用三角形通过平移旋转的方法设计美丽的图案
- 格式:docx
- 大小:16.84 KB
- 文档页数:1
第3讲图形的运动知识点一:图形的旋转1. 图形旋转的含义及三要素旋转中心、旋转方向、旋转角度2. 在方格纸上画简单图形绕其顶点旋转90°后的图形图形绕某一点旋转一定的度数,图形中的对应点、对应线段都旋转了相同的度数,对应点到旋转点的距离相等,对应线段相等,对应角相等。
3.旋转的特点旋转不改变图形的形状和大小,只改变图形的位置。
知识点二:图形的运动1.在方格纸上图形的平移、旋转(1)图形平移时,先确定移动的方向,再确定移动的格数;(2)旋转应找准旋转中心、旋转方向以及旋转角度;(3)作轴对称图形要先确定对称轴。
图形经过平移、旋转、轴对称变换后,图形大小不变。
2. 记录图形位置的“还原”过程用平移或旋转进行图形运动时,要先观察变化前后各部分的位置,再确定如何通过平移或旋转得到。
知识点三:欣赏与设计利用平移、旋转和轴对称设计美丽的图案一个图形通过平移、旋转或轴对称变换可以得到不同的图案。
复杂的图案是由一个或几个简单的基本图形变换而来的。
考点一:图形的旋转例1.(2020春•綦江区期末)画一画,填一填.(1)画出把长方形绕0点顺时针方向旋转90°后的图形.(2)旋转前A点的位置是(4,3),旋转后A点的位置是(2,5).(3)画出把三角形向下平移4格后的图形.(4)画出三角形的各边缩小为原来的后的图形.【分析】(1)根据旋转的特征,长方形绕点O顺时针旋转90°,点O的位置不动,其余各部分均绕此点按相同方向旋转相同的度数即可画出旋转后的图形。
(2)根据用数对表示点的位置的方法,第一个数字表示列数,第二个数字表示行数,及长方形旋转前、后A所在的列与行即可分别用数对表示出来。
(3)根据平移的特征,把三角形的各顶点分别向下平移4格,依次连结即可得到平移后的图形。
(4)图中三角形是两直角边分别为4格、2格的直角三角形,根据图形放大与缩小的意义,缩小后的图形是两直角分别为(4×)格、(2×)格的直角三角形。
2021年小学数学西师大版五年级上册图形的平移、旋转与对称-设计图案学校:___________姓名:___________班级:___________考号:___________一、解答题1.用平移的方法设计一条花边。
2.用和设计花纹。
3.利用旋转画一朵小花。
4.利用旋转画一朵小花。
5.利用旋转,设计自己喜欢的图案。
6.绕A点旋转设计图案。
7.利用如图所示的两种瓷砖设计图案。
8.请你利用平移或镶嵌的方法,在下面的网格中设计一个精美的图案。
9.先画出一个或几个图形,再运用对称、平移或旋转的方法,设计美丽的图案。
10.李兵同学家买了新房,准备装修地面,为节约开支,购买了两种质量相同、颜色不同的残缺地砖,现已加工成如图(1)所示的等腰直角三角形,请你为他设计图案。
11.请通过平移如图的图形,设计两种以上的图案。
12.利用平移设计图案。
13.利用平移变换设计美丽的图案14.在图里,请你自由选择8个小方块,设计一幅具有对称美的图案,并画出它的一条对称轴。
15.现有如图所示的6种瓷砖,请用其中的4块瓷砖(允许有相同的),设计出美丽的图案。
16.你能通过所给的图形利用平移、旋转的变换在下面的方格图中设计出一幅美丽的图案吗?试试看,你一定能行!17.将图形运用图形的平移设计一幅美丽的图案。
18.利用变换设计一个板报的花边。
19.从下面的四种瓷砖中选择两种,可以拼成不同的图案。
(1)下面的两个图案各选择了哪两种瓷砖?(2)任意选择两种瓷砖,设计几种不同的图案。
20.你能利用对称、平移或旋转自己设计一幅美丽的图案吗?画画看。
21.利用轴对称设计一个美丽的图案。
22.利用平移设计图案。
23.利用我们学过的旋转和平移的知识设计一个漂亮的图案。
24.利用圆规和三角板,根据平移、旋转和轴对称的知识,设计一幅美丽的图案。
25.将某一个图形进行平移、旋转,或者画出它沿某条直线的轴对称图形,设计出一个美丽的图案。
26.将如图基本图形平移、旋转或作轴对称图形(也可以涂上你喜欢的颜色),形成一幅图案。
福州市小学数学五年级下册第五单元图形的运动(三)测试卷(含答案解析)一、选择题1.把按逆时针旋转90°后得到的图形是()。
A. B. C.2.如图,指针绕点0顺时针从12转到3,旋转了()度。
A. 30B. 90C. 2703.从9:30到9:45钟面上的分针按顺时针方向旋转了()。
A. 30°B. 90°C. 180°D. 360°4.从10:00到12:00,时针旋转了()°,从1:30到1:50,分针旋转了()°。
A. 60,60B. 60,90C. 60,1205.下列图案中,()不是由一个图形通过旋转而得到的。
A. B. C. D.6.下面的图案,()是由涂有阴影的部分旋转形成的。
A. B. C.7.下面四个图案可由(1)平移得到的是( )。
A. B. C. D.8.观察下图,是怎样从图形A得到图形B的()。
A. 先顺时针旋转90°,再向右平移10格B. 先逆时针旋转90°,再向右平移10格C. 先顺时针旋转90°,再向右平移8格D. 先逆时针旋转90°,再向右平移8格9.这个图形是通过()得到的A. 旋转B. 平移C. 对称10.下面各图形中,以直线为轴旋转一周,可以得到圆锥的是()A. B. C. D.11.下列图形,绕中心点旋转90°能与原图象重合的是()A. B. C.12.下面()的运动是平移。
A. 转动呼拉圈B. 摇辘辘C. 拨算珠二、填空题13.钟面上分针从3走到6,分针是按________方向旋转了________。
14.如图中指针从“4”绕点O顺时针旋转60°后指向数字________,指针从“4”绕点O逆时针旋转________°后指向数字“1”.15.钟面上指针从数字“6”绕中心点________时针旋转90°后指向数字________.16.从11:00到11:15,分针按________时针方向旋转________°.17.钟面上分针旋转了60°,分针可能是从数字________走到________。
(压轴题)小学数学五年级下册第五单元图形的运动(三)测试卷(有答案解析)一、选择题1.下面图形中,()绕着中心O点旋转60°后能和原图重合。
A. B. C.2.把按逆时针旋转90°后得到的图形是()。
A. B. C.3.从8:00到8:15,分针旋转了()度.A. 30B. 90C. 180D. 60 4.如何将移动到的位置,下面方法()是正确的。
A. 将向上移动4格,再向右移动3格。
B. 将向上移动3格,再向右移动3格。
C. 将向右移动4格,再向上移动3格。
5.有一个图形的涂色部分是由空白部分绕点O顺时针旋转90°得到的,这图形是()A. B. C.6.平行四边形绕两条对角线的交点至少旋转()才会与原图形重合.A. 45°B. 90°C. 180°D. 360°7.下面的图案,()是由涂有阴影的部分旋转形成的。
A. B. C.8.观察下图,是怎样从图形A得到图形B的()。
A. 先顺时针旋转90°,再向右平移10格B. 先逆时针旋转90°,再向右平移10格C. 先顺时针旋转90°,再向右平移8格D. 先逆时针旋转90°,再向右平移8格9.下列各组字母中,()是通过旋转得到的。
A. bdB. bpC. pqD. bq 10.如图,将三角形A绕点O()可以得到三角形B。
A. 按顺时针方向旋转60°B. 按顺时针方向旋转90°C. 按逆时针方向旋转60°D. 按逆时针方向旋转90°11.小明用如下图所示的胶滚沿从左到右的方向将图案滚涂到墙上,下列给出的四个图案中,符合图示胶滚涂出的图案是()A. AB. BC. CD. D12.绕点O顺时针旋转()度后,又回到原来位置。
A. 270B. 180C. 360二、填空题13.时针从2时到6时,按________方向旋转了________°.14.体育课上,老师口令“立正,向后转” 时,你的身体按________时针旋转了________°,口令“立正,向左转” 时,你的身体按________时针旋转了________°。
