旋转作图练习题
- 格式:doc
- 大小:837.00 KB
- 文档页数:31
小升初数学专项练习一线名师严选内容,逐一攻克☆基本概念、基本原理、基础技能一网打尽☆点拨策略思路,侧重策略指导,拓宽眼界思路☆4.作旋转一定角度后的图形【小升初考点归纳】1.旋转作图步骤:(1)明确题目要求:弄清旋转中心、旋转方向和旋转角;(2)分析所作图形:找出构成图形的关键点;(3)找出关键点的对应点:按一定的方向和角度分别作出各关键点的对应点;(4)作出新图形:顺次连接作出的各点.(5)写出结论:说明作出的图形.2.中心对称作图步骤:(1)连接原图形上的所有特殊点和对称中心;(2)再将以上连线延长找对称点,使得特殊点与对称中心的距离和对称点与对称中心的距离相等;(3)将对称点按原图形的形状顺次连接起来,即可得出关于对称中心对称的图形.【经典例题】一.选择正确的答案,把序号填在括弧中(共1小题)1.(2016•长沙模拟)下面图形中,以某一边为轴旋转一周,可以得到圆锥的是()A.B.C.D.【解析】解:直角三角形沿一条直角边旋转一周得到的几何体是一个圆锥.故选:A.二.操作题(共14小题)2.(2019春•南京月考)(1)将先向下平移5格,再向右平移13格.(2)将平行四边形沿A点顺时针方向旋转90°.【解析】解:(1)将先向下平移5格(下图红色部分),再向右平移13格(下图绿色部分):(2)将平行四边形沿A点顺时针方向旋转90°(下图蓝色部分):3.(2019春•枣阳市校级月考)(1)将图形A绕点O点顺时针旋转90°得到的图形B.(2)将图形B向右平移4格得到图形C.【解析】解:(1)将图形A绕点O点顺时针旋转90°得到的图形B(下图):(2)将图形B向右平移4格得到图形C(下图):4.(2018•泉州)(1)按要求画图.①将图中的三角形①绕O点顺时针旋转90°,画出旋转后的图形②.②将图中的三角形①平移,使平移后的三角形顶点O的位置在(9,5),画出平移后的图形③.【解析】解:根据分析可得,5.(2018春•新罗区期末)画一画:(1)把图形绕点O逆时针旋转90°.(2)把旋转后的图形向下平移两格.【解析】解:6.(2018•漳平市校级模拟)做一做,画一画(1)画出图形A的另一半,使它成为一个以直线a为对称轴的对称图形.(2)画出把图形B向右平移6格后得到的图形.(3)画出把图形C绕O点顺时针旋转90°后得到的图形.(4)用数对表示O点的位置是(8,6).【解析】解:(1)画出图形A的另一半,使它成为一个以直线a为对称轴的对称图形.(2)画出把图形B向右平移6格后得到的图形.(3)画出把图形C绕O点顺时针旋转90°后得到的图形.(4)用数对表示O点的位置是(8,6).故答案为:8,6.7.(2018春•隆化县校级期末)画出三角形AOB绕O点逆时针旋转180o后的图形.【解析】解:画出三角形AOB绕O点逆时针旋转180°后的图形(图中红色部分):8.(2018春•卢龙县期中)画出三角形AOB绕点O逆时针旋转90度的图形.【解析】解:画出三角形AOB绕点O逆时针旋转90度的图形(图中红色部分):9.(2018秋•廉江市期中)画出三角形AOB绕B点顺时针旋转90度后的图形.【解析】解:作图如下:10.(2018•兴仁县)按要求画一画.(1)画出图形A向右平移5格后得到的图形B.(2)画出图形B绕点O逆时针旋转90°后得到的图形C.【解析】解:(1)画出图形A向右平移5格后得到的图形B(下图):(2)画出图形B绕点O逆时针旋转90°后得到的图形C(下图):11.(2017春•海南区期末)画出三角形AOB绕O点顺时针旋转90度后的图形.【解析】解:根据题干分析画图如下:12.(2016春•洛阳月考)将长方形绕A点顺时针旋转90°.【解析】解:将长方形绕A点顺时针旋转90°(图中红色部分):13.(2016春•新郑市校级月考)画出下面的图象中的三角形沿着A点顺时针旋转90度后的图形.【解析】解:三角形沿着A点顺时针旋转90度后的图形(红色部分):14.(2016秋•永州期中)把如图的小三角旗绕点A沿顺时针方向旋转90度.再向右平移4格.分别画出旋转和平移后的图形.【解析】解:画图如下:15.(2016春•南海区期末)画出面积是3平方厘米的三角形AOB并绕O点逆时针旋转180o 后的图形.【解析】解:根据题干分析可得:三.解析题(共7小题)16.(2019春•东海县月考)按要求画一画.①将长方形绕A点逆时针旋转90°.②将小旗围绕B点逆时针旋转90°.【解析】解:作图如下:17.(2019春•古浪县校级期末)先将△ABC绕点C点顺时针旋转90°得到△A′B′C,再将△A′B′C′向下平移4格.【解析】解:先将△ABC绕点C点顺时针旋转90°得到△A′B′C,再将△A′B′C′向下平移4格.18.(2018春•抚宁区期末)画出绕点“O”顺时针旋转90度后的图形.【解析】解:作图如下:19.(2017秋•保定期末)画出三角形逆时针旋转90度后的图形.【解析】解:作图如下:20.(2018春•桃城区校级期末)(1)小鱼图从右下方移至左上方,先向上平移3格,又向左平移5格.(2)把梯形绕A点顺时针方向旋转90°,画出旋转后的图形.【解析】解:(1)根据题干分析可得:小鱼图从右下方移至左上方,先向上平移3格,再向左平移5格;(2)根据分析画图如下:故答案为:上、3、左、5.21.(2017春•绍兴期末)画出三角形AOB绕O点顺时针旋转90°后的图形.【解析】解:画出三角形AOB绕O点顺时针旋转90°后的图形:22.(2017春•绍兴期末)画出三角形AOB绕O点顺时针旋转90°后的图形.【解析】解:画出三角形AOB绕O点顺时针旋转90°后的图形:。
