劲儿呢!一会儿要创建这个链栈,一会儿又要往里面塞东西,还要能把东西拿出来。
这就好比我在搭积木,好不容易搭好了,又得小心翼翼地拆一部分,还不能让整个积木塔倒掉。
我记得最清楚的就是写那个入栈的算法啦。
我心里直犯嘀咕:“这可怎么弄呀?” 我就像一只迷路的小蚂蚁,到处乱撞。
后来我跟同桌小明讨论,我问他:“小明,你说这入栈到底是咋回事儿呀?”小明挠挠头说:“我也有点迷糊呢。
”我们俩你看看我,我看看你,愁眉苦脸的。
可是我们没放弃,继续琢磨。
最后终于搞明白了,那种开心劲儿,就像大热天吃了一大口冰淇淋!还有出栈的算法,也不简单。
我老是担心一不小心就出错了,心里七上八下的。
经过这么一番折腾,我算是明白了,做这个链栈的实验就像是走迷宫,得一步一步小心地走,一个不小心就会迷路。
但只要坚持,总能找到出口。
总的来说,这个链栈的实验虽然很难,但是让我学到了好多东西,也让我知道了遇到困难不能退缩,要勇敢地去面对,去解决。
我相信,以后再遇到这样的难题,我也能搞定!示例文章篇二:哎呀呀,这“实现链栈的各种基本运算的算法实验”对我这个小学生来说,可真是个超级难搞的大难题呢!一开始,老师跟我们说要做这个实验的时候,我整个人都懵啦!啥是链栈呀?我完全搞不清楚。
就好像让我去抓一只会飞的恐龙一样,根本不知道从哪儿下手!后来老师慢慢给我们讲解,我才稍微有点明白。
原来链栈就像是一个装东西的特别箱子,只不过这个箱子有它自己独特的规则。
做实验的时候,我和我的小伙伴们那叫一个手忙脚乱。
我们就像一群没头的苍蝇,到处乱撞。
#define_CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<stdlib.h>
#define datatype int
struct stack1
{
int num;
datatype data;
struct stack1*pnext;
};
typedef struct stack1stack;
stack*init(stack*phead);//初始化
stack*push(stack*phead,int num,datatype data);//压栈stack*pop(stack*phead,stack*tnode);//出栈
stack*freeall(stack*phead);//清空
void printf1(stack*phead);//打印
源文件
#define_CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<stdlib.h>
#include"abc.h"
stack*init(stack*phead)
{
return NULL;
}
stack*push(stack*phead,int num,datatype data)
{
stack*p=(stack*)malloc(sizeof(stack));
p->num=num;
p->data=data;
p->pnext=NULL;
if(phead==NULL)
{
phead=p;
return phead;
}
else
{
stack*q=phead;
while(q->pnext!=NULL)
q=q->pnext;
}
q->pnext=p;
return phead;
}
}
void printf1(stack*phead)
{
if(phead==NULL)
{
return;
}
else
{
printf("本结点地址=%p,后一个结点地址=%p,结点编号=%d,结点数据=%d\n",phead,phead->pnext,phead->num,phead->data);
printf1(phead->pnext);
//printf("本结点地址=%p,后一个结点地址=%p,结点编号=%d,结点数据=%d\n", phead, phead->pnext, phead->num, phead->data);
}
}
stack*pop(stack*phead,stack*tnode)
{
if(phead==NULL)
{
return NULL;
}
else if(phead->pnext==NULL)
{
tnode->num=phead->num;
tnode->data=phead->data;
free(phead);
phead=NULL;
return phead;
}
else
{
stack*p=phead;
stack*q=phead->pnext;
while(q->pnext!=NULL)
{
p=q;
q=q->pnext;
}
p->pnext=NULL;
tnode->num=q->num;
tnode->data=q->data;
free(q);
return phead;
}
}
stack*freeall(stack*phead)
{
if(phead==NULL)
{
return NULL;
}
else
{
stack*p=phead;
stack*q=NULL;
while(p!=NULL)
{
q=p->pnext;
free(p);
p=q;
//q = q->pnext;
}
return NULL;
}
}
测试代码
#define_CRT_SECURE_NO_WARNINGS #include<stdio.h>
#include<stdlib.h>
#include"abc.h"
void main()
{
stack*pp=NULL;
//init(pp);
//pp = push(pp, 1, 10);
//pp = push(pp, 2, 11);
//pp = push(pp, 3, 12);
//pp = push(pp, 4, 13);
//pp = push(pp, 5, 14);
//printf("入栈之后\n");
//printf1(pp);
//printf("出栈之后\n");
///*pp = freeall(pp);
//printf1(pp);*/
//while (pp != NULL)
//{
// stack *p = (stack *)malloc(sizeof(stack));
// pp = pop(pp, p);
// printf1(pp);
// printf("出栈的数据\n%d,%d\n", p->num, p->data);
//}
int num=10,i=0;
while(num)
{
i++;
pp=push(pp,i,num%2);
num=num/2;
}
printf1(pp);
system("pause");
}。