第二单元测试一、选择题1.如图所示的标志中,是轴对称图形的有()A.1个B.2个C.3个2.将下图方格纸图中上面的图形平移后和下面的图形拼成一个长方形,那么正确的平移方法是()A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格3.这样折剪得到的图形是()A.B.C.4.如图中可以通过平移图A得到的图形有()个A.2B.3C.45.下列说法正确的是()A.一般的等腰三角形只有一条对称轴B.两个能够重合的图形一定对称C.一个轴对称图形只有一条对称轴D.一个图形平移后与原图形对称二、填空题6.如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是________,折痕所在的直线叫做________.7.长方形有________条对称轴,正方形有________条对称轴.8.如图:(1)点A到对称轴的距离是________小格,点B到对称轴的距离是________小格;(2)点E和点________到对称轴距离是相等的;(3)点________和点________对称,点________和点________对称.9.在一幅轴对称图形中,沿对称轴对折后A点与B点重合.如果A点到对称轴的距离是4厘米,那么未对折前A点到B点的距离是________厘米.10.如图的钟面是从镜子里看到的,实际钟面上的时刻是________.11.下面哪些图形是轴对称图形?是的在括号里画“√”.()()()()()()()()12.判断下列现象属于“平移”还是“旋转”.(1)转动的转盘属于________现象.(2)推拉窗户属于________现象.(3)自来水管中水的流动属于________现象.(4)升国旗属于________现象.(5)翻书属于________现象.13.看一看,填一填.(1)上面的图案是用________的方法设计的.(2)上面的图案是用________的方法设计的.三、判断题14.轴对称图形一定有对称轴. ()15.两个圆组成的图形一定是轴对称图形. ()16.利用平移、对称可以设计许多美丽的图案. ()17.对称轴两侧相对的点到对称轴的距离相等. ()18.旋转之后图形的形状发生了改变. ()四、作图题19.(1)A帆船图向()平移了()格得到B帆船.(2)在方格纸上画出三角形向右平移5格的图形.20.请按照给出的对称轴画出第一个图形的对称图形,第二个图形请向上移动3个格.21.动手画一画.(1)将图A向右平移4格后得到图B.(2)以虚线为对称轴,画出图A的轴对称图形,得到图C.(3)将图B向下平移4格,得到图D.五、解答题22.看图回答.(1)如图,长方形向________平移了________格.(2)上面每个小方格的面积代表1平方厘米,右面图形部分的面积是________平方厘米. (3)请你在方格中画一个和右图阴影部分面积相等的长方形.23.根据要求回答问题:(1)画出上面这个轴对称图形的另一半.(2)计算出上面这个轴对称图形的面积.(图中小方格的边长是1厘米)第二单元测试答案一、1.【答案】C2.【答案】C3.【答案】A4.【答案】A5.【答案】A二、6.【答案】轴对称图形对称轴7.【答案】2 48.【答案】(1)3 3(2)F(3)A B E F9.【答案】810.【答案】5:2011.【答案】12.【答案】(1)旋转(2)平移(3)平移(4)平移(5)旋转13.【答案】(1)平移(2)轴对称三、14.【答案】√15.【答案】√16.【答案】√17.【答案】√18.【答案】×四、19.【答案】(1)下 6(2)如图:20.【答案】21.【答案】(1)(2)(3)五、22.【答案】(1)上 4(2)8(3)如图所示:23.【答案】(1)如图所示:(2)这个轴对称图形的面积是36平方厘米。
《图形的旋转》教学设计(精选7篇)《图形的旋转》教学设计篇一教学目标:1、经历欣赏图案、综合运用图形的变换知识在方格纸上设计图案的过程。
2、能灵活运用图形的平移、对称和旋转等在方格纸上设计图案。
3、认识到许多图案都可以借助图形变换来设计,感受图形变换的美,获得数学活动的积极体验。
教学准备:图案制作过程的课件、方格纸。
教学方案:一、欣赏图案教师谈话,并用课件出示书中的两幅图案,学生观察、交流这些图案有什么特点。
然后进行激励性对话。
通过启发性谈话,引导学生观察、交流图案的特点,激发学生的学习兴趣,为设计图案作铺垫。
师:同学们,我们分别认识了图形的对称、平移、旋转这三种图形变换方式。
其实,在许多图案中,经常同时有2种或3种图形变换方式。
请看两个图案。
课件呈现教材上的两个图案。
师:观察一下这两个图案,你发现它们各有什么特点?学生可能回答。
第一幅都是用梯形组成的。
第一幅图是轴对称图形。
第一幅图也可以通过旋转得到了。
第二幅图是三角形旋转得到的。
……师:同学们观察得真仔细。
你喜欢这样的图案吗?生:喜欢。
师:想不想学会设计这样的图案?生:想学。
二、设计图案1.说明设计图案的奥秘,学生利用课件动态地展示第一个图案的制作过程。
先完成第①、②两步。
2.讨论:下面怎么办?让学生充分发表自己的意见,完成③、④两步。
通过动态展示一个梯形是怎样一步步变换成漂亮的图案的过程,使学生认识到许多图案都可以借助图形变换来设计,感受图形变换的美。
通过讨论,使学生了解设计图案方法的多样化,丰富学生的实践活动经验。
师:同学们观察得真仔细。
你喜欢这样的图案吗?生:喜欢。
师:想不想学会设计这样的图案?生:想学。
师:老师告诉你们,用一个简单的图形,巧妙地利用对称、平移和旋转就可以设计出这些精美的图案。
让我们一起来设计第一个图案。
教师用课件呈现了方格图。
师:在方格纸上先画一个梯形。
课件展示画的过程和结果。
师:然后画出这个梯形的对称图形。
课件展示画的过程和结果。
新人教版五年级数学下册旋转教案文案教案是一个老师教学的总体设计,是实施教学任务的主要依据。
教师可以根据自己的教案更加顺利的完成教学。
所以,教案对于教师是非常重要的!今天小编在这里给大家分享一些有关于新人教版五年级数学下册旋转教案文案,希望可以帮助到大家。
新人教版五年级数学下册旋转教案文案1教学目标:1.进一步认识图形的旋转,探索图形旋转的特征和性质。
2.通过观察、想象、分析和推理等过程,独立探究、增强空间观念。
3.让学生体会图形变换在生活中的应用,利用图形变换进行图案设计,感受图案带来的美感和数学的应用价值。
教学重点:理解、掌握旋转现象的特征和性质。
教学难点:理解、掌握旋转现象的特征和性质。
教学过程:一、情景导入1.教师用课件演示:(1)钟表的转动;(2)风车的转动。
提问:观察课件的演示,你看到了什么学生在交流汇报时可能会说出(1)钟表上的指针和风车都在转动;(2)钟表上的指针和风车都是绕着一点转动;(3)钟表上的指针沿着顺时针方向转动,风车沿着逆时针方向转动。
教师:像钟表上指针和风车都绕着一个点或一个轴转动的这种现象就是旋转。
(板书课题:图形的旋转变换)2.提问:旋转现象有几种情况生回答后板书。
3.师:在日常生活中你在哪些地方见到过旋转现象学生自己举例说一说。
二、新课讲授出示课本第83页例题1的钟面。
(1)观察,描述旋转现象。
观察:出示动画(指针从12指向1),请同学们仔细观察指针的旋转过程。
提问:谁能用一句话完整地描述一下刚才的这个旋转过程(教师引导学生叙述完整)观察:出示动画(指针从1指向3)。
提问:这次指针又是如何旋转的观察:出示动画(指针从3指向6)。
同桌互相说一说指针又是如何旋转的提问:如果指针从“6”继续绕点O顺时针旋转180°会指向几呢(2)教师:根据我们刚才描述的旋转现象,想想看,要想把一个旋转现象描述清楚,应该从哪些方面去说明小结:要把一个旋转现象描述清楚,不仅要说清楚是什么在旋转,运动起止位置,更重要的是要说清楚旋转围绕的点,方向以及角度。
四年级数学特色作业
一、作业名称
图形绘世界(粘贴画)
二、设计意图
通过学科特色活动,让学生在观察美丽的图案,感受图形中的平移、对称和旋转,能够将平移、对称和旋转的技巧应用于图案的设计。
鼓励学生富有个性地完成设计图案的任务,增强对图形与变换的兴趣,感受数学美和数学方法的价值。
在方格纸上利用三角尺或直尺先画出一个或几个图形,再运用对称、平移或旋转的方法,设计美丽的图案。
以图案的新颖、独特、美观及实用性作为评优标准.通过本次活动,进一步激发了学生们学习数学的兴趣,提高了他们动手操作的能力,增强了他们学习数学的自信心。
同学们真正地感受到生活中处处有数学,数学就在他们的身边。
三、设计内容
亲手用色卡纸剪图形,如:长方形、正方形、平行四边形、三种梯形、三角形等,将其进行设计、拼粘、绘制、勾勒成一幅完整的情境图画。
一幅完整的图画作品就大功告成了!