第2课时旋转作图1 •如图23-1-19 , E, F分别是正方形ABC啲边AB BC上的点,且BE= CF,连接CEDF将厶DCF绕着正方形的中心0按顺时针方向旋转到△ CBE的位置,则旋转角为() 某点旋转一个角度可以得到另一条线段,你认为这个旋转中心的坐标是3. 如图23-1-21,在平面直角坐标系中,△ ABC三个顶点的坐标分别为A(2,3),巳1,1),Q5,1).(1) △ ABC平移后,其中点A移到点A(4,5),画出平移后得到的△ ABC;(2) 把厶ABG绕点A按逆时针方向旋转90°,画出旋转后的△ ARG.A. 30°C. 60°2.如图23-1-20, A点的坐标为(一1,5)B. 45°D. 90°,B点的坐标为(3,3) , C点的坐标为(5,3) , D点的坐标为(3 , —1) •小明发现线段AB与线段CD存在一种特殊关系, 即其中一条线段绕着图23-1-19图23-1-204. 在4X4的方格纸中,△ ABO的三个顶点都在格点上.⑴在图23-1-22中画出与厶ABC成轴对称且与△ ABC有公共边的格点三角形(画出一个即可);(2)将图23-1-23中的△ ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.AB R[¥| 2:^-I 22 图鬲I 站Cfil •拓牌创新5. 如图23-1-24所示,在平面直角坐标系中,有Rt△ ABC且A—1, 3),耳一3,—1), q —3, 3),已知△ AAC是由△ ABC旋转变换得到的.(1) 旋转中心的坐标是_____,旋转角是_____;(2) 以⑴中的旋转中心为中心,分别画出△AAC顺时针旋转90°, 180°后的三角形;(3) 设Rt△ ABC的两直角边BGa, AG b,斜边AB= c,禾用变换前后所形成的图案证明勾股定理.参考答案【分层作业】1. D2. (1,1)或(4,4)3.略4 略5. (1)(0 ,0) 90°⑵略(3)略。
第2课时旋转作图及变换知识点1.图形旋转的性质是:(1)旋转前后的图形;(2)对应点到旋转中心的距离;(3)对应点与旋转中心所连线段的夹角等于2.简单的旋转作图---旋转作图的步骤(1)确定旋转;(2)找出图形的关键点;(3)将图形的关键点与旋转中心连接起来,然后按旋转方向分别将它们旋转一个角,得到此关键点的对应点;(4)按图形的顺序连接这些对应点,所得到的图形就是旋转后的图形。
一、选择题1.在图形旋转中,下列说法错误的是()A.在图形上的每一点到旋转中心的距离相等B.图形上每一点移动的角度相同C.图形上可能存在不动的点D.图形上任意两点的连线与其对应两点的连线长度相等2.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()3.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是()。
A.60°B.90°C.72°D.120°4.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)(• )A.左上角的梅花只需沿对角线平移即可B.右上角的梅花需先沿对角线平移后,再顺时针旋转45°C.右下角的梅花需先沿对角线平移后,再顺时针旋转180D.左下角的梅花需先沿对角线平移后,再顺时针旋转90°5 △ABC绕着A 点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,•则旋转角等于()A.50° B.210° C.50°或210° D.130°二、填空题6.图形的平移、旋转、轴对称中,其相同的性质是_________.7.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是________,它们之间的关系是______,•其中BD=_________.8、如图,将△OAB绕点0按逆时针方面旋转至△0A′B′,使点B恰好落在边A′B′上.已知AB=4cm,BB′=lcm,则A′B长是_______cm.9、如图,在平面直角坐标系中,点A的坐标为(1,4),将线段O A绕点O顺时针旋转90°得到线段OA′,则点A′的坐标是___________. 10.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,•∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+•DF•与EF的关系是________.11.如图,在直角坐标系中,已知点)0,3(A、)4,0(B,对△OAB 连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑩的直角顶点的坐标为__________.三、综合提高题12.观察下列图形,它可以看作是什么“基本图形”通过怎样的旋转而得到的?13.如图:若∠AOD=∠BOC=60°,A、O、C三点在同一条线上,△AOB与△COD 是能够重合的图形。