四、作业描述
在方格纸上利用三角尺或直尺先画出一个或几个图形,再运用对称、平移或旋转的方法,设计美丽的图案。
以图案的新颖、独特、美观及实用性作为评优标准。
请试着去会挖掘自己身上的独有潜质,认真思考,精心设计,相信你一定会呈现给大家个性化的寒假作品!。
小学数学五年级下册新人教版第五单元图形的运动(三)测试题(答案解析)一、选择题1.把一个图形绕其中一点顺时针旋转(),又回到原来的位置.A. 90°B. 180°C. 360°2.如图分针从12旋转到3,所经过的区域占整个钟面的()A. B. C.3.有一个图形的涂色部分是由空白部分绕点O顺时针旋转90°得到的,这图形是()A. B. C.4.把一个图形绕某点顺时针旋转30°,所得的图形与原来的图形相比()A. 变大了B. 大小不变C. 变小了D. 无法确定大小是否变化5.下列图案中,()不是由一个图形通过旋转而得到的。
A. B. C. D.6.如图是日本“三菱”汽车的标志,它可以看作是由菱形通过旋转得到的,每次旋转了()A. 60°B. 90°C. 120°7.下面的图案是由一个基本图形经过平移得到的是( )。
A. B. C. D.8.下面的图案,()是由涂有阴影的部分旋转形成的。
A. B. C.9.下面各图形中,以直线为轴旋转一周,可以得到圆锥的是()A. B. C. D.10.小明用如下图所示的胶滚沿从左到右的方向将图案滚涂到墙上,下列给出的四个图案中,符合图示胶滚涂出的图案是()A. AB. BC. CD. D11.绕点O顺时针旋转()度后,又回到原来位置。
A. 270B. 180C. 36012.下面的图案用到了()原理A. 平移B. 旋转C. 对称二、填空题13.下面图形中,________是由基本图形平移得到的,________是由基本图形旋转得到的。
A. B. C.14.指针顺时针旋转90度,从B点旋转到________,指针逆时针旋转90度,从C点旋转到________。
15.如图,三角形从①旋转到②,是怎样旋转的?它是将三角形ABC________。
16.组合图案是由________经过________、________、________等图形变换形成的。
新世纪小学数学六年级(上)册《图形的变换》图案设计一、教学内容分析本节课学习的图形变换内容是平移、旋转和轴对称知识的综合运用。
通过具体实例的展示,使学生知道一个简单图形经过旋转、平移或轴对称,能形成一个较复杂的图形,并能运用图形的变换在方格上设计图案。
本节课的教材,具有以下特点:1.结合观察、操作、想象,体会图形变换的过程。
教材呈现了多个由简单图形经过平移、旋转或轴对称形成复杂图形的情境,鼓励学生通过观察、操作、想象,分析图形变换的过程,并运用语言进行表达。
同时,每一个情境中,图形变换的方式和步骤是多样的,通过交流,学生将加深对平移、旋转、轴对称现象的理解,体验变换过程的多样性。
在教材呈现上,鼓励学生将观察、操作与想象相结合,发展学生的空间观念。
在此基础上,教材进一步鼓励学生能灵活运用平移、旋转和轴对称在方格纸上设计图案。
已学过的相关内容三年级下册●认识轴对称、平移和旋转现象四年级上册●图形的变换本单元的主要内容●图形的变换●图案设计●数学欣赏2.结合欣赏和设计美丽的图案,体会图形的美和图形世界的神奇生活中有各种美丽的图案,选择一部分有趣的图案供学生欣赏,对培养学生的审美意识、认识数学的美是很有帮助的。
教材中专门安排了图案设计与数学欣赏的活动,主要目的是引导学生欣赏图案,并引导学生尝试绘制美丽的图案。
教材安排了“任意一个简单的图形,当它围绕一点进行旋转,并把每次旋转后的图形沿轮廓画下来,那么就会形成一个美丽的图案”的活动,引导学生绘制美丽的图案,体会图形世界的神奇。
二、学生分析在以前的学习中,学生已经结合实例了解了生活中的平移、旋转和轴对称现象,并经历了一个简单图形经过旋转制作复杂图形的过程。
本内容是平移、旋转和轴对称知识的综合运用,有利于学生进一步认识图形的变换,发展他们的空间观念。
学习图形变换的主要目的是引导学生从运动变化的角度去探索和认识空间与图形,发展学生的空间观念。
三年级时,学生已经结合实例初步感知了生活中的平移、旋转和轴对称现象,认识了轴对称图形,能在方格纸上画出简单图形的轴对称图形,能在方格纸上画出一个简单图形沿水平方向或竖直方向平移后的图形;四年级时,结合实例观察,学生了解了一个简单图形经过旋转制作复杂图形的过程,能在方格纸上将简单图形旋转90°。
23.3 课题学习图案设计一、导学1.导入课题:请同学们观察欣赏下列图案(投影).你能用平移、旋转或轴对称分析下图中各个图案的形成过程吗?这节课我们一起走进图案设计——板书课题.2.学习目标:(1)学会利用旋转变换进行图案设计,设计出各种图案.(2)学会利用平移、轴对称、旋转的知识,进行多角度、多手法的组合设计方案.(3)会分析一种图案的设计方法.3.学习重、难点:重点:会分析寻求一些图案的设计手法.难点:学会利用平移、轴对称、旋转等图形变换中的一种或几种组合设计出图案.4.自学指导:(1)自学内容:教材第72页的内容.(2)自学时间:8分钟.(3)自学方法:动手操作,小组合作交流.(4)自学参考提纲:①观看引入中的图形,相互交流一下:它们是由哪些基本图形通过怎样的变换得到的?②学生亲自动手操作:按下面的步骤,请每一位同学完成一个别致的图案.第一步:准备一张正三角形纸片(课前准备)(如图a);第二步:把纸片任意撕成两部分(如图b、c);第三步:将撕好的一部分(如图b)沿正三角形的一边作轴对称,得到新的图形(如图d);第四步:并将上一步中得到的图形以正三角形的一个顶点作为旋转中心旋转,得到图e;第五步:把图e平移到图c的右边,得到图f;第六步:对图e进行适当的修饰,得到一个别致美丽的的图案(如图g).A b c d e f g③试分析说明下面右边的图案是通过左边的基本图形(等腰直角三角形)进行怎样的变换得到的?右边的图案是由左图的图案绕点A逆时针依次旋转45°,90°,135°,180°,225°,270°,315°得到的.④以所给图案为基本图形,运用平移、轴对称或旋转设计一个图案.二、自学学生可参考自学指导进行动手操作,互相交流体会.三、助学1.师助生:(1)明了学情:明了学生参与活动的情况.(2)差异指导:根据学情进行相应指导.2.生助生:小组内相互交流、研讨.四、强化1.展示自己的作品,交流创作心得.2.图案设计的基本方法.五、评价[HT〗1.学生的自我评价(围绕三维目标):在这节课的学习中有何收获?能否感受到学以致用的成功体验?2.教师对学生的评价:(1)表现性评价:点评学生的动手操作,创意设计等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在教学过程中,引导学生动手实践,以创造性地运用数学知识进行图案设计为主线,增强学生学好数学的信念,更好地提高学生的动手操作能力和实践能力.从课堂表现和学生表现来看,学生能够充分发挥主观能动性,创造性地进行图案设计,较好地完成学习任务.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)图案可以通过将字母 S 经过 旋转 变换得到.2.(10分)图案可以通过将 正方 形经过 平移 变换得到. 3.(10分)图案可以看做将汉字 弓 经过 轴对称 变换得到.4.(20分)如图,在网格中有一个四边形图案.(1)画出此图案绕点O 顺时针方向旋转90°,180°,270°的图案,你会得到一个美丽的图案,千万不要将阴影位置涂错;(2)若网格中每个小正方形的边长均为1,旋转后点A 的对应点依次为A 1、A 2、A 3,求四边形AA 1A 2A 3的面积;(3)这个美丽图案能够说明一个著名结论的正确性,请写出这个结论.解:(1)如图所示;(2)S 四边形AA1A2A3=S 正方形BB1B2B3-4S △ABC =8×8-4×12×5×3=34. (3)由图可知:()22142a c acb +=⨯+,整理得:c 2+a 2=b 2,即直角三角形斜边的平方等于两直角边的平方和,这就是著名的勾股定理.5.(20分)如图是某设计师设计的方桌布图案的一部分,请你运用旋转变换的方法,在坐标纸上将该图形绕原点顺时针依次旋转90°、180°、270°,并画出它在各象限内的图形,你会得到一个美丽的立体图形,但是涂阴影时要注意利用旋转变换的特点,不要涂错了位置,否则不会出现理想的效果.解:如图所示.二、综合应用(20分)6.(20分) 如图已知每个网格中小正方形的边长都是1,图中的图案是由三段以格点(每个小正方形的顶点叫格点)为圆心,半径分别为1、2、3的圆弧围成.(1)填空:图中三段圆弧所围成的封闭图形的面积是3π-6 (结果保留π);(2)请你在图中以(1)中的图为基本图案,借助轴对称变换和旋转变换设计一个完整的图案.解:如图所示.三、拓展延伸(10分)7.(10分) 请利用图中的基本图案,通过平移、旋转、轴对称,在方格纸中设计一个美丽的图案.解:如图所示.22.3实践与探索【学习目标】(一)知识教学点:使学生会用列一元二次方程的方法解有关:数字问题、面积问题、增长率问题、储蓄问题、经营问题等.(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,以及学生近似数运算的能力。
人教版小学五年级数学下册同步复习与测试讲义第五章图形的运动(三)【知识点归纳总结】1. 确定轴对称图形的对称轴条数及位置1.对称轴的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线就是它的对称轴.2.找到对应点的连线,如果连线的中点都在一条直线上,说明是其图形的对称轴.3.掌握一般图形的对称轴数目和位置对于快速判断至关重要.【经典例题】例:下列图形中,()的对称轴最多.A、正方形B、等边三角形C、等腰三角形D、圆形分析:依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,从而可以作出正确选择.解:(1)因为正方形沿两组对边的中线及其对角线对折,对折后的两部分都能完全重合,则正方形是轴对称图形,两组对边的中线及其对角线就是其对称轴,所以正方形有4条对称轴;(2)因为等边三角形分别沿三条边的中线所在的直线对折,对折后的两部分都能完全重合,则等边三角形是轴对称图形,三条边的中线所在的直线就是对称轴,所以等边三角形有3条对称轴;(3)因为等腰梯形沿上底与下底的中点的连线对折,对折后的两部分都能完全重合,则等腰梯形是轴对称图形,上底与下底的中点的连线就是其对称轴,所以等腰梯形有1条对称轴;(4)因为圆沿任意一条直径所在的直线对折,对折后的两部分都能完全重合,则圆是轴对称图形,任意一条直径所在的直线就是圆的对称轴,所以说圆有无数条对称轴.所以说圆的对称轴最多.故选:D.点评:解答此题的主要依据是:轴对称图形的概念及特征.例2:下列图形中,对称轴条数最多的是()分析:先找出对称轴,从而得出对称轴最多的图形.解:A:根据它的组合特点,它有4条对称轴;B:这是一个正八边形,有8条对称轴;C:这个组合图形有3条对称轴;D:这个图形有5条对称轴;故选:B.点评:此题考查了轴对称图形的定义,要求学生能够正确找出轴对称图形的对称轴.2. 将简单图形平移或旋转一定的度数1.平移:平移前后图形的大小、方向、角度不发生变化,位置发生变化.2.旋转:(1)三维旋转:点动成线,线动成面,面动成体.(2)二维旋转:旋转前后图形的大小不发生变化,位置发生变化.【经典例题】例:按要求画一画.(1)画出三角形A向右平移5格后的图形B.(2)画出三角形B绕点O按逆时针方向旋转90度后的图形C.(3)画出三角形A按2:1放大后的图形D.分析:把原三角形的另外两个顶点分别命名为E、F,(1)把O向右平移5格后得到O′,把E向右平移5格后得到E′,把F向右平移5格后得到F′,然后连接O′E′F′三个点得到三角形B,(2)把E′绕O′点按逆时针方向旋转90度后得到E′′,把F′绕O′点按逆时针方向旋转90度后得到F′′,然后连接O′E′′F′′得到三角形C,(3)根据放大比例,把底变为原来的两倍,得到点F′′′,把高变以原来的两倍,得到E′′′,然后连接O′′′F′′′E′′′得到三角形D.解:(1)三角形A向右平移5格后的图形B如下图所示:(2)三角形B绕点O按逆时针方向旋转90度后的图形C如下图所示:(3)三角形A按2:1放大后的图形如下图所示:点评:此题考查了简单图形的平移和旋转以及按比例放大.3. 运用平移、对称和旋转设计图案1.一个长方形(或正方体)沿一条边旋转就会成为一个圆柱.2.一个已知半圆,以直径为轴翻转后的图形与已知半圆能变成一个圆.3.一个直角三角形沿着一条直角边旋转就会变成一个圆锥.【经典例题】例:画出图形的另一半,使它成为一个轴对称图形.分析:找出7个端点的轴对称点,用同样粗细的线段逐点连接,即可得解.解:点评:此题考查了运用平移、对称和旋转设计图案.【同步测试】单元同步测试题一.选择题(共8小题)1.如图沿逆时针方向转了90°以后的图形是()A.B.C.D.2.将平面图形绕轴旋转一周后得到的图形是()A.B.C.D.3.下列图形中,只有一条对称轴的是()A.圆心角是90°的扇形B.长方形C.等边三角形4.下面图形中,()的对称轴最少.A.正方形B.圆C.扇形D.长方形5.把一个图形绕某点顺时针旋转30°,所得的图形与原来的图形相比()A.变大了B.大小不变C.变小了D.无法确定大小是否变化6.如图是由☆经过()变换得到的.A.平移B.旋转C.对称7.左图是由经过()变换得到的.A.平移B.旋转C.对称D.折叠8.如图的图形中,()是由旋转得到的.A.B.C.二.填空题(共7小题)9.图形的基本变换方式有、、.10.(1)指针从“1”绕点0顺时针旋转60°后指向(2)指针从“1”绕点0逆时针旋转90°后指向.11.长方形沿一条长旋转一周后形成一个,直角三角形沿着一条直角边旋转之后形成一个.12.☆有条对称轴.13.这个图形有条对称轴.14.小芳卧室的一面墙上贴着瓷砖,中间的6块组成了一个图案.在保持组合图案不变的情况下,有种不同的贴法.15.你知道方格纸上图形的位置关系吗?(1)图形B可以看作图形A绕点顺时针方向旋转90°得到的.(2)图形C可以看作图形B绕点O顺时针方向旋转得到的.(3)图形B绕点O顺时针旋转180°到图形所在位置.(4)图形D可以看作图形C绕点O顺时针方向旋转得到的.三.判断题(共5小题)16.长方形是轴对称图形,有2条对称轴,长方形是特殊的平行四边形,所以平行四边形也是轴对称图形,有两条对称轴.(判断对错)17.利用平移、对称和旋转变换可以设计许多美丽的镶嵌图案..(判断对错)18.直角三角形绕其中一条边旋转一周后得到的图形一定是圆锥.(判断对错)19.在图中,以直线为轴旋转,可以得出圆锥只有1个..(判断对错)20.如图的花边是用平移对称的方法设计的.(判断对错)四.应用题(共1小题)21.李师傅计划用2.5米长的铁丝做一个如图所示的框架.你认为够不够?五.操作题(共1小题)22.在如图的方格纸中,照样子画出所给的图形六.解答题(共3小题)23.写出下面各轴对称图形的对称轴的条数.24.按要求填一填、画一画.(1)向平移了格.(2)向平移了格.(3)将向左平移4格.25.利用旋转画一朵小花.参考答案与试题解析一.选择题(共8小题)1.【分析】紧扣图形翻转和旋转的定义,将这个图形分别推理变形,即可得出答案,进行选择.【解答】解根据旋转的定义可得,将翻转后的图形按逆时针方向旋转90°得到的图形是:故选:A.【点评】此题考查了利用翻转和旋转的定义将简单图形进行变形的方法.2.【分析】这个平面图形是一个直角梯形,也可看作是一个直角三形与长方形的组成图形,且直角三形的一条直角边与长方形的一边重合,直角三角形绕一直角边旋转可形成圆锥,长方形绕一边旋转可形成圆柱,因此,这个平面图形绕轴旋转后形成的立体图形是圆柱与圆锥的组合体,且圆柱与圆锥有公共底.【解答】解:如图,绕轴旋转一周后得到的图形是:.故选:B.【点评】此题主要是考查学生的空间想象能力,根据平面图形及各立体图形的特征即可判定.3.【分析】根据轴对称图形的意义,并结合题意,进行依次分析,继而得出结论.【解答】解:A、圆心角是90°的扇形有1条对称轴;B、长方形有2条对称轴;C、等边三角形有3条对称轴.故选:A.【点评】此题根据轴对称的意义进行分析即可解答.4.【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,据此即可解答.【解答】解:A、正方形有4条对称轴;B、圆有无数条对称轴;C、扇形有1条对称轴;D、长方形有2条对称轴;故选:C.【点评】解答此题的主要依据是:轴对称图形的概念及特征,借助画图,更容易解答.5.【分析】根据旋转的性质可知把一个图形绕某点顺时针旋转30°后得到的图形与原图形的大小不变,据此解答即可.【解答】解:根据旋转的性质,可知把一个图形绕某点顺时针旋转30°后得到的图形与原图形的大小不变.故选:B.【点评】解答此题的关键是旋转的性质:旋转前后图形全等.6.【分析】平移就是水平移动,大小和形状不变;旋转除了大小和形状不变外,还要有一个绕点;对称形成的图形要能找到一条对称轴.据此得解.【解答】解:图形中有5个五角星并排在一条直线上,因此是由☆经过平移变换得到的.故选:A.【点评】此题考查了运用平移、对称和旋转设计图案,锻炼了学生的空间想象力和创新思维能力.7.