第二十三章 旋转 第10讲 旋转作图知识导航旋转的三要素:旋转中心,旋转方向,旋转角度;选择不同的旋转中心、不同的旋转角度,会出现不同的旋转效果.【板块一】旋转三要素方法技巧对应点与旋转中心所连线段的夹角等于旋转角,同一旋转图中旋转角是相等的,根据这一性质可以画旋转图形;各对应点到旋转中心的距离相等,通过作两对对应点的中垂线,可以确定旋转中心。
题型一 已知旋转中心与旋转角确定对应点【例1】如图,△ABC 绕B 点旋转后,点O 是点A 的对应点,画出△ABC 旋转后的三角形.C B A C'COBA【解析】要画出△ABC 旋转后的三角形,应找出三方面的关系:①旋转中心B ;②旋转角∠ABO ;③C 点旋转后的对应点C '.【例2】如图,在下面的网格中,每个小正方形的边长均为1,△ABC 的三个顶点都是网格线的交点。
已知A (-2,2),C (-1,-2),将△ABC 绕着点C 顺时针旋转90°,则点A 的对应点的坐标为( ) A .(2,-2) B .(-5,-3) C .(2,2) D .(3,-1)答案:D .【解析】将点A 右移2个单位,再下移2个单位到原点O ,如图建立直角坐标系,取点D (-1,2),则△ADC 为直角三角形,且AD =1,DC =4,将△ADC 绕点C 顺时针旋转90°到Rt B △A 'D 'C ,则A 'D '=1,CD '=4.即将点C 右移4个单位,然后上移1个单位,得点A '(3,-1).题型二 已知旋转中心及旋转角度画旋转后的图形【例3】如图,四边形ABCD 绕点O 旋转后,顶点A 的对应点为点E ,试确定点B ,点C ,点D 的对应点的位置以及旋转后的四边形。
A BOCDEHGFEDCO BA【解析】如图,点B ,C ,D 的对应点分别是点F ,G ,H ,四边形EFGH 是四边形ABCD 绕点O 旋转后得到的四边形。
3.4简单的旋转作图习题精选一1.如图,把绕O点逆时针旋转120°、240°,试一试画出的图形是怎样的图形.2.如图,画出长方形ABCD绕点C顺时针旋转120°所得到的图形.3.如图,画出绕点O顺时针旋转100°所得到的图形.4.如图,你能把圆O绕P点顺时针旋转90°吗?5.圈出图中的“基本图案”,说明这些美丽的图案都是怎样旋转得到的?6.图中的六边形中“基本图案”是怎样旋转而成下列图形的?7.把下面几个图形中左上角的图案绕着中心旋转90°,180°,270°,画出所得图案。
8.观察图,圈中其中的“基本图案”,说明它是怎样由“基本图案”旋转而成的.参考答案1.2.3.如下图4.如上图5.(1)一个花瓣顺时针旋转90°,180°,270°(2)螺旋桨的一半旋转180°(3)雪花顺时针旋转60°,120°,180°,240°,300°(4)一个猴子旋转180°(5)一个熊猫旋转90°,180°,270°(6)一只鸽子旋转180°画图:略.6.(1)(2)(3)中“基本图案”分别旋转60°,120°,180°,240°,300°(4)中“基本图案”旋转120°,240°.7.略.8.把“基本图案”顺时针旋转60°,120°,180°,240°,300°而成.二1.在图书、杂志、报纸、包装盒、广告单等处寻找几个旋转对称图形的实例.2.如图,非等腰三角板原在ABC的位置上,旋转后到了的位置上,请指出旋转中心、旋转角度和旋转方向.3.已知(如图),请画出以C点为旋转中心,旋转角为30°,(1)按顺时针方向旋转后的图形;(2)按逆时针方向旋转后的图形.4.下列各图形围绕自己的旋转中心最低需要旋转多少度之后,能够与它自身相重合?5.如图,下列各图形,不是旋转对称图形的是()6.如图,正方形ABCD,画出绕顶点C顺时针旋转90°后的图形.7.画一个三角形,使通过这个三角形的旋转得到一个正方形,指出这是一个什么三角形,旋转中心是什么,每次旋转的角度,需要旋转多少次才能完成这个图形.8.如图,以线段CD外的点A为旋转中心,按逆时针方向旋转120°,请画出图形.9.如图,已知点A、B,以A为旋转中心逆时针旋转30°,B点到达;继续旋转60°到;再继续旋转90°到;再继续旋转120°到.请画出多边形.10.图中给出的是一个数轴,以原点O为旋转中心,逆时针旋转90°.画图形,连同单位和标数一齐标注上.11.在图中,画出以O点为旋转中心,顺时针旋转90°后所得到的图形.12.画一个三角形,使通过这个三角形的旋转能得到一个正五边形,指出旋转中心、旋转的次数和每次旋转的角度.13.如图,已知平行四边形ABCD,画出以平行四边形对角线交点O为旋转中心顺时针旋转90°后所得到的图形.参考答案1.略.2.旋转中心是点A,旋转角度为30°,旋转方向为顺时针.3.见答图.4.(1)60°;(2)20°;(3)90°.5.D6.答图中的是旋转后的正方形.7.见答图.三角形为等腰直角三角形,直角顶点A为旋转中心,每次转90°,转4次.8.见答图.连结AC、AD,以A为旋转中心将A C、AD分别逆时针旋转120°,得,则即由CD旋转而成.9.见答图.10.见答图.这个由两个互相垂直的数轴所构成的图形叫做平面直角坐标系.它是一个很用的数学工具,在以后的数学学习中会经常用到.11.见答图.12.见答图.这个三角形是一个顶角为72°的等腰三角形,旋转中心为顶点A,旋转次数为5次,每次旋转的角度为360°÷5=72°.13.见答图(顺时针旋转两条对角线,使转过的角度为90°).。
五年级数学下册《旋转后的图形》练习题及答案解析学校:___________姓名:___________班级:______________一、作图题1.画一画。
(1)上图①是轴对称图形的一半。
请以虚线为对称轴,画出它的另一半。
(2)在方格中以线段AB为底边画一个直角三角形。
(3)将画好的三角形向上平移4格。
2.在下面的方格纸上分别画一个三角形,和一个梯形,要求他们的面积都是平行四边形A的面积的一半。
(作图用铅笔)3.画一画。
(1)画出图(1)的对称图形。
(2)将图(2)向右平移4格。
4.下面是边长为1厘米的格子图,请在图上合适位置画一个高3厘米的等腰直角三角形再将它向右平移5格并用实线画出来。
5.画出下面每个图形的另一半,使它成为一个轴对称图形。
6.观察图形,给风车的风叶涂上相应的颜色。
7.把平移后能和图1重合的图形涂上颜色。
8.按要求画一画。
①图形A向下平移4格得到图形B。
①图形A绕点O顺时针旋转90°得到图形C。
①图形A按2①1放大后得到图形D。
9.以直线a为对称轴,画出给定图形的轴对称图形。
10.按要求画图。
把图①绕点O逆时针旋转90°得到图形①。
把图①绕点O顺时针旋转90°得到图形①。
把图①绕点O逆时针旋转90°得到图形①。
11.(1)将下图中三角形先向右平移5格,再向下平移6格。
(2)将下图中梯形沿A点逆时针旋转90度。
二、解答题12.如图,一个三角形与一个平行四边形等底等高,已知平行四边形的面积比三角形的面积大5平方米,这两个图形的面积和是多少平方米?13.先填空,再画平移后的图形。
参考答案与解析:1.见详解【分析】(1)补全轴对称图形的方法:找出图形的关键点,依据对称轴画出关键点的对称点,再依据图形的形状顺次连接各点,画出最终的轴对称图形。
(2)利用三角板,画一条与AB垂直的线段,且A为端点,①A=90°;最后将两条相互垂直的线段的端点,用第三条线段连接起来,就画好了直角三角形。
人教版2021年九年级上册:23.1图形的旋转同步练习第2课时旋转作图一、选择题1.下列图形绕某个点旋转72°后能与自身重合的是()2.如图是几种汽车轮轴的图案,图案绕中心旋转90°后能与原来的图案重合的是()3.下列选项中可以看成由下方图形绕着一个顶点顺时针旋转90°而形成的图形的是 ()4.[芜湖期中]正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为()A.30°B.60°C.120°D.180°5.在平面直角坐标系中,将点A(1,2)绕点P(-1,1)顺时针旋转90°到点A'处,则点A'的坐标为()A.(-2,3)B.(-3,0)C.(1,0)D.(0,-1)6.如图,将线段AB绕点C(4,0)顺时针旋转90°得到线段A'B',那么点A(2,5)的对应点A'的坐标是()A.(9,2)B.(7,2)C.(9,4)D.(7,4)7.(2020·赤峰)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是()8.(2020·青岛)如图,将△ABC 先向上平移1个单位长度,再绕点P 按逆时针方向旋转90°,得到△A ′B ′C ′,则点A 的对应点A ′的坐标是( )A .(0,4)B .(2,-2)C .(3,-2)D .(-1,4)9.(2020·枣庄)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,∠AOB =∠B =30°,OA =2.将△AOB 绕点O 逆时针旋转90°,点B 的对应点B ′的坐标是( )A.()-3,3B.()-3,3C.()-3,2+3D.()1,2+3二、填空题10.旋转作图的步骤和方法:(1)确定旋转中心、____________及____________; (2)作出图形的关键点经过旋转后的__________; (3)按一定的顺序连接对应点.11.