【分析】采用平移的方法,平移4次,复制下图案,即可得到左图.【解答】解:采用平移的方法,平移4次,复制下图案,即可得到左图.故选:A.【点评】此题考查了运用平移、对称和旋转设计图案.8.【分析】根据对称和旋转设计图案的方法可知,A、B是完全重合的,而C不能,只能用旋转得到,从而可以进行选择.【解答】解:由对称和旋转设计图案的方法可知,A、B是对折后是完全重合的,而C不能,只能用旋转得到,故选:C.【点评】此题考查了利用对称和旋转设计图案.二.填空题(共7小题)9.【分析】根据图形的基本变换方式有三种:平移、旋转、轴对称解答即可.【解答】解:由分析知:图形的基本变换方式有平移、旋转、轴对称.故答案为:平移,旋转,轴对称.【点评】此题主要考查了学生对图形变换的三种基本方式的掌握情况.10.【分析】钟面上12个数字把这个钟面平均分成了12个大格,1个大格的度数是360°÷12=30°,由此先分别计算出它们旋转后分别经过了几个大格,即可解决问题.【解答】解:(1)指针从“1”绕点0顺时针旋转60°后,是旋转经过了60÷30=2格,所以指向3;(2)指针从“1”绕点0逆时针旋转90°后,是旋转经过了90÷30=3格,所以指向10;故答案为:3,10.【点评】抓住钟面上每一大格的度数是30°特点,计算出旋转经过了几个大格即可解决此类问题,这里要注意顺时针与逆时针旋转.11.【分析】(1)将长方形,围绕它的一条长边为轴旋转一周,得到的是圆柱,其中长是圆柱的高,宽就是圆柱的底面半径;(2)根据圆锥的特征:一个直角三角形沿一条直角边旋转一周,就会得到一个圆锥体,为轴的那条直角边是旋转后的圆锥的高,另一条直角边是旋转后的圆锥的底面半径;进而得出结论.【解答】解:长方形沿一条长旋转一周后形成一个圆柱,直角三角形沿着一条直角边旋转之后形成一个圆锥.故答案为:圆柱、圆锥.【点评】解答此题的关键:根据圆柱和圆锥的特征进行解答即可.12.【分析】把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线就是它的对称轴,据此解答即可.【解答】解:☆有5条对称轴;故答案为:5.【点评】此题考查了轴对称图形的定义,要求学生能够正确找出轴对称图形的对称轴.13.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:这个图形有1条对称轴;故答案为:1.【点评】此题是考查确定轴对称图形对称轴的条数及位置.根据各种图形的特征及对称轴的意义即可判定.14.【分析】根据题意保持组合图案不变的情况下,即只能通过平移的方法来解决问题,图案水平有3块竖直2块共占6块,小芳卧室的一面墙水平有11块、竖直有6块,在图案平移的过程中分两部完成,第一步水平移动:有11﹣3+1种方法;第二步竖直平移:有6﹣2+1种方法;根据数列的乘法原理,即可得解.【解答】解:贴法如下图:(11﹣3+1)×(6﹣2+1)=9×5=45(种)答:在保持组合图案不变的情况下,有45种不同的贴法.故答案为:45.【点评】此题主要考查了运用平移设计图案;还考查了灵活应用数列的知识来解决问题.15.【分析】根据旋转的特征,一个图形绕某点按一定的方向旋转一定的度数后,某点的位置不动,其余各部分均绕此点按相同方向旋转相同的度数.图形A绕点O顺时针方向旋转90°可得到图形B;图形B 绕点O顺时针方向旋转90°可得到图形C;图形B顺时针方向旋转180°可得到图形D;图形C顺时针方向旋转90°可得到图形D.【解答】解:如图,(1)图形B可以看作图形A绕点顺时针方向旋转90°得到的.(2)图形C可以看作图形B绕点O顺时针方向旋转得到的.(3)图形B绕点O顺时针旋转180°到图形所在位置是图形D.(4)图形D可以看作图形C绕点O顺时针方向旋转90°得到的.【点评】旋转作图要注意:①旋转方向;②旋转角度.整个旋转作图,就是把整个图案的每一个特征点绕旋转中心按一定的旋转方向和一定的旋转角度旋转移动.三.判断题(共5小题)16.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断.【解答】解:长方形是轴对称图形,有2条对称轴,长方形是特殊的平行四边形,这些说法都是正确的;但一般的平行四边形不是轴对称图形,所以原题说法错误.故答案为:×.【点评】判断是不是轴对称图形的关键是找出对称轴,图形两部分沿对称轴折叠后能完全重合.17.【分析】规则的平面分割叫做镶嵌,镶嵌图形是完全没有重叠并且没有空隙的封闭图形的排列.一般来说,构成一个镶嵌图形的基本单元是多边形或类似的常规形状,例如经常在地板上使用的方瓦.利用平移、对称、旋转变换可以设计许多美丽的镶嵌图案.【解答】解:例如蜜蜂的蜂窝就是正六边形的平移、旋转、对称的典型图案;如下图所示,利用平移、对称和旋转变换设计的许多美丽的镶嵌图案:故答案为:√.【点评】此题考查了运用平移、对称和旋转设计图案.18.【分析】直角三形绕其中一条直角边旋转一周后得到的图形一定是一个圆锥(旋转直角边为圆锥的高,另一直角边为底面半径);如果绕斜边旋转一周,得到的是有公共底面的两个圆锥组合体.【解答】解:直角三角形绕其中一条边旋转一周后得到的图形一定是圆锥是错误的,只有绕其中一直角边旋转一周后得到的图形才一定是圆锥.故答案为:×.【点评】以直角三角形的一直角边为轴旋转一周,将得到一个以旋转直角边为高,另一直角边为底面半径的圆锥.是培养学生的空间想象能力.19.【分析】只有直角三角形绕它的一条对角边旋转一周,才可以得到一个以旋转边为高,为一直角边为底面半径的圆锥.【解答】解:根据各图形的特征,①旋转后得到一个圆柱与一个圆锥的组合体;②旋转后得到一个圆柱;③旋转后得到一个圆柱与两个圆锥的组合体;④旋转后得到一个圆锥.故答案为:√.【点评】本题一是考查将一个简单图形绕一轴旋转一周所组成的图形是什么图形,根据各平面图形特征即可判定.20.【分析】这个花边可以看作是由一个图案通过轴对称,再轴对称……得到的,也可看作是一次轴对称,然后通过间隔平移得到的,每次单个图案平移的距离是一个图案的距离.【解答】解:如图花边是用平移对称的方法设计的原题说法正确.故答案为:√.【点评】此题是考查平移、轴对称的特征.四.应用题(共1小题)21.【分析】根据题意,把图形0.38m的边平移到与0.22m相平,短竖边平移到0.27m的边上面,就变成了一个长是0.63m,宽是0.22+0.38=0.6m的长方形,根据长方形的周长公式,求出周长,然后再与2.5米进行比较解答.【解答】解:经过平移可得:(0.22+0.38+0.63)×2=1.23×2=2.46(米)2.46<2.5答:用2.5米长的铁丝够.【点评】本题关键是把不规则的图形通过平移变成规则图形,然后再求出周长进行比较解答.五.操作题(共1小题)22.【分析】先确定圆心和半径作出外圆,再找到对应点作出正方形,再找到正方形的边长的中点找到半圆的圆心,作出4个半圆即可求解.【解答】解:如图所示:【点评】考查了运用平移、对称和旋转设计图案,关键是确定圆的圆心和半径.六.解答题(共3小题)23.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:故答案为:1,2,1.【点评】掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.24.【分析】观察图形可知,(1)右边的各顶点分别是由左边的的顶点向右平移6格得到的;(2)上面的的顶点分别是由下面的顶点向上平移4格得到的;(4)把图中的顶点分别向左平移4格,然后首尾连接各点,即可画出.【解答】解:(1)向右平移了6格.(2)向上平移了4格;(3)画图如下:【点评】本题主要是考查图形的平移.图形平移后形状、大小不变,只是位置变化.25.【分析】根据旋转图形的特征,把这个图形绕O点顺时针旋转90°,再旋转90°,再旋转90°就可能得到一朵小花.【解答】解:画图如下:【点评】要根据旋转图形的特征,一个图形绕某点旋转后,大小、形状不变,只是位置变化来设计图案.。
小学数学单元作业设计一、单元信息二、单元分析本单元教学内容包括:图形的旋转(一)、图形的旋转(二)、图形的运动和欣赏与设计四部分内容。
在第一学段的学习中,学生初步感受了生活中的平移、旋转和轴对称现象,能在方格纸上作简单图形平移后的图形。
本单元内容在上述基础上进一步发展,通过具体实例的展示,使学生进一步体会旋转的知识和综合运用平移、旋转和轴对称设计美丽的图案。
三、单元学习与作业目标1.通过实例观察,发现一个简单基本图形在旋转过程中的变化规律,并能自己动手将简单的基本图形围绕一点按一定的方向旋转一定的角度培养观察能力及审美意识。
2.了解一个简单图形经过旋转制作复杂图形的过程,知道图形旋转的三要素(中心点、方向、度数)。