把一个图案进行旋转变换,选择不同的旋转中心、不同的旋转方向、不同的_____________,会有不同的效果.12.正八边形绕它的中心旋转一定角度后能与自身完全重合,则其旋转的角度至少为 . 三、解答题13.如图,在平面直角坐标系中,等边△OAB 的边长为2,y 轴的正半轴恰好是△OAB 的角平分线,先将△OAB 绕点O 按顺时针方向旋转120°,再关于y 轴对称后得到△A 1B 1O ,求点A 1的坐标..14.在图中作出“三角旗”绕点O 逆时针旋转90°后的图案.15.如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,3),点B在第一象限,∠OAB的平分线交x轴于点P,把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD,连接DP.求DP的长及点D的坐标.16.(2020·鄂尔多斯)(1)【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.①请按要求画图:将△ABC绕点A顺时针方向旋转90°,点B的对应点为点B′,点C的对应点为点C′.连接BB′.②在①中所画图形中,∠AB′B=________°.(2)【问题解决】如图②,在Rt△ABC中,BC=1,∠C=90°,延长CA到点D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接DE,求∠ADE的度数.17.如图,边长为3的正方形纸片ABCD的相邻边AB,AD分别在x轴、y轴的正半轴上,点E在纸片上,点E的坐标是(1,2),将正方形纸片绕其右下角的顶点按顺时针方向旋转90°至图①位置,此时点E的对应点为E1,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,此时点E1的对应点为E2,以此类推,这样连续旋转2020次,求点E2020的坐标.18.[安徽中考]如图,在由边长为1个单位长度的小正方形组成的网格中,给出以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1;(A1,B1分别为点A,B的对应点)(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.参考答案一、选择题1.下列图形绕某个点旋转72°后能与自身重合的是(B)2.如图是几种汽车轮轴的图案,图案绕中心旋转90°后能与原来的图案重合的是(B)3.下列选项中可以看成由下方图形绕着一个顶点顺时针旋转90°而形成的图形的是 (B)4.[芜湖期中]正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为(C)A.30°B.60°C.120°D.180°5.在平面直角坐标系中,将点A(1,2)绕点P(-1,1)顺时针旋转90°到点A'处,则点A'的坐标为(D)A.(-2,3)B.(-3,0)C.(1,0)D.(0,-1)6.如图,将线段AB绕点C(4,0)顺时针旋转90°得到线段A'B',那么点A(2,5)的对应点A'的坐标是(A)A.(9,2)B.(7,2)C.(9,4)D.(7,4)7.(2020·赤峰)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是(C)8.(2020·青岛)如图,将△ABC先向上平移1个单位长度,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是(D)A .(0,4)B .(2,-2)C .(3,-2)D .(-1,4)9.(2020·枣庄)如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,∠AOB =∠B =30°,OA =2.将△AOB 绕点O 逆时针旋转90°,点B 的对应点B ′的坐标是( )A.()-3,3B.()-3,3C.()-3,2+3D.()1,2+3【点拨】如图,过点B ′作B ′H ⊥y 轴于点H . ∵∠AOB =∠B =30°,∴AB =OA =2.∵将△AOB 绕点O 逆时针旋转90°得到△A ′OB ′, ∴A ′B ′=AB =2,OA ′=OA =2,∠A ′OB ′=∠A ′B ′O =30°. ∴∠B ′A ′H =60°. ∴∠A ′B ′H =30°. ∴A ′H =12A ′B ′=1.∴B ′H =A ′B ′2-A ′H 2=3,OH =OA ′+A ′H =3. ∴点B ′的坐标是(-3,3).【答案】A 二、填空题10.旋转作图的步骤和方法:(1)确定旋转中心、____________及____________;(2)作出图形的关键点经过旋转后的__________;(3)按一定的顺序连接对应点.【答案】旋转角度旋转方向对应点11.把一个图案进行旋转变换,选择不同的旋转中心、不同的旋转方向、不同的_____________,会有不同的效果.【答案】旋转角度12.正八边形绕它的中心旋转一定角度后能与自身完全重合,则其旋转的角度至少为45°.三、解答题13.如图,在平面直角坐标系中,等边△OAB的边长为2,y轴的正半轴恰好是△OAB的角平分线,先将△OAB绕点O按顺时针方向旋转120°,再关于y轴对称后得到△A1B1O,求点A1的坐标..解:先将△OAB绕点O按顺时针方向旋转120°,点A的对应点在x轴的正半轴上,且坐标为(2,0),再关于y轴对称后得点A1的坐标为(-2,0).14.在图中作出“三角旗”绕点O逆时针旋转90°后的图案.解:如图.15.如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,3),点B在第一象限,∠OAB的平分线交x轴于点P,把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD,连接DP.求DP的长及点D的坐标.解:∵△AOB是等边三角形,∴∠OAB=60°.由旋转得∠OAB=∠PAD=60°,AD=AP.∵OA=3,AP平分∠OAB,∴∠OAP=30°,∴AP=2OP.∵OP2+32=(2OP)2,∴OP=√3,AP=2√3,∴AD=AP=2√3.∵∠OAP=30°,∠PAD=60°,∴∠OAD=30°+60°=90°,∴点D的坐标为(2√3,3).16.(2020·鄂尔多斯)(1)【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.①请按要求画图:将△ABC绕点A顺时针方向旋转90°,点B的对应点为点B′,点C的对应点为点C′.连接BB′.解:如图①,△AB′C′即为所求.②在①中所画图形中,∠AB′B=________°.【答案】45(2)【问题解决】如图②,在Rt△ABC中,BC=1,∠C=90°,延长CA到点D,使CD=1,将斜边AB绕点A顺时针旋转90°到AE,连接DE,求∠ADE的度数.解:如图②,过点E作EH⊥CD,交CD的延长线于点H.∵∠C=∠BAE=∠H=90°,∴∠B+∠CAB=90°,∠CAB+∠EAH=90°.∴∠B=∠EAH.又∵AB=AE,∴△ABC≌△EAH(AAS).∴BC=AH,EH=AC.∵BC=CD,∴CD=AH.∴DH=AC=EH.∴∠EDH=45°.∴∠ADE=135°.17.如图,边长为3的正方形纸片ABCD的相邻边AB,AD分别在x轴、y轴的正半轴上,点E在纸片上,点E的坐标是(1,2),将正方形纸片绕其右下角的顶点按顺时针方向旋转90°至图①位置,此时点E的对应点为E1,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,此时点E1的对应点为E2,以此类推,这样连续旋转2020次,求点E2020的坐标.解:∵正方形的边长为3,∴OB=3,∵点E的坐标是(1,2),将正方形纸片绕其右下角的顶点按顺时针方向旋转90°至图①位置,∴E1(5,2),以此类推,E2(8,1),E3(10,1),E4(13,2),…,观察可知:纵坐标的变化规律是四次一个循环(2,1,1,2),2020÷4=505,∴点E2020的纵坐标与点E4相同,纵坐标为2,横坐标为3×2020+1=6061,∴点E2020的坐标为(6061,2).18.[安徽中考]如图,在由边长为1个单位长度的小正方形组成的网格中,给出以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1;(A1,B1分别为点A,B的对应点)(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.解:(1)如图所示,线段A1B1即为所求.(2)如图所示,线段B1A2即为所求.。
一、解答题(共30小题)1、如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B的坐标分别为A(﹣2,3)、B(﹣3,1).(1)画出坐标轴,画出△AOB绕点O顺时针旋转90°后的△A1OB1;(2)点A1的坐标为_________;(3)四边形AOA1B1的面积为_________.1题图 2题图2、△ABC在平面直角坐标系中的位置如下图,其中每个小正方形的边长为1个单位长度.(1)将△ABC向右移平2个单位长度,作出平移后的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)若将△ABC绕点(﹣1,0)顺时针旋转180°后得到△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1和△A2B2C2,它们是否关于某点成中心对称?若是,请写出对称中心的坐标;若不是,说明理由.5、(2010•鸡西)△ABC在如下图的平面直角坐标系中.