3.通过观察实例,认识图形的平移和旋转,能在方格纸上将简单图形进行平移或旋转。
4.欣赏生活中的图案,灵活运用平移、轴对称和旋转在方格纸上设计图案,感知美、创造美,体验成功的喜悦。
四、单元作业设计思路分层设计作业。
每课时均设计“基础性作业”(面向全体,体现课标,题量3-4大题,要求学生必做)和“发展性作业”(体现个性化,探究性、实践性,题量为3-6大题,要求学生有选择的完成)。
具体设计体系如下:五、课时作业图形的旋转(一)基础性作业旋转的三要素:发展性作业从2:00到2:25,钟面上的分针()时针旋转()°,指向“()”。
从2:00到6:00,钟面上的时针()时针旋转()°,指向“()”。
图形的旋转(二)基础性作业画出图中的小旗绕点M顺时针旋转90度后的图形。
发展性作业图形的运动基础性作业判断:由平移得到的图形一定不能由旋转得到。
()图形平移前后的()和()没有变化,只是()发生变化。
图形平移后,对应点连成的线段平行(或在同一直线上)且相等。
多次连续平移相当于一次平移。
偶数次对称后的图形等于平移后的图形。
平移是由方向和距离决定的。
经过平移,对应线段平行(或共线)且相等,对应点所连接的线段平行(或共线)且相等。
数学图形与变换试题1.“森”字可以看成是“木”字经过两次平移之后得到的,请写两个类似的字:、.【答案】晶、品【解析】“森”字可以看成是“木”字经过两次平移之后得到的,类似的字还有晶、品、众、淼、犇等“品”字结构的字.解:“森”字可以看成是“木”字经过两次平移之后得到的,类似的字:晶、品;故答案为:晶、品.点评:本题是考查平移的意义.根据题意,中“品”结构的字都可以看作由一个字经过两次平移之后得到的.2.如图1所示是由12个全等三角形组成的,利用平移、轴对称或旋转分析这个图案的形成过程.【答案】以一个三角形的一条边为对称轴作与它对称的图形(如图2).将得到的这组图形以一条边的中点为旋转中心旋转180°(如图3).分别以这两组图形为平移的“基本图案”,各平移两次,即可得到最终的图形【解析】根据图形的特点,运用对称、平移、旋转的知识进行分析、即可.解:如图:这个图形可以按照以下步骤形成:(1)以一个三角形的一条边为对称轴作与它对称的图形(如图2).(2)将得到的这组图形以一条边的中点为旋转中心旋转180°(如图3).(3)分别以这两组图形为平移的“基本图案”,各平移两次,即可得到最终的图形.点评:本题考查了利用对称、平移、旋转设计图案的知识,属于基础题,注意基本图案的寻找是关键.3.现实生活中,我们经常见到一些美丽的图案,请你用轴对称来分析如图所示花纹的形成过程.【答案】图一以图形正中间的水平的直线为对称轴,进行一次轴对称变换;图二是以图形正中间的竖直直线为对称轴,进行一次轴对称变换;图三是以图形正中间的水平的直线为对称轴,进行一次轴对称变换【解析】应通过轴对称的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴;据此分析即可.解:图一以图形正中间的水平的直线为对称轴,进行一次轴对称变换;图二是以图形正中间的竖直直线为对称轴,进行一次轴对称变换;图三是以图形正中间的水平的直线为对称轴,进行一次轴对称变换.点评:利用平移、旋转、对称设计图形,都要选准基本图案.平移定好平移的格数;对称定好对称轴,选好对称点;旋转选好旋转点,依次沿每次旋转后的基本图的边缘旋转图案.4.你能用这个图形,通过对称、平移或旋转设计出美丽的图案来吗?请把你设计的美丽图案画在下面的作品展示栏里!【答案】【解析】可以利用这一个图形通过平移设计壁报的边.解:通过平移设计壁报边如下:故答案为:点评:本题是考查图利用图形变的设计图案.小学阶段图形变包括图形的平移、旋转、轴对称.灵活去用可设计出很多精美的图案5.左边图形以直线为轴旋转一周后会形成右边哪个立体图形?连一连.【答案】【解析】本题是一个平面图形围绕一条轴旋转一周,根据圆柱、圆锥以及球体的侧面展开图的特点即可解答.解:第一幅图旋转一周,得到的是圆柱体;第二幅图旋转一周,得到的是球体;第三幅图旋转一周,得到的是圆锥体;第三幅图旋转一周,得到的是立体图形上在是圆锥体,下面是圆柱体;故答案为:点评:此题考查了点、线、面、体,重在体现面动成体:考查学生立体图形的空间想象能力及分析问题、解决问题的能力.6.观察方格纸中图形的变换.图形A是如何变换得到图形B?【答案】图形A是围绕直角顶点旋转180度得到图形B的【解析】由图形A到图形B,直角的顶点没有动,还在原位置,图形A直角的长边在上面,到了图形B长边上下边了,方向变了,并且在一条直线上,所以说图形A是围绕直角顶点旋转180度得到图形B的.解:图形A是围绕直角顶点旋转180度得到图形B的.点评:此题要找准物体运动方向变化情况.7.转一转,说一说每组图形中的图形A是如何旋转变成图形B的.【答案】(1)将图形A绕O点顺时针旋转90°,即可得到旋转后的图形B,(2)将图形A绕O 点逆时针旋转90°,即可得到旋转后的图形B【解析】(1)将图形A绕O点顺时针旋转90°,即可得到旋转后的图形B,(2)将图形A绕O点逆时针旋转90°,即可得到旋转后的图形B,解:由分析中:(1)将图形A绕O点顺时针旋转90°,即可得到旋转后的图形B,(2)将图形A绕O点逆时针旋转90°,即可得到旋转后的图形B,点评:本题主要考查了旋转的定义,旋转是绕某个点旋转一定角度得到新图形.8.由△平移后得到的图形涂黄色,由△旋转后得到的图形涂上红色.【答案】【解析】根据图形旋转、及平移的性质涂色即可.解:根据题干分析涂色如下:点评:本题考查的是利用平移、对称及旋转设计图案,熟知图形旋转、对称及平移的性质是解答此题的关键.9.帆船图向平移了格.【答案】右;7【解析】图中右面的帆船的各点是由左面的帆船的各对应点向右平移7格得到的,因此帆船向右平移了7格.解:观察图形,根据图形平移的方法可知,帆船向右平移了7格.故答案为:右;7.点评:本题主要是考查图形的平移.图形平移后,形状、大小不变,只是位置变化.10.画出三角形绕点A顺时针旋转90度,长方形绕点B逆时针旋转90度后的图形.【答案】【解析】(1)根据图形旋转的方法,把三角形与点A相连的两条直角边绕点A顺时针旋转90度,再把第三条边连接起来,即可得出旋转后的图形1;(2)根据图形旋转的方法,把长方形与点B相连的两条边绕点B逆时针旋转90度后,再根据长方形的邻边互相垂直的性质,画出另外两条边,由此即可得出旋转后的长方形2.解:根据题干分析,画图如下:点评:此题主要考查图形的旋转,要明确旋转中心、旋转方向和旋转的角度.11.(1)笑脸向平移了格.(2)画出漏斗向上平移4格后的图形.【答案】右、6、【解析】(1)左、右两个笑脸的各对称点相距6格,因此右面的笑脸是由左边面的笑脸向右平移6格得到的.(2)根据图形平移的方法,先把漏斗的四个顶点分别向上平移4格,即可得出要求的图形.解:据分析解答如下:(1)笑脸向右平移了6格.(2)画出漏斗向上平移4格后的图形如下:故答案为:右、6.点评:此题考查了图形平移的方法.12.按要求画一画(1)将图形A向右平移5格得到图形B.(2)以直线a为对称轴,作图形A的对称图形,得到图形C.(3)把图形B绕点O顺时针旋转90度,得到图形D.【答案】【解析】(1)根据图形平移的方法,把图形A的各个顶点分别向右平移5格,再依次连接起来即可得出平移后的图形B;(2)根据轴对称的性质:先找出各个顶点关于直线a的对称点,再依次连接起来即可得出图形C.(3)根据图形旋转的方法,图形B绕O点顺时针旋转90°,O点的位置不动,各边均绕O点顺时针旋转90°,即可得到图形B绕O点顺时针旋转90°后的图形即图形D.解:根据题干分析画图如下:点评:此题考查了图形平移、旋转的方法和根据轴对称的性质画已知图形的轴对称图形的灵活应用.13.按要求在方格纸上画图.(1)画出方格纸左边图形的轴对称图形.(2)画出方格纸右边三角形绕O点逆时间旋转90后的图形.【答案】【解析】(1)根据轴对称图形的性质:对应点的连线被对称轴垂直平分,即可画出图形的另一半,使它成为一轴对称图形.(2)点O就是图形旋转后的对应点,把其它两点绕点O逆时针旋转90°后,顺次连接即为所求的图形.解:根据题干分析画图如下:点评:考查利用轴对称和旋转变换作图;图形的旋转,看关键点的旋转即可;注意绕图形的一个顶点旋转时,这个点就是旋转后图形的一个顶点.14.把三角形A绕点O先逆时针旋转90°,再向右平移5格,得到三角形B,最后将三角形B按2:1扩大,得到三角形C.【答案】【解析】根据旋转图形的特征,三角形A绕O点逆时针旋转90°,O点的位置不动,三角形A的各边均绕O点旋转90°,图形A′就是三角形A绕点O先逆时针旋转90°后的图形;把三角形A′的三个顶点分别向右平移5格,再首尾连接各点,所得到的图形B就是再向右平移5格得到的图形;三角形B是一个等腰三角形,底是4格,高是2格,根据图形放大与缩小的特征,画一个底是8格,高是4格的等腰三角形C就是三角形B按2:1扩大后的图形.