(1)画出△ABC关于原点对称的△A1B 1 C1(2)画出△A1B1C1关于Y轴对称的△A2B2C2(3)请直接写出△AB2A1的形状.6、(2010•)如图,在正方形网格中,△ABC 的三个顶点都在格点上,结合所给的平面直角坐标系解答以下问题:(1)将△ABC 向右平移5个单位长度,画出平移后的△A 1B 1C 1; (2)画出△ABC 关于X 轴对称的△A 2B 2C 2;(3)将△ABC 绕原点O 旋转180°,画出旋转后的△A 3B 3C 3; (4)在△A 1B 1C 1、△A 2B 2C 2、△A 3B 3C 3中,△_________与△_________成轴对称;△_________与△_________成中心对称.7、(2010•贵港)如下图,把△ABC 置于平面直角坐标系中,请你按以下要求分别画图: (1)画出△ABC 向下平移5个单位长度得到的△A 1B 1C 1;(2)画出△ABC 绕着原点O 逆时针旋转90°得到的△A 2B 2C 2; (3)画出△ABC 关于原点O 对称的△A 3B 3C 3.9、(2010•州)△ABC 在平面直角坐标系中的位置如下图. (1)作出△ABC 关于X 轴对称的△A 1B 1C 1,并写出点A 1的坐标; (2)作出将△ABC 绕点O 顺时针方向旋转180°后的△A 2B 2C 2.10、(2010•)△ABC 在平面直角坐标系中的位置如下图,将△ABC 沿Y 轴翻折得到△A 1B 1C 1,再将△A 1B 1C 1绕点O 旋转180°得到△A 2B 2C 2.请依次画出△A 1B 1C 1和△A 2B 2C 2. 13、(2010•)在小正方形组成的15×15的网络中,四边形ABCD 和四边形A ′B ′C ′D ′的位置如下图.(1)现把四边形ABCD 绕D 点按顺时针方向旋转90°,画出相应的图形A 1B 1C 1D 1, (2)若四边形ABCD 平移后,与四边形A ′B ′C ′D ′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A 2B 2C 2D 2.15、(2009•)在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,△ABC的顶点均在格点上,点P的坐标为(﹣1,0),请按要求画图与作答.(1)把△ABC绕点P旋转180°得△A′B′C′.(2)把△ABC向右平移7个单位得△A″B″C″.(3)△A′B′C′与△A″B″C″是否成中心对称,若是,找出对称中心P′,并写出其坐标.16、(2009•)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C (﹣1,0).(1)请直接写出点A关于Y轴对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90度.画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.17、(2009•)如下图,每个小方格都是边长为1的正方形,以O点为坐标原点建立平面直角坐标系.(1)画出四边形OABC关于Y轴对称的四边形OA1B1C1,并写出点B1的坐标是_________;(2)画出四边形OABC绕点O顺时针方向旋转90°后得到的四边形OA2B2C2,并求出点C旋转到点C2经过的路径的长度.18、(2009•)如下图的正方形网格中,△ABC 的顶点均在格点上,在所给直角坐标系中解答以下问题:(1)分别写出点A 、B 两点的坐标;(2)作出△ABC 关于坐标原点成中心对称的△A 1B 1C 1;(3)作出点C 关于是X 轴的对称点P .若点P 向右平移X 个单位长度后落在△A 1B 1C 1的部,请直接写出X 的取值围. 19、(2009•)如图,在每个小正方形的边长均为1个单位长度的方格纸中,有一个△ABC 和一点O ,△ABC 的顶点和点O 均与小正方形的顶点重合.(1)在方格纸中,将△ABC 向下平移5个单位长度得到△A 1B 1C 1,请画出△A 1B 1C 1; (2)在方格纸中,将△ABC 绕点O 旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2. 20、(2009•)如图,在下面的方格图中,将△ABC 先向右平移四个单位得到△A 1B 1C 1,再将△A 1B 1C 1绕点A 1逆时针旋转90°得到△A 1B 2C 2,请依次作出△A 1B 1C 1和△A 1B 2C 2.21、(2008•永春县)在边长为1的方格纸中建立直角坐标系XOY,O、A、B三点均为格点.(1)直接写出线段OB的长;(2)将△OAB绕点O沿逆时针方向旋转90°得到△OA′B′.请你画出△OA′B′,并求在旋转过程中,点B所经过的路径的长度.22、(2008•)如图,△AOB中,顶点A,B,O均在格点上,画出△AOB绕点O旋转180°后的三角形.(不要求写做法,证明,但要注明结果)23、(2008•)如图,菱形ABCD(图1)与菱形EFGH(图2)的形状、大小完全相同.(1)请从以下序号中选择正确选项的序号填写;①点E,F,G,H;②点G,F,E,H;③点E,H,G,F;④点G,H,E,F.如果图1经过一次平移后得到图2,那么点A,B,C,D对应点分别是_________;如果图1经过一次轴对称后得到图2,那么点A,B,C,D对应点分别是_________;如果图1经过一次旋转后得到图2,那么点A,B,C,D对应点分别是_________;(2)①图1,图2关于点O成中心对称,请画出对称中心(保留画图痕迹,不写画法);②写出两个图形成中心对称的一条性质:_________.(可以结合所画图形表达).24、(2008•眉山)如图,方格纸中△ABC的三个顶点均在格点上,将△ABC向右平移5格得到△A1B1C1,再将△A1B1C1绕点A1逆时针旋转180°,得到△A1B2C2.(1)在方格纸中画出△A1B1C1和△A1B2C2;(2)设B点坐标为(﹣3,﹣2),B2点坐标为(4,2),△ABC与△A1B2C2是否成中心对称?若成中心对称,请画出对称中心,并写出对称中心的坐标;若不成中心对称,请说明理由.25、(2008•)如下图,在网格中建立了平面直角坐标系,每个小正方形的边长均为1个单位长度,将四边形ABCD绕坐标原点O按顺时针方向旋转180°后得到四边形A1B1C1D1.(1)直接写出D1点的坐标;(2)将四边形A1B1C1D1平移,得到四边形A2B2C2D2,若D2(4,5),画出平移后的图形.(友情提示:画图时请不要涂错阴影的位置哦!)26、(2008•来宾)如图,已知△ABC关于直线MN的对称图形是△A1B1C1,将△A1B1C1绕点A1逆时针旋转90°得到△A1B2C2.请在图中分别画出△A1B1C1和△A1B2C2,并正确标出对应顶点的字母.(不要求写出画法)27、(2008•)在如下图出方格纸中,每个小正方形的边长都为1.(1)画出将铅笔图形ABCDE向上平移9格得到的铅笔图形A1B1C1D1E1;(2)将铅笔图形A1B1C1D1E1,绕点A1,逆时针旋转90°,画出转后的铅笔图形A1B2C2D2E2.28、(2008•)如图,在平面直角坐标系中,△ABC和△A1B1C1关于点E成中心对称.(1)画出对称中心E,并写出点E、A、C的坐标;(2)P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P2(a+6,b+2),请画出上述平移后的△A2B2C2,并写出点A2、C2的坐标;(3)判断△A2B2C2和△A1B1C1的位置关系.(直接写出结果)29、(2008•)△ABC在平面直角坐标系中的位置如下图.(1)将△ABC向右平移6个单位得到△A1B1C1,请画出△A1B1C1;并写出点C1的坐标;(2)将△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2.30、(2008•)已知:如图,在8×12的矩形网格中,每个小正方形的边长都为1,四边形ABCD的顶点都在格点上.(1)在所给网格中按以下要求画图:①在网格中建立平面直角坐标系(坐标原点为O),使四边形ABCD各个顶点的坐标分别为A(﹣5,0)、B(﹣4,0)、C(﹣1,3)、D(﹣5,1);②将四边形ABCD沿坐标横轴翻折180°,得到四边形A′B′C′D′,再把四边形A′B′C′D′绕原点O旋转180°,得到四边形A″B″C″D″;(2)写出点C″、D″的坐标;(3)请判断四边形A″B″C″D″与四边形ABCD成何种对称?若成中心对称,请写出对称中心;若成轴对称,请写出对称轴.答案与评分标准一、解答题(共30小题)1、(2010•)如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B 的坐标分别为A(﹣2,3)、B(﹣3,1).(1)画出坐标轴,画出△AOB绕点O顺时针旋转90°后的△A1OB1;(2)点A1的坐标为(3,2);(3)四边形AOA1B1的面积为8.考点:作图-旋转变换。
专题:综合题。
分析:(1)让三角形的A、B顶点绕点O顺时针旋转90°后得到对应点,顺次连接即可.(2)从坐标系中读出点的坐标.(3)四边形AOA1B1的面积是通过计算三角形的面积来计算.把这个不规则的四边形分成三个三角形和一个正方形的面积来计算就简单了.解答:解:(1)所画图形如下所示:(2)从图中可知点A1的坐标(3,2).(3)如图:把四边形分成以上几部分,则面积=+++1×1=8.故答案为:(3,2),8.点评:此题综合考查了旋转变换作图与利用网格计算面积的能力,难度不大,掌握旋转作图的步骤是关键.2、(2010•)如图,在正方形网格中建立平面直角坐标系,已知△ABC三个顶点的坐标分别为A(﹣7,0)、B(﹣4,4)、C(﹣1,0).(1)做出点B关于x轴的对称点D;(2)将以点A、B、C、D为顶点的四边形绕点C顺时针旋转90°作出旋转后的图形A1B1C1D1,并直接写出点B、D的对应点B1,D1的坐标.考点:作图-旋转变换;作图-轴对称变换。