解:画图如下:点评:本题考查图形的旋转、平移、放大与缩小,画图时要根据这些图形的特征画,图形的放大或缩小的倍数是指对应边放大或缩小的倍数.15.一个正三角形绕其一顶点按同一方向连续旋转五次,每次转过的角数为60°,旋转前后所有的图形共同组成的图案是什么?请你在方格纸中画出来.【答案】【解析】根据图形旋转的性质及正六边形的特点进行解答.解:因为当一个正三角形绕其顶点按同一方向连续旋转5次,每次转过的角度都是60°时,其中心角恰为360°,组成的图形每个角为120°,所以此多边形为正六边形.画图如下:点评:本题考查的是图形旋转的性质及正六边形的判定,熟知图形旋转后与原图形全等是解答此题的关键.16.(2013•道里区模拟)画出下图绕B点顺时针旋转90度的图形.【答案】【解析】旋转作图的方法是:①先找出图形中的关键点;②分别作出这几个关键点绕旋转中心旋转后的位置;③按原来位置依次连接各点,即得要求下旋转后的图形.解:旋转后的图形如下图:点评:本题主要考查的是旋转的概念,解决此类问题可以动手操作,也可以根据旋转方向及旋转角抽象出旋转后的图形.17.(1)如果三角形的A点在(2,8),那么B点在(,),C点在(,).(2)画出三角形ABC先向右平移4格,再绕B点顺时针旋转90°的图形.(3)三角形ABC按2:1放大后的图形,实际面积是多少平方米?【答案】3,6;1,6;;40000平方米【解析】(1)数对表示位置的方法:第一个数表示列数,第二个数表示行数;(2)先将图形向右平移4格得到三角形A1B1C1,再把图形绕B点顺时针旋转90,得到三角形A2B2C2,据此画出.(3)先根据图例知:原来三角形的底是2个格子的长度,即2×50=100米,高是2个格子的长度,即2×50=100米,再根据比求出新图形的底和高,再根据三角形面积=底×高÷2计算即可.解:(1)B点在(3,6);C在(1,6);(2)如图所示:;三角形A1B1C1是三角形ABC先向右平移4格后的图形;再把图形绕B(B1)点顺时针旋转90,得到三角形A2B2C2;(3)由题意得出:原来三角形的底是:2×50=100(米),高是:2×50=100(米),按2:1放大后的图形的底是:100×2=200(米),高是:100×2=200(米),面积是:200×200=40000(平方米).答:三角形ABC按2:1放大后的图形,实际面积是40000平方米.故答案为:(1)3,6;1,6.点评:(1)此题主要考查数对表示位置的方法:第一个数表示列数,第二个数表示行数;(2)本题主要考查图形的平移、旋转.关键是找到各对应点.(3)关键是求出扩大后得三角形的底和高,再根据面积公式计算即可.18.(2013•邛崃市模拟)A画出图①的另一半,使它成为一个轴对称图形. B把图②向右平移5格.C把图③按O点顺时针旋转90°. D把图④按3:1的比放大【答案】【解析】(1)根据轴对称图形的性质,对称点到对称轴的距离相等,对称轴是对称点的连线的垂直平分线,在对称轴的另一边画出关键的5个对称点,然后首尾连接各对称点即可.(2)根据平移的方法,先把图形②的各个关键顶点分别向右移动5格,再依次连接起来解答即可.(3)根据图形旋转的方法,把图中的三角形与点O相连的两条边按顺时针旋转90度,再把第三条边连接起来即可得出旋转后的图形.(4)按3:1的比画出平行四边形放大后的图形,先数出原平行四边形的底与高分别是3和2;则放大后底与高的长度分别是3×3=9、2×3=6;由此即可画出放大后的平行四边形;解:根据题干分析,作图如下:点评:此题考查图形的平移、旋转、放大与缩小的方法以及轴对称图形的性质和画轴对称图形的方法.19.直角三角形的三边长是3、4、5厘米,以斜边所在直线为轴旋转,形成一立体图形,试求该立体图形的体积.【答案】30.114立方厘米【解析】直角三角形斜边所在直线为轴旋转一周,得到的几何体是同一底面的两个圆锥,用直角三角形的面积求出底面圆的半径,然后用圆锥的体积公式求出几何体的体积.解:直角三角形斜边所在直线为轴旋转一周,得到的几何体是同一底面的两个圆锥,如上图所示,设这个圆锥的底面半径是r,则:5r÷2=3×4÷2,5r=12,r=2.4,所以这个立体图形的体积是:×3.14×2.42×(AO+CO),=×3.14×5.76×5;=30.114(立方厘米),答:旋转一周后的立体图形的体积是30.114立方厘米.点评:本题考查的是圆锥的计算,以直角三角形斜边所在的直线为轴转动一周,得到的几何体是两个圆锥,用圆锥的体积公式求出这个几何体的体积.20.利用图中的网格线(最小的正方形的边长为1)画图:(1)把△ABC向下平移3个单位(2)△ABC绕点A按逆时针方向旋转90°.【答案】【解析】(1)根据图形平移的方法,把三角形的三个顶点分别向下平移3个单位,再依次连接起来即可得出平移后的三角形1;(2)根据图形旋转的方法,先把与点A相连的两条边逆时针旋转90度,再把第三条边连接起来,即可得出旋转后的三角形2.解:根据题干分析,画图如下:点评:此题考查了利用图形的平移、旋转的方法进行图形变换的方法.21.(1)在下面方格图中画一个直角三角形,已知三角形的两个锐角的顶点,分别在A(2、3),B(4、5)的位置上,那么直角的顶点C的位置可以是.(2)将这个三角形绕A点顺时针旋转90°画出这个三角形后,再向右平移3格.(3)将这个三角形按2:1放大后,画在合适的位置.【答案】(4,3)或((2,5);;【解析】由题意可知直角三角形ABC的两个锐角的顶点A、B,在方格图中的位置,则直角三角形ABC的一条边AB的位置就是唯一确定的,而直角的顶点C的位置有两种可能:①在AB边的右侧②在AB边的左侧那么根据直角三角形的特点就可以确定C点在方格图中的位置.解:(1)由题意可知直角三角形ABC的两个锐角的顶点,在方格图中的位置分别在A(2、3),B(4、5).则直角三角形ABC的一条边AB的位置就是唯一确定的,直角的顶点C的位置有两种可能:(如图)①在AB边的右侧如图1②在AB边的左侧,如图2由C点是直角顶点,可知AC与BC的夹角是90°,所以得出当C点在AB右侧时的位置是(4,3),当C点在AB左侧时的位置是(2,5).故答案为:(4,3)或((2,5)(2)答案如图:(3)答案如图:,.点评:本题全面考察了直角三角形的特点、数对与位置的关系以及图形的平移、旋转、缩放等知识要点.检验了学生对相关知识的综合掌握与运用等方面的能力.22.如图,一块含有30°角的直角三角板ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C的位置.若BC的长为15cm,那么顶点A从开始到结束所经过的路径长为.【答案】20πcm【解析】顶点A从开始到结束所经过的路径是一段弧长是以点C为圆心,AC为半径,旋转的角度是180﹣60=120°,所以根据弧长公式可得.解:=20π(cm),答:顶点A从开始到结束所经过的路径长为20πcm.故答案为:20πcm.点评:本题考查了弧长的计算以及旋转的性质,解本题的关键是弄准弧长的半径和圆心角的度数.23.图中指针从A开始,绕点O逆时针旋转91°到,继续逆时针旋转90°到;指针绕点O从C旋转到D,是时针旋转了90°;指针绕点O从A旋转到B,是时针旋转了度.【答案】D,C,顺,顺,90【解析】观察图形可知,ABCD四个点把这个360°的圆心角平均分成了四份,每份的角度是90°;(1)指针从A开始,绕点O逆时针旋转91°到 D,继续逆时针旋转90°到 C;(2)指针绕点O从C旋转到D,是顺时针旋转了90°;指针绕点O从A旋转到B,是顺时针旋转了 90度.解:根据图和分析可知:指针从A开始,绕点O逆时针旋转91°到D,继续逆时针旋转90°到C;指针绕点O从C旋转到D,是顺时针旋转了90°;指针绕点O从A旋转到B,是顺时针旋转了90度.故答案为:D,C,顺,顺,90.点评:此题考查了周角是360°及对图形旋转知识的灵活运用,要靠平时把知识积累牢,用活.24.拉抽屉是旋转现象..(判断对错)【答案】×【解析】拉抽屉是抽屉来回移动,根据图形移动的意义,属于平移现象.解:拉抽屉是平移现象;故答案为:×点评:图形的平移与旋转,关键是看图形是否改变的方向,平移不改变方向,而旋转改变方向.25.在图中,以直线为轴旋转,可以得出圆锥只有1个..【答案】正确【解析】根据旋转的性质和圆锥的展开图的特点,可以得出:只有直角三角形绕它的一条直角边旋转一周,才能得到圆锥.解:根据题干分析可得:只有直角三角形绕它的一条直角边旋转一周,才能得到圆锥.所以在这4个图形中符合题意的只有④一个.所以原题说法正确.故答案为:正确.点评:此题考查了旋转的性质及圆锥的展开图的特点.26.举出你在生活中见到的三个旋转现象、、.【答案】拧水龙头,方向盘转动,转动的风车【解析】根据旋转的意义,把一个图形绕着某一点转动一个角度的图形变换叫做旋转.由此可列举生活中的旋转现象.解:拧水龙头是水龙头手柄绕中心轴转动,根据旋转的意义,拧水龙头是旋转现象;方向盘转动是方向盘围绕它的轴做圆周运动,根据旋转的意义,所以方向盘运动是旋转现象;转动的风车是风页绕中心轴转动,根据旋转的意义,转动的风车属于旋转现象;故答案为:拧水龙头,方向盘转动,转动的风车.点评:此题要找准旋转现象的特点,根据其特点来判断.27.当五星红旗在奥运赛场冉冉升起时,五星红旗的运动是平移..【答案】正确【解析】当五星红旗在奥运赛场冉冉升起时,五星红旗的运动是只是位置发生了变化,由地面升到了旗杆顶端,它的大小,形状不变,是平移现象.解:五星红旗的运动是只是位置发生了变化,它的大小,形状不变,是平移现象;故答案为:正确点评:本题是考查平移的意义.平移现象只是位置发生了变化,它的大小,形状不变.28.电梯的升降是平移..【答案】正确【解析】电梯的升降是上下位置的平行移动所以是平移,据此解答判断.解:电梯的升降是上下位置的平行移动,所以电梯的升降是平移的说法是正确的;故答案为:正确.点评:本题主要考查平移的意义,注意电梯的升降是平移.29.物体的运动是旋转的画“○”,是平移的画“△”.;;;.【答案】○,△,△,○【解析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.依此根据平移与旋转定义判断即可.解:由平移与旋转定义可知:图一是旋转;图二是平移;图三是平移;图四是旋转;故答案为:○,△,△,○.点评:此题是对平移与旋转理解及在实际当中的运用.30.五星红旗缓缓升起,是一种现象.【答案】平移【解析】当五星红旗在奥运赛场冉冉升起时,五星红旗的运动是只是位置发生了变化,由地面升到了旗杆顶端,它的大小,形状不变,是平移现象.解:五星红旗的运动是只是位置发生了变化,它的大小,形状不变,是平移现象;故答案为:平移点评:本题是考查平移的意义.平移现象只是位置发生了变化,它的大小,形状不变.31.在旋转现象后画“○”,在平移现象后画“□”.乘电梯上下楼;汽车轮的转动;正在沿着笔直旗杆上升的国旗;转动的方向【答案】□;○;□;○【解析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.根据平移与旋转定义判断即可.解:由平移与旋转的定义可知:乘电梯上下楼是一种平移运动;汽车轮的转动是一种旋转运动;正在沿着笔直旗杆上升的国旗是一种平移运动;转动的方向盘是一种旋转运动.故答案为:□;○;□;○.点评:此题是考查对平移与旋转的理解及在实际当中的运用.32.气球上升和钟面分针的走动都是平移现象..【答案】×【解析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.根据平移与旋转定义判断即可.解:(1)气球上升是上下移动,属于平移现象;(2)钟面分针的走动是围绕表芯一圈一圈转动的,属于旋转现象,不是平移现象.故答案为:×.点评:此题是考查对平移与旋转的理解及在实际生活中的应用.33.荡秋千的运动是平移..【答案】错误【解析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动,旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.依此根据平移与旋转定义判断即可.解:荡秋千是秋千围绕横杆做圆弧摆动的运动是旋转.故答案为:错误.点评:此题是对平移与旋转理解及在实际当中的运用.34.教室里的吊扇,它的叶片的运动方式是旋转..【答案】正确【解析】风扇转动是风扇的叶片绕中心轴转动.根据旋转的意义,把一个图形绕着某一点转动一个角度的图形变换叫做旋转.由此可判断风扇转动是旋转运动.解:风扇转动是风扇的叶片绕中心轴转动,是旋转运动;故答案为:正确点评:本题是考查旋转现象.旋转是物体在以一个点或一个轴为中心的圆周上运动的现象,不一定要作圆周运动.因此摆动也是旋转,所以秋千、钟摆、跷跷板的运动是摆动,同时也是旋转.35.推抽屉是现象,直升机的螺旋桨转动是现象.【答案】平移,旋转【解析】根据平移和旋转的意义,平移是将一个图形从一个位置变换到另一个位置,旋转是一个图形绕着一个定点旋转一定的角度.推抽屉是把抽屉来回移动,是平移现象;直升机的螺旋桨转动,是螺旋桨绕轴转动,是旋转现象.解:推抽屉是平移现象;直升机的螺旋桨转动是旋转现象;故答案为:平移,旋转.点评:本题主要是考查图形变换平移和旋转的意义.平移过程中,各对应点的“前进方向”保持平行,旋转变换和平移都不改变图形的形状和大小,各对应点之间的距离也保持不变.36.拉抽屉是一种平移现象..。
《图形的旋转》教案及教学反思(精选7篇)《图形的旋转》及篇1【教学内容】义务教育课程标准北师大版试验教材六年级上册第三单元第34页“图形的变换”。
【教学目标】1、通过观察、操作、想象,经历一个简单图形经过平移或旋转制作复杂图形的过程,体验图形的变换,发展空间观念。
2、借助方格纸上的操作和分析,有条理地表达图形的平移或旋转的变换过程。
3、利用七巧板在方格纸上变换各种图形,进一步提高学生的想象能力。
【教学重、难点】通过观察、操作活动,说出图形的平移或旋转的变换过程。
【教具、学具准备】三角尺、直尺、彩笔、圆规、每人准备一张方格纸,4张大小相等的等腰直角三角形(硬纸)、一副七巧板【个性化修改】难点:1、在于学生对轴对称的理解。
轴对称是图形变换的一种方法。
2、学生对于旋转的度数的把握。
【】教学过程一、创设情境师:在以前的学习中我们已初步认识了平移和旋转,下面请同学们用一个三角形在方格纸上边摆边说,说说什么是平移、什么是旋转。
学生在自己的方格纸上操作交流,然后请几位学生展示。
师:同学们我们在分析图形的变换时,不仅要说出它的平移或旋转情况,还要说清楚是怎样平移或旋转的,这样就能清楚地知道它的变换过程。
师:同学们的'交流很好,下面请同桌的两个同学互相合作,用两个三角形自己设计一个图形,然后进行变换,并说一说它的变换过程。
(学生进行自己的设计与操作,师巡视指导)师:同学们做得很好。
下面请几个同学上来演示他们设计的图形,并说一说它是怎样变换图形的。
如果是经过旋转组成的图案,每旋转一次,都应说一说是什么图形绕者哪一点旋转的?二、尝试练习:师:接下来,请同学们观察下图,边观察边思考,并拿出课前准备好的方格纸和三角形,分别给四个三角形标上A、B、C、D,自己摆一摆,移一移,转一转,进行图形的变换,然后按照下面老师提出的四个问题,与同桌同学进行交流。
(1)四个三角形A、B、C、D如何变换得到“风车”图形?(2)“风车”图形中的四个三角形如何变换得到长方形?(3)长方形中的四个三角形如何变换得到正方形?(4)正方形中的四个三角形如何变换回到最初的图形?学生自己操作,同桌交流图形变换的方法,教师巡视指导。
第三单元:图形的运动第4课时:欣赏与设计班级:姓名: 等级:【基础训练】一.选择题1.左图是由经过()变换得到的.A.平移B.旋转C.对称2.如图的图形中,()是只能由旋转得到的.A.B.C.3.将图形顺时针旋转90︒,得到的图形是()A.B.C.4.由图形A到图形C是怎样的旋转过程.()A.A顺时针旋转90︒得到图CB.A逆时针旋转180︒得到图CC.A逆时针旋转90︒得到图B,再逆时针旋转90︒得到图C5.下列图片中,哪些是由图片①分别经过平移和旋转得到的()A.③和④B.③和②C.②和④二.填空题6.广告设计人员进行图案设计,经常将一个基本图案进行轴对称、平移和等.7.下面的图案,是通过平移得到的图案在括号里填“平移”,是通过旋转得到的图案在括号里填“旋转”..8.动动小脑筋.(1)图a向平移了格成了图b.(2)图①变成图②、图③、图④是利用了三角形现象得来的.9.如图A是通过旋转变成图B的..10.如图,图形A是通过得到图形B、图形C、图形D的.三.判断题11.图只能通过画对称图形得到..12.利用对称、平移和旋转的变换可以设计许许多多美丽的镶嵌图案.13.图中是由经过旋转得到的..【拓展运用】四.解答题14.利用旋转画一朵小花.15.请你用轴对称或平移的方法,设计一幅美丽的图案.参考答案一.选择题1.A.2.C。
3.A.4.B.5.A.二.填空题6.旋转.7.平移;旋转;平移;平移;旋转;旋转.8.下;4;旋转.9.⨯.10.旋转.三.判断题11.⨯.12.√.13.√.四.解答题14.解:画图如下:15.解:用轴对称或平移的方法,设计一幅美丽的图案:。